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Abstract: Materials offering high energy density are currently desired to meet the increasing demand
for energy storage applications, such as pulsed power devices, electric vehicles, high-frequency
inverters, and so on. Particularly, ceramic-based dielectric materials have received significant at-
tention for energy storage capacitor applications due to their outstanding properties of high power
density, fast charge–discharge capabilities, and excellent temperature stability relative to batteries,
electrochemical capacitors, and dielectric polymers. In this paper, we present fundamental concepts
for energy storage in dielectrics, key parameters, and influence factors to enhance the energy stor-
age performance, and we also summarize the recent progress of dielectrics, such as bulk ceramics
(linear dielectrics, ferroelectrics, relaxor ferroelectrics, and anti-ferroelectrics), ceramic films, and
multilayer ceramic capacitors. In addition, various strategies, such as chemical modification, grain
refinement/microstructure, defect engineering, phase, local structure, domain evolution, layer thick-
ness, stability, and electrical homogeneity, are focused on the structure–property relationship on the
multiscale, which has been thoroughly addressed. Moreover, this review addresses the challenges
and opportunities for future dielectric materials in energy storage capacitor applications. Overall,
this review provides readers with a deeper understanding of the chemical composition, physical
properties, and energy storage performance in this field of energy storage ceramic materials.

Keywords: ceramic-based dielectric materials; polarization; breakdown strength; recoverable energy
density; energy efficiency; energy storage capacitors

1. Introduction

Energy storage devices such as batteries, electrochemical capacitors, and dielectric
capacitors play an important role in sustainable renewable technologies for energy conver-
sion and storage applications [1–3]. Particularly, dielectric capacitors have a high power
density (~107 W/kg) and ultra-fast charge–discharge rates (~milliseconds) when compared
to electrochemical capacitors and batteries (Figure 1b) [2–13]. These advantages of dielectric
capacitors make them promising for applications in power electronics and pulsed power
systems, as shown in Figure 1a. For instance, more than three trillion multilayer ceramic
capacitors (MLCCs) are manufactured annually and are used in cell phones or electric
vehicles [6–9,14,15]. However, dielectric capacitors have a lower energy storage density of
10−2 to 10−1 Wh/kg than electrochemical capacitors and batteries, which limits their prac-
tical applications. Therefore, high-performance dielectric materials in terms of high energy
storage density, high energy efficiency, fast charge–discharge capabilities, better thermal or
frequency stability, fatigue resistance, lifetime reliability, equivalent series resistance, and
low manufacturing costs are needed for power electronics and pulse power applications.
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and inorganic (ceramics, glass, and glass-based ceramics) materials, have been widely in-
vestigated to improve the energy storage performance [9,16–20]. In recent years, signifi-
cant improvements to dielectric materials have been made, although each material still 
has limitations. The polymers offer a high breakdown strength (BDS), low relative dielec-
tric permittivity, and weak thermal stability, making dielectric materials for energy stor-
age a long-term goal. Meanwhile, ceramic-based dielectric materials are popular research 
topics due to their application in energy storage, adaptability to various environments, 
fundamentality, and other factors. Therefore, the topic of dielectrics will be discussed fur-
ther in this review. These materials are classified into linear dielectrics (LDs), ferroelectrics 
(FEs), antiferroelectrics (AFEs), and relaxor ferroelectrics (RFEs) [17,20]. They are consid-
ered viable candidates for energy storage due to their differing properties in BDS and 
polarization, which primarily influence energy storage performance. 

This review paper presents fundamental concepts of energy storage in dielectric ca-
pacitors, including an introduction to dielectrics and key parameters to enhance energy 
storage responses. We also summarize recent progress in dielectrics, such as bulk ceram-
ics, ceramic films, and multilayer ceramic capacitors, including the phase, local structure, 
microstructure, domain evolution, layer thickness, stability, and electrical homogeneity; 
fabrication methods, dopants/composites, and various strategies for enhancing energy 
storage properties in dielectric capacitors are also briefly discussed. 

 
Figure 1. (a) Various applications of dielectric capacitors in power electronics and pulse power ap-
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2.1. Dielectric Capacitor 

A parallel plate capacitor is composed of two parallel conducting plates that are sep-
arated by a ceramic layer, as schematically shown in Figure 2. When a dielectric capacitor 
is placed in an external electric field, the electric dipoles will be displaced and oriented 
due to polarization (Figure 2b). The capacitance of a dielectric capacitor (C) is the ability 
to store electric charge and is given by the following equation: 𝐶 ൌ 𝑄𝑉 (1)

Figure 1. (a) Various applications of dielectric capacitors in power electronics and pulse power
applications. (b) Comparison of the power density versus energy density of batteries, electrochemical
capacitors, and dielectric capacitors.

The storage performance depends on the charge accumulation in dielectric materials,
which are a key component of capacitors. Dielectric materials, including organic (polyvinyli-
dene fluoride (PVDF), biaxially oriented polypropylene (BOPP), polyimide (PI), etc.), and
inorganic (ceramics, glass, and glass-based ceramics) materials, have been widely inves-
tigated to improve the energy storage performance [9,16–20]. In recent years, significant
improvements to dielectric materials have been made, although each material still has
limitations. The polymers offer a high breakdown strength (BDS), low relative dielectric
permittivity, and weak thermal stability, making dielectric materials for energy storage a
long-term goal. Meanwhile, ceramic-based dielectric materials are popular research topics
due to their application in energy storage, adaptability to various environments, funda-
mentality, and other factors. Therefore, the topic of dielectrics will be discussed further in
this review. These materials are classified into linear dielectrics (LDs), ferroelectrics (FEs),
antiferroelectrics (AFEs), and relaxor ferroelectrics (RFEs) [17,20]. They are considered vi-
able candidates for energy storage due to their differing properties in BDS and polarization,
which primarily influence energy storage performance.

This review paper presents fundamental concepts of energy storage in dielectric
capacitors, including an introduction to dielectrics and key parameters to enhance energy
storage responses. We also summarize recent progress in dielectrics, such as bulk ceramics,
ceramic films, and multilayer ceramic capacitors, including the phase, local structure,
microstructure, domain evolution, layer thickness, stability, and electrical homogeneity;
fabrication methods, dopants/composites, and various strategies for enhancing energy
storage properties in dielectric capacitors are also briefly discussed.

2. Fundamental Concepts for Energy Storage in a Dielectric Capacitor
2.1. Dielectric Capacitor

A parallel plate capacitor is composed of two parallel conducting plates that are
separated by a ceramic layer, as schematically shown in Figure 2. When a dielectric
capacitor is placed in an external electric field, the electric dipoles will be displaced and
oriented due to polarization (Figure 2b). The capacitance of a dielectric capacitor (C) is the
ability to store electric charge and is given by the following equation:

C =
Q
V

(1)

where Q is the charge and V is the voltage applied to the capacitor.
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Figure 2. Schematic diagram of (a) a dielectric capacitor, and (b) a dielectric between two con-
ductive plates, where electric dipoles are displaced and oriented by the applied electric field due
to polarization.

According to Gauss’s law,

V =
Qd

ε0εr A
(2)

The capacitance of a parallel plate capacitor can be calculated in terms of the sample
area and thickness via comparing Equations (1) and (2).

C = ε0εr
A
d

(3)

where ε0 is the permittivity of free space, εr is relative dielectric permittivity, A is the area
of metal plates, and d is the thickness of the ceramic sample (Figure 2a).

2.2. Evaluation of Energy Storage Performance

The energy storage density (W) of a linear dielectric material is determined with the
following equation [21]:

W =
1
2

ε0εrE2 (4)

where ε0 is the permittivity of free space, εr is dielectric permittivity, and E is the applied
electric field. In contrast, the nonlinear dielectric materials (FEs, AFEs, and RFEs) exhibit
energy loss. Therefore, the total energy storage density (Wtot), recoverable energy density
(Wrec), and energy storage efficiency (η) of these materials are calculated from the hysteresis
loops as follows [22–24]:

Wtot =
∫ Pm

0
EdP (Charging) (5)

Wrec =
∫ Pm

Pr
EdP (Discharging) (6)

η =
Wrec

Wrec + Wloss
× 100% (7)

where E is the applied electric field, P is polarization, Pmax is maximum polarization, Pr is
remnant polarization, and Wloss is energy loss, as schematically shown in Figure 3.
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a ceramic capacitor.

2.3. Key Parameters for Energy Storage Performance
2.3.1. Energy Storage Density and Efficiency

Wrec and η are the most important parameters for evaluating the energy storage
performance of dielectric materials, which are related to dielectric permittivity and po-
larization. A high Wrec of dielectric materials means that more energy can be stored in a
given volume, promoting miniaturization and lightweight and low-cost materials being
utilized in consumer power electronics and pulse power systems. It can be concluded
from Equations (4)–(7) and Figure 3 that a higher εr, Pmax, and BDS lead to higher energy
density, whereas low dielectric or hysteresis losses and low Pr improve energy storage
efficiency in dielectric materials. Moreover, the material should have low electronic or ionic
conductivity to resist higher electric fields.

2.3.2. Polarization Difference

The energy storage density and efficiency of a ceramic capacitor’s are mostly related
to the shape of the P-E loop due to the area under the curve providing the Wrec (Figure 3).
Therefore, the energy storage performance depends on the value of ∆P (∆P = Pmax − Pr),
and the Wrec increases with ∆P [25,26]. However, some of the stored energy in dielectrics
will be dissipated during the depolarization/discharge process, which will be equal to the
area of the P-E loop (i.e., Wloss can be seen in Figure 3) [27,28]. Such energy loss causes
heat generation, consequently deteriorating the capacitor’s thermal stability and lifespan.
The heat generation is attributed to the dielectric loss (tanδ) and temperature rise (∆T), as
provided using the following equations:

wh = πε0εrE2tanδ (8)

∆T =
f Ve

hA
Wh (9)

where f is the driving frequency, Ve is the effective volume to an applied electric field, h is
the heat transfer coefficient, and A is the total surface area of a sample [27,28]. Therefore, a
low tanδ and a large ∆P (i.e., low Pr and high Pmax) are critical parameters for achieving
high energy storage performance in ceramic capacitors.

2.3.3. Dielectric Breakdown Strength

The energy storage response of ceramic capacitors is also influenced by the Eb, as the
Wrec is proportional to the E, as can be seen in Equation (6) [29]. The BDS is defined as
the maximum electric field over which the electrical resistance of a dielectric significantly
decreases. The Eb of these capacitors strongly depends on intrinsic (bandgap, grain size,
phase, defect dipoles, material thickness, microstructure, and porosity) and extrinsic (work-
ing/environmental conditions and electrode configuration) properties [5,30–33]. Therefore,
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a dense microstructure is a critical factor for the fabrication of a high-quality ceramic capaci-
tor to achieve greater capacitance under high electric fields. However, dielectric breakdown
is caused by pores, cracks, interfaces, and compositional inhomogeneity [31,33,34]. The
porosity in dielectrics affects the dielectric breakdown strength and can cause overheating
and thermal stress, resulting in breakdowns at higher electric fields [31,33].

2.3.4. Discharge Time

The discharge time is another critical parameter for energy storage. The discharging
speed of a ceramic capacitor is calculated in terms of the discharge time, represented by
τ0.90. It is defined as the time required for a capacitor to discharge 90% of its stored energy.
The discharge time is 0.15 µs at an infinite time, and it depends on the dielectric permittivity
and thickness of the material, load resistance, and applied voltage [6]. The discharge time
should be very short for pulsed power energy storage capacitor applications.

2.3.5. Reliability

Dielectric capacitors are interconnected with their embedded system and operating
conditions, influenced by various factors such as temperature, frequency, and voltage
fluctuations. Therefore, better reliability, often called high electric fatigue endurance,
protects the physical integrity of pulsed power systems, particularly dielectric capacitors,
during energy storage under harsh circumstances. The evaluation of the resistance to
stimuli can be conducted through observing the distinct features of P-E loops under
particular investigation conditions.

2.4. Categories of Dielectric Materials

Based on polarization versus the electric field response, dielectric materials are catego-
rized into linear dielectrics (LDs) and nonlinear dielectrics (NLDs), such as ferroelectrics
(FEs), anti-ferroelectrics (AFEs), and relaxor ferroelectrics (RFEs). Figure 4a–d show a
schematic of the electric field-dependent polarization response and corresponding ferro-
electric domain structures with dipole orientation for the LDs and NLDs. LDs display an
almost linear polarization response via the application of an electric field, owing to the
lack of permanent dipoles (Figure 4a). Ferroelectric materials display superior polarization
responses even in the absence of an external electric field due to the presence of a net dipole
moment. Therefore, they have a strong nonlinear relation with the applied electric field
(Figure 4b). In AFE materials, the adjacent dipoles are oriented in antiparallel directions,
resulting in zero net polarization. They show double hysteresis loops at higher electric
fields caused by AFE to FE phase transitions (Figure 4c). In RFEs, the existence of polar
nanoregions (PNRs)/nanodomains greatly reduces cooperative coupling between ferro-
electric domains, which limits spontaneous polarization and, consequently, slim P-E loops
(Figure 4d).
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2.5. Energy-Storage Mechanism of the Materials

Ferroelectric materials are a fascinating class of dielectrics with unique properties,
making them promising in the field of energy storage, conversion, and harvesting ap-
plications due to their electrical, mechanical, and thermal properties being intrinsically
interrelated. All ferroelectrics are piezoelectric and pyroelectric materials, which make
ferroelectrics extremely useful in multiple applications. The coupling of ferroelectric po-
larization to temperature, stress, and electric field enables various energy storage and
conversion approaches that rely on diverse stimuli. The polarization is used in three
ways, namely capacitive-energy storage (i.e., energy is stored in the form of polarization),
piezoelectric-energy harvesting (i.e., vibration-induced stress on a piezoelectric material is
converted into charge via a change in polarization), and pyroelectric-energy conversion (i.e.,
thermodynamic cycles can be utilized to convert temperature fluctuations into current) [35].

Based on the energy storage mechanism and the charge–discharge process, there is
a substantial variation in the power density and energy density in dielectric capacitors,
electrochemical capacitors, and batteries (see Figure 1b). Batteries offer higher energy
density, but lower power density because of the slow movement of charges, which are used
for long-term, stable energy supplies and applications with a maximum of 5 V [2,3,12,36].
Electrochemical capacitors have moderate power density and energy storage density with
a slow charge–discharge rate and a low operating voltage (<3 V) [36]. Dielectric capacitors
have high power density but limited energy storage density, with a more rapid energy
transfer than electrochemical capacitors and batteries; this is because they store energy
via dielectric polarization in response to the external electrical fields rather than chemical
reactions [3,12,13,35]. Therefore, dielectric capacitors have received great interest due to
their low price and high operating voltages (kV/MV range) for longer durations, making
them ideal for a wide range of applications, including consumer electronics and advanced
pulsed power devices.

3. Dielectric Materials for Energy Storage
3.1. Bulk Ceramics
3.1.1. Linear Dielectrics

LDs exhibit low energy loss, low relative dielectric permittivity, and a high breakdown
electric field, and are promising for energy storage device applications under certain
working conditions. Various LDs, such as Al2O3 [37], TiO2 [38], SrTiO3 (ST) [39–41], and
CaTiO3 (CT) [41–45], have been reported to improve their energy storage performances.
Pure ST ceramics exhibited a relative dielectric permittivity of 300, a breakdown electric
field of 1600 kV/mm, and a dielectric loss of 0.01 at RT, and are utilized for integrated
circuit applications [39,42,46]. Chemical modifications have been adopted to enhance the
energy storage properties in ST ceramic capacitors. Notably, 2 mol% of Ca doping in
the ST system was improved energy density of 1.95 J/cm3 and an efficiency of 72.3% at
a breakdown field of 333 kV/cm, which is nearly three times higher than pure ST [41].
These improved energy storage properties in titanium-based ceramics are attributed to the
insulation attenuation property caused by electronic hopping from the valence band to
the conduction band. The substitution of Zr ions at the Ti site of Sr0.98Ca0.02TiO3 boosted
the energy storage density to 2.77 J/cm3 and yielded an efficiency of 77.7% by reducing
the dielectric loss and leakage current density, which is attributable to the higher chemical
durability [47]. Mg-doped ST ceramics showed an enhanced Wrec of 1.86 J/cm3 and η
of 72.3% at a BDS of 362 kV/cm by lowering the dielectric loss to 0.001 with a moderate
dielectric constant of 280 [45]. Interestingly, a binary composite of CaZrO3-0.05SrTiO3
exhibited a high Wrec of 5 J/cm3 at 1000 kV/cm, caused by a low dielectric loss of 0.001 and
dielectric constant of 35 [48]. It is well known that the BDS is directly proportional to the
bandgap energy, and a higher bandgap energy enables a higher BDS [43,48]. Shay et al. [43]
reported a binary composition of 0.8CaTiO3-0.2CaHfO3 (with 0.5 mol% of Mn doping) by
modulating their bandgap energies, and showed a high Wrec of 9 J/cm3 at 1200 kV/cm
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(9.6 J/cm3 at 1300 kV/cm). In a similar vein, BaZrO3-CaTiO3 and SrZrO3-CaTiO3 binary
compositions have shown improved energy storage performance [43,48].

3.1.2. Ferroelectrics

In comparison with LDs, FE materials show strong nonlinear behavior with high
polarization, high dielectric permittivity, high energy loss, and a low BDS. Various rare
earth elements and dopants (such as Sr, Ca, Nd, Mn, and Zr) were substituted at A/B-
sites of the BT system to enhance the BDS and energy storage responses. Sr-doped BT
(Ba1−xSrxTiO3, BST) ceramics were investigated, showing a high dielectric constant of
650, a low dielectric loss of 7.6 × 10−4 @ 1kHz, a low Wrec of 0.23 J/cm3, and the Curie
temperature being lowered far below RT [49]. Choi et al. [50] reported a defect dipole
engineering method to enhance the energy storage performance by co-doping Nd and
Mn in Ba0.7Sr0.3TiO3 ceramics. Figure 5 presents a schematic illustration of a defect dipole
concept between acceptor ions and oxygen vacancies in Ba0.7Sr0.3TiO3 ceramics. These
defect dipoles with a uniform and small-grained microstructure enable a high difference
between Pmax and Pr (∆P~10.39 µC/cm2) and capture electrons, improving the BDS to
110.6 kV/cm with co-doping of Nd and Mn; this in turn leads to improvements in the
Wrec to 0.41 J/cm3 and a high η of 84.6% in Ba0.7Sr0.3TiO3 ceramics. Interestingly, Dong
et al. [33] reported 1.6 wt% ZnO doped in Ba0.3Sr0.7TiO3 ceramics with an enhanced Wrec
of 3.9 J/cm3 at 40 kV/mm. Taking a theoretical approach, Wang et al. [51] reported first-
principles calculations and molecular dynamic simulations to study the effects of the
chemical composition, phase under temperature, and electric fields on the ferroelectric
and energy storage properties of ABO3 perovskite FEs. These simulation results revealed
a Wrec of 2.8 J/cm3 and a η of 95% at Eb of 350 kV/cm in Ba0.6Sr0.4TiO3 ceramics, and,
furthermore, a Wrec of 30 J/cm3 and a η of 92% obtained at an Eb of 2750 kV/cm in the
same composition of Ba0.6Sr0.4TiO3. However, practically, a BDS on the order of a thousand
kV/cm is not achievable in most FEs because of numerous defects, an internal mechanical
field, internal stress, and the influence of crystallographic lattice constants, phase transition,
and grain size. Song et al. [52] reported the effect of grain sizes from 0.5 µm to 5.6 µm in
Ba0.6Sr0.4TiO3 ceramics to investigate the energy storage performance, and the samples
with a grain size of 0.5 µm showed a high Wrec of 1.28 J/cm3 at an Eb of 243 kV/cm.
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Figure 5. Schematic illustration of a defect dipole concept to achieve energy storage properties of
Nd and Mn-co-doped Ba0.7Sr0.3TiO3 ceramics. Defect dipoles between donor/acceptor ions and
oxygen vacancies capture electrons, decrease grain size, and enable a high difference between Pmax

and Pr, thereby enhancing the BDS with Nd and Mn, which results in an improved Wrec and η in
Ba0.7Sr0.3TiO3 ceramics. Reproduced with permission [50]. Copyright 2023, MDPI.
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3.1.3. Anti-Ferroelectrics

Antiferroelectric materials differ from typical ferroelectrics in their distinctive crystal
structure, with adjacent diploes aligned in opposite orientations. To generate a strong
ferroelectric state, diploes are subjected to a high electric field in order to realign their
polarization orientation. This results in the formation of double hysteresis loops which
consist of a linear polarization response in the AFE state and a ferroelectric hysteresis loop
in the FE state. The huge reversible polarization would increase the energy storage density.
However, thermal runaway and high energy dissipation due to hysteresis remain major
challenges in building high energy density AFEs. To improve energy storage properties,
enhancing the linear polarization response area and decreasing hysteresis loss by changing
the phase transition parameters is recommended.

PbZrO3 (PZ) AFE materials have been widely investigated due to their diverse phase
transition features [53]. Chemical substitution affects reform polarization properties by
altering the switching electric field between the AFE and FE phases. As per the phase
diagram of La2O3-PbZrO3-PbTiO3 [54], Peixin et al. [55] reported the energy storage prop-
erties with the substitution of Ti4+ with Zr4+ at the B-site of in (Pb1−yLay)(ZrxTi1−x)O3

(PLZT) ceramics. The substitution of Zr4+ at Ti4+ can decrease the tolerance factor and
improve the AFE properties. The P-E loops of PLZT AFEs become very slim with the
substitution of the Zr concentration, and a high Wrec of 3.38 J/cm3 and a high η of 86.5%
were achieved with the optimized composition of x = 0.9 and y = 0.07 (Figure 6). Sim-
ilarly, the substitution of La3+ at Pb2+ (the A-site) of (Pb1−1.5xLax)(Zr0.5Sn0.43Ti0.07)O3
improved the AFE phase stability and provided slim P-E loops, resulting in the highest
Wrec of 4.2 J/cm3 and a high η of 78% for the x = 0.03 composition [56]. On the basis
of the phase diagram of PbZrO3-PbTiO3-PbSnO3 [57], Wang et al. [58] reported field-
induced multiphase transitions (AFE-FE and FE-FE) at weak and high electric fields in
(Pb0.98La0.02)(Zr0.55Sn0.45)0.995O3 AFE ceramics, yielding superior energy storage properties
of a Wrec of 10.4 J/cm3 and a η of 87% at 400 kV/cm. Moreover, Liu et al. reported the
substitution of Sr2+ in (Pb0.98-xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 AFE ceramics to improve the
BDS and the switching of electric fields between the AFE and FE phase, resulting in an
ultrahigh Wrec of 11.18 J/cm3 and a high η of 82.2% [59].
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Figure 6. (a) P-E loops and (b) Wst, Wre, and η of the (Pb1−yLay)(ZrxTi1−x)O3 ceramics for y = 0.07
and x = 0.82 to 0.92. (c) shows a SEM image for x = 0.9. Reproduced with permission [55]. Copyright
2019, Elsevier.

In spite of the excellent features of AFE lead-based ceramics, various AFE lead-free
ceramics have garnered attention due to environmental concerns. Zhao et al. [26] reported
lead-free AFE AgNbO3 (AN) ceramics with a Ta substitution to improve their energy
storage properties. Figure 7 presents the P-E loops of pure, Ta-doped AN ceramics and
energy storage properties of Ag(Nb1−xTax)O3 ceramics as a function of the Ta concentration
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(x = 0 to 20 mol%). A high Wrec of 4.2 J/cm3 (260% higher than that of pure AN) and a η of
69% were achieved in Ag(Nb1−xTax)O3 ceramics for x = 0.15. The substitution of Ta into
the Nb site improves antiferroelectricity due to the lower polarizability of B-site cations,
and also reduces grain size and enhances density, resulting in a high BDS of 240 kV/cm
(Figure 7c). Researchers recently investigated the underlying mechanism between AFE
properties and the energy barrier (EB), where increased and decreased EB for the AFE-
FE phase transition via the doping of Sm3+, Ca2+, and the co-doping of Sm3+/Ta5+ at
the A- and A/B-sites of AN-based ceramics, which exhibited high Wrecs of 5.2, 4.87, and
3.55 J/cm3, respectively [60–62]. Luo et al. [63] reported a high Wrec of 6.3 J/cm3 and a high
η of 90%, realized by the M2-M3 phase boundary, the stabilized AFE phase, the presence
of relaxor properties, and slim double P-E loops. In a similar way, Li et al. [5] reported
0.55(Bi0.5Na0.5)TiO3-0.45(Bi0.2Sr0.7)TiO3 relaxor-antiferroelectric ceramics with a Wrec of
2.5 J/cm3 for bulk ceramics and 9.5 J/cm3 for multilayer ceramic capacitors, respectively.
In addition, Qi et al. [64,65] fabricated 0.78(Bi0.5Na0.5)TiO3-0.22NaNbO3 and 0.76NaNbO3–
0.24(Bi0.5Na0.5)TiO3 relaxor-antiferroelectric ceramics with giant energy storage properties
as follows: a Wrec of 7.02 and 12.2 J/cm3 and a η of 85% and 69%, respectively. Instead of
the chemical substitution/composition method, Wang et al. [66] utilized a hydrothermal
method to enhance the energy storage performance of AN ceramics and form a fine-grain
size of 3 µm, which resulted in a high BDS of 250 kV/cm.
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3.1.4. Relaxor Ferroelectrics

Relaxor ferroelectric materials, a significant subclass of ferroelectric materials, have
drawn the attention of researchers because of their intriguing and little-known physics since
Smolenskii’s first discovery of the relaxor properties in a BaTiO3 (BT)-based system [67].
The RFEs are thought to be the most promising energy storage materials for applications in
electrostatic energy storage because of their distinct and slim P-E loops, in contrast with
regular ferroelectrics, and are beneficial for energy storage. It has been established that the
vast differences between RFEs and FEs are closely related to the dynamics of their domain
structure. The nanodomains/PNRs, which range in size from several nm to µm and are
more responsive to external electric fields, are predicted to facilitate a moderate P and
slight Pr in RFEs, and these features are expected to contribute to a high Wrec and η [68]. In
this regard, various lead-based and lead-free perovskite RFEs, namely (Pb(Zn1/3Nb2/3)O3-
PbTiO3 (PZN-PT) [69,70], Pb(Mg1/3Nb2/3) O3-PbTiO3 (PMN-PT) [70], (Pb, La)(Zr, Ti)O3
(PLZT) [71] and BT [72–74], (Na, K)NbO3 (KNN) [75,76], and (Bi, Na)TiO3 (BNT) [75,76],
have been explored for energy storage applications, respectively.

In lead-based RFEs, the PLZT has received strong attention for energy storage applica-
tions because of their phase structure (paraelectric phase, rhombohedral FEs, tetragonal
FEs, orthorhombic AFEs, and RFEs) through chemical composition design. It is observed
that relaxor properties showing slim P-E loops can be obtained via the formation of a
pseudocubic structure with a c/a ratio approaching one when exceeding 7 mol% of La3+
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ions [77]. Thick/thin films have been fabricated to improve the BDS of the PLZT sys-
tem. Hao et al. fabricated PLZT bulk ceramics with a thickness of 1 mm using a sol–gel
synthesis process and an enhanced Wrec of 28.7 J/cm3 and a η of 60% with a La:Zr:Ti
ratio of 9:65:35 [78]. Furthermore, a Mn-doped PLZT thick film with the same ratio and
same thickness showed a high Wrec of 30.8 J/cm3 and a η of 68.4% at an electric field of
1185 kV/cm [79,80]. To date, the energy storage properties of PLZT with other lead-based
RFEs and various chemical compositions have been reported, such as PZN-PT, PMN-PT,
and Pb(Sn,Ti)O3 (PST), exhibiting Wrec values ranging from 1 to 50 J/cm3 for energy storage
device applications [81–85]. However, the utilization of lead-based dielectrics has a strong
impact on human health and the environment due to their toxicity. Thus, researchers have
been developing lead-free RFEs for energy storage applications.

Over the past 20 years, since dielectric constant/polarization is independent of the
applied electric field, temperature, and frequency, lead-free BT-based and weakly coupled
RFEs have been explored in efforts to achieve high energy density and high efficiency
based on the domain tailoring concept [4,23,86–94]. Ogihara et al. [86] reported a high
Wrec of 6.1 J/cm3 at 73 kV/mm in BT-BiScO3 thick films that were sustained until 300 ◦C.
Yuan et al. [93] reported a domain evaluation using chemical composition and improve-
ments in the energy storage of BT-based ceramics. Furthermore, lead-free BNT-based and
strongly coupled RFEs with a high polarization response via minimizing hysteresis loss and
leakage currents have been reported. Qiao et al. [95] demonstrated a high Wrec of 4.14 J/cm3

in a Sr and La-co-doped BNT system. The enhanced Wrec is attributed to the small grains
and delays in polarization produced by La doping, whereas remnant polarization is de-
creased following Sr doping. Zhai et al. [96,97] utilized an A-site defect engineering method
(nonstoichiometric ratio of Bi and Na) to reduce the electric conductivity and enhance the
grain size, which resulted in a high Wrec (5.63 J/cm3 and 3.72 J/cm3) and a high η (94%
and 90.7%) in binary and ternary systems, such as 0.75Bi0.58Na0.42TiO3-0.25SrTiO3 and
BNT-Bi0.1Sr0.85TiO3-KNbO3. Wu et al. [98] reported the incorporation of Sr0.85Bi0.1□0.05TiO3
(SBT) and NaNbO3 (NN) into a BNT system via a compositional design. The substitution
of Sr2+ ions and A-site vacancies constructed RFEs on the basis of the order–disorder
theory, enabling a high Wrec of 3.08 J/cm3 and a high η of 81.4%. Liu et al. [99] presented
an intrinsic defect and polarization mechanism in A-site-deficient 0.66(Bi0.5Na0.5)TiO3-
0.06BaTiO3-0.28(BixSr1–3x/2)TiO3 (BNT-BT-BST) relaxors, favoring polarization behavior,
which resulted in a Wrec of 1.61 J/cm3 and a η of 90.5%. Hwang et al. [100] demonstrated
the electric energy storage density and energy efficiency of (1 − x)Bi0.5(Na0.8K0.2)0.5TiO3-
xBi0.2Sr0.7TiO3 (BNKT-BST; x = 0.15–0.50) RFEs via a domain engineering method. The
substitution of BST composition into the BNKT system can disturb the long-range ferroelec-
tric order, reducing the dielectric maximum temperature Tm, which leads to the formation
of dynamic PNRs (Figure 8a). Additionally, the Tm was shifted to a higher temperature
with increasing frequency, signifying RFE behavior in BNKT-BST ceramics, which is sup-
ported by the modified Curie Weiss law (Figure 8b). The relaxor properties contribute to a
higher Pmax and a lower Pr, enhancing the BDS with the incorporation of BST, and leading
to a high Wrec of 0.81 J/cm3 and high η of 86.95% at an electric field of 90 kV/cm for a
x = 0.45 composition (Figure 8c,d). Ma et al. [101] utilized a morphotropic phase boundary
(MPB) 0.76Bi0.5Na0.5TiO3-0.24SrTiO3 (BNT-ST) RFE with the incorporation of AFE AN to a
lower Pr and retained the same Pmax in order to achieve a Wrec of 2.03 J/cm3. Furthermore,
lead-free KNaNbO3-based RFEs have been explored to enhance their energy storage prop-
erties. Yang et al. [102] reported composition-driven grain size to a sub-micrometer scale
(~100–200 nm) to enhance the breakdown strength of (K0.5Na0.5)NbO3−xSrTiO3 (KNN-ST)
RFEs, and showed a high Wrec of 4.03 J/cm3 at 400 kV/cm. Similarly, KNN has been modi-
fied with BiFeO3, Sr(Sc0.5Nb0.5)O3, and Bi(Mg2/3Nb1/3)O3 ceramics, and high Wrec values of
2 J/cm3, 2.60 J/cm3, and 4.08 J/cm3 were achieved [34,65,103,104]. Xie et al. [105] reported
an ultra-high Wrec of 8.73 J/cm3 and a high η of 80.1% in 0.68 NaNbO3-0.32Bi0.5Li0.5TiO3
ceramics, achieved via exploiting the stable orthorhombic FE phase instead of the AFE
orthorhombic phase (Figure 9a,b). In addition, they introduced the AFE relaxor concept to
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discuss the energy storage performance of 0.78NN-0.24BNT systems. They reported that
the local AFE was transformed/reversed into the FE phase at an electric field of 400 kV/cm,
inducing a large Pmax (50 µC/cm2) and a low Pr of 5 µC/cm2, which together provided an
enhanced ultra-high Wrec of 12.2 J/cm3 and a high η of 69% at an electric field of 680 kV/cm,
as shown in Figure 9c,d [65]. The energy storage properties of ceramic-based dielectric
materials are listed in Table 1.
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Table 1. Energy storage properties of ceramic-based dielectric bulk materials.

Bulk
Ceramics Composition Wrec (J/cm3) η (%) Eb (kV/cm) Refs.

Ca0.5Sr0.5(Ta0.024Ti0.97)O3-2 wt%SiO2 2 96 360 [106]

LDs

Ca0.5Sr0.5Ti0.97Sn0.03O3 2.06 95 330 [107]

Ca0.5Sr0.5Ti0.9Zr0.1O3 2.05 85 390 [108]

(Ca0.5Sr0.5)0.8875La0.075TiO3 2.07 93 370 [109]

0.7(Bi0.5K0.5TiO3)-0.3SrTiO3 2.31 77.7 190 [110]

(Ca0.5Sr0.5)0.99Mg0.01TiO3 2.88 90 460 [111]

Ca0.5Sr0.5Ti0.85Zr0.15O3 3.37 96 440 [112]

0.9(Sr0.7Bi0.2TiO3)-0.1Bi(Ni2/3Nb1/3)O3 3.71 97 340 [113]

Ca-doped SrTiO3 1.95 72.3 333 [41]

Zr doped Sr0.98Ca0.02TiO3 2.77 77.7 - [47]

Mg-doped SrTiO3 1.86 72.3 362 [45]

CaZrO3-0.05SrTiO3 5 - 1000 [48]

0.8CaTiO3-0.2CaHfO3 9 - 1200 [43]

FEs

Ba0.3Sr0.7TiO3 0.23 95.7 90 [49]

Nd and Mn-doped Ba0.7Sr0.3TiO3 0.41 84.6 110.6 [50]

1.6 wt% ZnO doped Ba0.3Sr0.7TiO3 3.9 - 40 [33]

(BaCa)(ZrTi)O3 1.28 - 243 [52]

BiFeO3–BaTiO3–Bi(Mg2/3Nb1/3)O3 1.27 - 110 [114]

BaTiO3–Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 2.06 78 180 [115]

0.9BaTiO3-0.1Bi(Mg1/2Hf1/2)O3 3.38 87 240 [116]

AFEs

(Pb0.91Ba0.045La0.03)(Zr0.6Sn0.4)O3 8.16 92.1 340 [117]

0.84(Bi0.5Na0.5)TiO3-0.16KNbO3 5.2 88 310 [118]

Ag0.76La0.08NbO3 7.01 77 476 [119]

Ag0.97Nd0.01Ta0.20Nb0.80O3 6.5 71 370 [120]

NaNbO3-Bi(Zn2/3Nb1/3)O3 2.4 90 300 [121]

0.85(NaNbO3)-0.15(Bi(Ni2/3Nb1/3)O3) 3.31 80.9 440 [122]
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Table 1. Cont.

Bulk
Ceramics Composition Wrec (J/cm3) η (%) Eb (kV/cm) Refs.

AFEs

(Na0.41La0.09)(Nb0.82Ti0.18)O3 6.5 66 550 [123]

0.75[0.90NaNbO3-
0.10Bi(Mg0.5Ta0.5)O3]0.25(Bi0.5Na0.5)0.7Sr0.3TiO3

8 90.4 800 [124]

0.68NaNbO3-0.32(Bi0.5Li0.5)TiO3 8.73 80.1 - [105]

0.76NaNbO3-0.24(Bi0.5Na0.5)TiO3 12.2 69 680 [65]

RFEs

0.93BaTiO3-0.07YNbO4 0.61 87 173 [125]

0.65Bi1.05FeO3-0.35BaTiO3-
(BiNa0.84K0.16)0.48Sr0.04TiO3

0.81 60 100 [126]

0.93BaTiO3-0.07Sr(Zn1/3Nb2/3)O3 1.45 83.12 260 [127]

0.88BaTiO3-0.12Bi(Ni2/3Nb1/3)O3 2.09 95.9 220 [128]

0.02Ce-doped 0.65BaTiO3-0.35Sr0.7Bi0.2TiO3 2.57 81.3 330 [129]

(Ba0.65Sr0.245Bi0.07)0.99Nd0.01TiO3 4.2 80 460 [130]

0.85(0.95Bi0.5Na0.5TiO3-0.05SrZrO3)-0.15NaNbO3 3.14 79 230 [131]

Na0.25Bi0.25Sr0.5)(Ti0.8Sn0.2)O3 3.4 90 310 [132]

0.88Bi0.47Na0.47Ba0.06TiO3-0.12CaHfO3 4.2 66.7 280 [133]

0.75(Bi0.45La0.05Na0.5)0.94Ba0.06TiO3-
0.25Sr0.8Bi0.1□0.1Ti0.8Zr0.2O2.95

3.84 90.8 330 [134]

0.5(Na0.5Bi0.5TiO3)-0.5(Sr0.85Sm0.1TiO3) 5.02 90 422 [135]

0.8Bi0.5Na0.5TiO3-0.2SrNb0.5Al0.5O3 6.64 96.5 520 [136]

0.70Bi0.5Na0.5TiO3-0.30SrNb0.5Al0.5O3 6.78 89.7 572 [137]

0.85K0.5Na0.5NbO3-0.15Bi(Li0.5Ta0.5)O3 1.1 56 151 [138]

0.91K0.5Na0.5NbO3-0.09SrZrO3 2.81 80 370 [139]

0.9(K0.5Na0.5)NbO3-0.1Bi(Zn2/3Nb1/3)O3 4.01 97.1 326 [140]

[(Na0.5K0.5)0.91Li0.03](Nb0.88Sb0.06)O3-
0.06Bi(Zn1/2Zr1/2)O3

4.85 88.2 480 [141]

0.85K0.5Na0.5NbO3-0.15Bi(Zn2/3Ta1/3)O3 6.7 92 600 [142]

0.90K0.5Na0.5NbO3-
0.10Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3

7.4 78 800 [143]

0.85K0.5Na0.5NbO3-0.15Bi(Ni0.5Zr0.5)O3 8.09 88.46 870 [144]

3.2. Ceramic Films

In Section 3.1.4, we presented lead-free RFE materials, which are good candidates
for energy storage device applications, owing to their ultra-high energy storage density,
excellent BDS, and eco-friendliness. However, the miniaturization of electronic devices is
necessary for real-world applications, such as hybrid electric vehicles, defense artillery, and
smart and wearable electronics [145–147]. Therefore, thin/thick film capacitors (e.g., RFEs)
have received significant attention in developing high-performance ceramic capacitors for
energy storage as compared to bulk ceramic capacitors (LDs, FEs, and AFEs) [1,148–150].
Interestingly, these film capacitors have a higher BDS due to less defects, which results in a
high energy density. In addition, thin/thick film capacitors are promising for miniaturized
electronic devices due to their uniform and highly dense microstructure. The thickness of
ceramic capacitors plays an important role in determining the BDS. The thickness/volume
ratio of a film capacitor determines its energy storage capacity. Moreover, ceramic capacitor
devices with a higher BDS are safe for operation at high voltages and have a smaller
likelihood of device failure [6,151].
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RFE film-based dielectric capacitors that adopt various strategies for energy storage
have been investigated [152–169]. Zhang et al. [170] improved the energy storage perfor-
mance via a small amount of Mn doping (1 mol.%) in 0.70BNT-0.3ST RFE thin films. Mn2+

ions induce an intrinsic restoring force and enable the reversible domain switching and
slim P-E loops (∆P~56 µC/cm2), resulting in a high Wrec of 27 J/cm3. The same amount of
Mn in 0.6ST-0.4BNT thin films yielded a high Wrec of 33.58 J/cm3 at a BDS of 3134 kV/cm,
owing to reduced oxygen vacancies [171]. Interestingly, BNT-BT has shown excellent di-
electric properties at the MPB between the coexistence of a rhombohedral FE phase and a
tetragonal AFE phase for x = 0.06. Peng et al. [172] reported an ultra-high Wrec of 154 J/cm3

via the co-doping of La and Zr in 0.94BNT-0.06BT RFE thin films. The La dopant plays
a critical role in enhancing the relaxor properties, whereas the Zr dopant was utilized to
control the transition temperature. Pan et al. [173] reported an energy density of 70 J/cm3

in 0.55BiFeO3–0.45SrTiO3 (BF-ST) films via a domain engineering method. The substitution
of ST into BF can transform the micrometer-scale FE domains into highly dynamic PNRs,
resulting in a high energy storage density in the BF-ST films. In addition, they demon-
strated that the coexistence of rhombohedral and tetragonal nanodomain structures in a
cubic paraelectric matrix creates a flattened domain-switching pathway in BF-BT-ST films,
which minimizes hysteresis loss and delivers an energy density of 112 J/cm3 [152]. Pan and
co-workers carried out phase-field simulations in order to choose the proper combination
of BF and BT with Sm doping to achieve high energy storage. These simulations were
helpful in designing super-paraelectric RFEs with unique and smaller size nanodomains in
a Sm-doped BF-BT system, which generated an ultra-high Wrec of 152 J/cm3 and a high η
of 90% [174]. The energy storage properties of the ceramic films are summarized in Table 2.

Table 2. Energy storage properties of ceramic films.

Film Composition Wrec (J/cm3) η (%) Eb (kV/cm) Refs.

BiFeO3-BaTiO3-SrTiO3 112 80 5.3 × 103 [152]

0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BCZT) 99.8 71 750 [153]

0.6(Bi0.5Na0.5)TiO3–0.4Bi(Ni0.5Zr0.5)O3 50.1 63.9 2200 [154]

Mn-doped 0.97(0.93Na0.5Bi 0.5TiO3-0.07BaTiO3)-0.03BiFeO3 81.9 64.4 2285 [155]

Mn-doped 0.55(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-0.45SrTiO3 76.1 80 2813 [156]

Ba(Zr0.35Ti0.65)O3 65.1 72.9 6.15 × 103 [157]

Sn-doped In2O3/BaZr0.35Ti0.65O3 40.6 68.9 4.23 × 103 [158]

0.9Bi0.2Sr0.7TiO3–0.1BiFeO3 48.5 47.57 4800 [159]

Mn-doped BiFeO3–BaTiO3 80 78 3.1 × 103 [160]

0.5(Bi0.5Na0.5)TiO3-0.5Bi(Zn0.5Zr0.5)O3 40.8 64.1 1500 [161]

0.88Ba0.55Sr0.45TiO3–0.12BiMg2/3Nb1/3O3 86 73 5 × 103 [162]

0.3Bi(Fe0.95Mn0.05)O3-0.7(Sr0.7Bi0.2)TiO3 61 75 3000 [163]

(Na0.8K0.2)0.5Bi0.5TiO3/0.6(Na0.8K0.2)0.5Bi0.5TiO3-0.4SrTiO3 73.7 68.1 2308 [164]

Na0.5Bi3.25La1.25Ti4O15/BaBi3.4Pr0.6Ti4O15 159.7 70 3450 [165]

Mn-doped 0.65(0.94Na0.5Bi0.5TiO3–0.06BaTiO3)–0.35SrTiO3 56 66 2738 [166]

Sr0.975(Bi0.5Li0.5)0.025Ti0.99Mn0.01O3 47.7 66.5 3307 [167]

Ba(Zr0.1Ti0.9)O3 15.5 69.8 1500 [168]

HfO2/Al2O3/ZrO2 54.3 51.3 5000 [169]

3.3. Multilayer Ceramic Capacitors

MLCCs have received extensive attention in the field of energy storage capacitor
applications due to their ultra-high energy density, efficiency, and fast charge–discharge
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rates [175–179]. In recent years, the energy storage performance was improved in RFE
Bi0.5Na0.5TiO3 and AFE AgNbO3-based lead-free ceramics, attaining energy densities
of 2.7 J/cm3 and 4.2 J/cm3, respectively [26,177,178,180–186]. However, high energy
dissipation and poor stability are attributed to the AFE to FE phase transition, which are
the main drawbacks of AFEs limiting their practical applications. In this regard, Li et al. [5]
demonstrated 0.55(Bi0.5Na0.5)TiO3 (BNT)-0.45(Bi0.2Sr0.7)TiO3 (BST) MLCCs and improved
their energy density and efficiency by combining RFE and AFE features. The RFE exhibits
highly dynamic polar nano-regions and disrupts the long-range ferroelectric order, which
results in a hysteresis-free P-E loop. The RFE BST displaying a diffused phase transition
was utilized with BNT to obtain RFE features, and is expected to reduce polarization and
the high ∆P.

MLCCs have been fabricated using the tape-casting technique, which has two main
advantages as follows: (i) The MLCC layers offer low porosity and a fine grain size, leading
to a high Eb. (ii) A higher Eb is expected in the MLCC compared to conventional ceramic
capacitors because the Eb increases with the decreasing layer thickness. The fabrication
process of the MLCCs entails various stages, such as ball milling, slurry formation, tape
casting, screen printing, stacking/lamination, dicing, sintering, and termination dipping.
Figure 10 presents a schematic illustration of the MLCC fabrication process [187,188]. The
ceramic powders were ball milled, slurry dried, and calcined. This calcined powder was
re-milled with a dispersant (ethyl methyl ketone), binder (poly(propylene carbonate)), and
plasticizer (butyl benzyl phthalate). Furthermore, a slurry was used to prepare thick films
using a tape-casting process. The films were stacked layer by layer with inner printed Pt
electrodes and then sintered at the desired temperatures to obtain the MLCCs. Lastly, the
sintered samples were polished to terminate the opposite ends of the MLCC, and silver
paste was coated to form the outer electrodes for electrical characterizations.
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Figure 10. Schematic diagram of the MLCC fabrication process.

Figure 11a shows the unipolar polarization and current versus electric field curve
for a 0.55(Bi0.5Na0.5)TiO3 (BNT)-0.45(Bi0.2Sr0.7)TiO3 (0.55BNT-0.45SBT) ceramic sample. It
exhibited a high energy storage density of 2.5 J/cm3 and a high efficiency of 95% at a
high breakdown field of 20 MV/m. The temperature dependence of the relative dielectric
permittivity and the loss factor of the 0.55BNT-0.45SBT sample are shown in Figure 11b.
The dielectric maximum temperature (Tm) shifted towards higher temperatures, and the di-
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electric peaks diffused with increasing frequency, revealing the formation of high-dynamic
polar nanoregions (PNRs); such materials are called relaxor ferroelectrics [189,190]. The
degree of the diffuseness (γ) of the 0.55BNT-0.45SBT sample is found to be 1.85, indicating
strong relaxor behavior (Figure 11c). Due to the formation of PNRs, the 0.55BNT-0.45SBT
ceramic sample exhibits a high relative dielectric permittivity, high energy density, and
high energy efficiency. To achieve ultrahigh energy density, 0.55BNT-0.45SBT MLCCs were
fabricated using the tape-casting method. They consist of 10 dielectric layers with a total
thickness of 200 µm and an inner electrode area of 6.25 mm2 (each layer has a thickness of
20 µm), as shown in Figure 11d. The surface morphology of the MLCC is shown in Fig-
ure 11e. The breakdown electric field was increased to 72 MV/m due to the advantages of
the MLCCs fabricated using the tape-casting method, which offers low porosity and a fine
grain size when compared to their counterpart bulk ceramics [191]. In general, the break-
down strength of the ceramics increases as the layer thickness decreases, as observed in
many ceramics [192,193]. Figure 11f shows the energy density and efficiency as a function of
the electric field for 0.55NBT-0.45SBT MLCCs. The energy storage density of these MLCCs
exhibited a high Wrec of 9.5 J/cm3 and a η of 92% at 72 MV/m. These results indicate that
combining the antiferroelectric and relaxor properties of MLCCs is a promising approach
for improving the energy storage responses in order to meet the requirements of advanced
energy storage devices. In recent years, various strategies, including controlled phase [177],
chemical homogeneity [178], grain orientation [194], combining antiferroelectric and relaxor
properties [5], heterovalent doping [195], and two-step sintering [196], etc., were adopted to
enhance the energy storage performance of MLCCs, as summarized in Table 3. In general,
as the layer thickness decreases, the BDS of solid dielectrics increases [197]. Thin films show
a higher BDS when compared to bulk ceramics and MLCs due to the minimal thickness
and less defects, but they have limitations in energy storage density and efficiency. MLCCs
have a lower BDS than thin films, but they have other advantages, such as a compact size,
a balance between the BDS and energy storage, and good temperature stability, which play
an important role in practical applications, especially in pulsed power systems.
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0.55(Bi0.5Na0.5)TiO3-0.45(Bi0.2Sr0.7)TiO3 ceramics. (d,e) A photograph and SEM image of MLCC of
0.55(Bi0.5Na0.5)TiO3-0.45(Bi0.2Sr0.7)TiO3. (f) Energy density and efficiency versus the applied electric
field of 0.55(Bi0.5Na0.5)TiO3-0.45(Bi0.2Sr0.7)TiO3 MLCC. Reproduced with permission [5]. Copyright
2018, Wiley-VCH.
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Table 3. Energy storage properties of MLCCs.

MLCC Composition Thickness/No. of
Active Layers Wrec (J/cm3) η (%) Eb (kV/cm) Refs.

0.75(Bi1-xNdx)FeO3-0.25BaTiO3 (x = 15%) 32 µm/9 6.74 77 540 [177]

0.87BaTiO3-0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 17 µm/10 8.13 95 750 [196]

0.55(Bi0.5Na0.5)TiO3-0.45(Bi0.2Sr0.7)TiO3 20 µm/10 9.5 92 720 [5]

0.62BF–0.3BT-0.08NdZn0.5Zr0.5O3 16 µm/7 10.5 87 700 [178]

Sm0.05Ag0.85Nb0.7Ta0.3O3 10 µm 14 85 1450 [195]

0.5BiFeO3-0.4SrTiO3-0.03Nb-0.1 BiMg2/3Nb1/3O3 8 µm 15.8 75.2 1000 [198]

<111>Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 20 µm/10 21.5 65 103 × 103 [194]

Ba0.3Sr0.7TiO3/0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3 230 nm/8 30.64 70.93 3000 [199]

Ba0.7Ca0.3TiO3-BaZr0.2Ti0.8O3 100 nm/8 52.4 72.3 4.5 × 103 [176]

4. Challenges and Future Prospects

With the discovery of new materials and strategies, the energy storage density of
bulk ceramics, thin films, and MLCCs has been greatly improved to 12, 159, and 52 J/cm3,
respectively, as summarized in Tables 1–3. Even with the tremendous advancements, there
are still certain challenges in real-world applications. Dielectric ceramics with a high energy
storage density of more than 8 J/cm3 with a high efficiency of over 90% are still scarce and
cannot meet the demands of miniature advanced electronic and electric power systems.
To achieve a high energy storage density in dielectrics, researchers mostly focused on the
enhancement of ∆P and Eb. Extensively utilized strategies for enhancing Eb are reducing
the grain size with homogeneous microstructures, stimulating electrical homogeneity,
raising resistance, enhancing thermal conductivity, and lowering dielectric losses. These
strategies can be implemented by employing advanced sintering procedures, adding
sintering aids, employing two-step sintering, adjusting the heating/cooling rate/holding
time, and making composite materials. However, effective strategies for further improving
the Eb remain limited. To obtain a high ∆P, the most popular method is to choose a host
material with strong ferroelectricity and then decrease its Pr via composition doping. On
the other hand, select a host material with a modest Pr and then add a secondary compound
to enhance its Pmax. However, it remains challenging to achieve both a high Pmax and a low
Pr in these solid solutions. The domain engineering method allows for the fabrication of
dielectrics with a low Pr and a moderate ∆P via producing PNRs/nanodomains. However,
the Pmax value remains low, restricting the raise of the Wrec. Recently introduced local region
design techniques, such as designing local regions with polarization-field response behavior
or constructing local regions with polymorphic PNRs via phase structure regulation, will
be an excellent choice for developing dielectrics with a high Pmax and a low Pr.

Developing dielectric materials with a high Wrec and η remains the path of future
research. In addition, the trade-off between the Wrec and η and the contradiction be-
tween the εr and the Eb must be resolved. New materials, new manufacturing techniques,
and new design strategies must be discovered in order to achieve these goals. Further
research is needed to understand the underlying mechanisms, such as sample sinter-
ing processes, dielectric breakdown strength, and dielectric polarization responses in
local regions, ultimately developing a profound understanding of the material–structure–
property relationship of dielectric materials for energy storage. In addition to developing
a single material, more attention should be paid to composite materials, for instance, ce-
ramic/ceramic composites, ceramic/glass composites, ceramic/polymer composites, and
ceramic/glass/polymer composites, because it is challenging to develop a single material
with a high Pmax, a low Pr, a high Eb, low dielectric loss, and excellent thermal stabil-
ity/fatigue. Dielectric capacitors with an easy preparation technique, a simple chemical
composition, and a low sintering temperature are still in great demand for practical ap-
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plications. To fabricate new materials, advanced synthesis techniques (two-step sintering
and pressure-assisted sintering), comprehensive characterizations (aberration-corrected
scanning transmission electron microscope and piezoelectric force microscopy), various
control strategies (nanodomain and grain size engineering), and theoretical calculations
(machine learning and phase-field simulations) should be employed.

Ceramic-based films show an enormous performance when compared to bulk ceramics
in terms of the energy storage density and dielectric breakdown strength. The energy stor-
age properties of ceramic films have been enhanced via various methods, including solid
solution formation, layered films with particular configurations (such as sandwich struc-
tures, positive/negative gradient compositions), the interface design of films/electrodes,
the lattice/strain engineering of films/substrates, and more. Among them, similar to bulk
ceramics, the fundamental solution is to deeply understand the inherent nature of whether
AFEs/RFEs. Developing films for energy storage is challenging due to their restricted
thickness and low absolute energy content. Developing various stratification and flexible
scroll technologies is a viable solution for increasing the volume without losing their char-
acteristics. Technological simplicity has the ability to accelerate manufacturing processes
and boost automation, thus leading to cost savings and innovation.

MLCCs play an important role in dielectric energy storage. The macroproperties of
MLCCs are mostly determined by the thickness of the dielectric layer in addition to their
composition. Developing layer thinning techniques is crucial for increasing the energy
density per volume. Furthermore, the expensive cost of metal electrodes, such as Au, Pt,
and Ag, hinders the commercialization of MLCCs. Low-cost electrodes must be compatible
with dielectrics, taking into account the sintering temperature, metal melting temperature,
and interface reaction. Therefore, economical electrodes and appropriate cofire techniques
should be developed. Since different metals are typically doped to internal and terminal
electrodes in most cases, the method for joint connections between these electrodes should
be a crucial consideration.

5. Conclusions

Dielectric materials with high power density and ultra-fast discharge rates are be-
coming increasingly significant in advanced electronic devices and pulsed power systems.
Currently, dielectric energy-storage materials are limited in their applications due to their
low energy density. Therefore, dielectric materials with excellent energy storage perfor-
mance are needed. In this review paper, we discuss the fundamental concepts for energy
storage in dielectric capacitors, including principles, key parameters, and influence factors
for enhancing the energy storage properties. In addition, we summarize the recent progress
of dielectrics, such as bulk ceramics/composites, ceramic films, and multilayer ceramic
capacitors, followed by the best strategies, such as chemical modification, grain refinement,
and defect engineering, for achieving a higher energy density/BDS and higher energy
efficiency in dielectric materials for applications in pulsed power systems. Moreover, we
present challenges and opportunities for future energy storage dielectric materials.
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