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ABSTRACT
An accurate forecast of Emergency Department (ED) arrivals by an hour of the day is critical to 
meet patients’ demand. It enables planners to match ED staff to the number of arrivals, 
redeploy staff, and reconfigure units. In this study, we develop a model based on 
Generalised Additive Models and an advanced dynamic model based on exponential smooth-
ing to generate an hourly probabilistic forecast of ED arrivals for a prediction window of 48 
hours. We compare the forecast accuracy of these models against appropriate benchmarks, 
including TBATS, Poisson Regression, Prophet, and simple empirical distribution. We use Root 
Mean Squared Error to examine the point forecast accuracy and assess the forecast distribution 
accuracy using Quantile Bias, PinBall Score and Pinball Skill Score. Our results indicate that the 
proposed models outperform their benchmarks. Our developed models can also be general-
ised to other services, such as hospitals, ambulances or clinical desk services.
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1. Introduction

Forecasting Emergency Department (ED) arrivals are 
critical for informing staffing and scheduling decisions 
to meet the needs of patients. Accurate ED demand 
forecasts contribute to a better decision-making pro-
cess regarding resources allocation and staffing. This is 
one of the best ways to optimise resource utilisation 
and minimise related costs. An accurate forecast of 
patient arrivals is crucial in ED services to depict 
various courses of action that can result in massive 
savings in terms of patient lives. Inability to match the 
staff with the demand might result in patients over-
crowding the system, which is a severe problem that 
causes challenges for the patient flow (Derlet, 2002). 
Also, it is related to increasing length of stay 
(Muhammet & Guneri, 2015), low patient satisfaction, 
unexpected return visits to services, increased health 
care costs, inaccuracy in electronic medical records 
(Rostami-Tabar & Ziel, 2022).

Accurate forecasting of arrivals by the hour of 
the day enables planners to match staff to meet antici-
pated patients, reconfigure units and redeploy staff. 
This has many advantages for both patients, staff, and 
the quality of provided services. Hourly forecasts are 
required to inform the short-term operational plan-
ning for the current and the upcoming shifts of 
the day. This involves the short-term decision- 
making related to the execution of the delivery process 
in ED. The combination of an hourly arrival forecast, 
current staff being occupied, resource availability and 
waiting times at ED provide information on the state 

of the unscheduled care system across the service. 
Having this complete picture enables the delivery 
managers to focus on the areas that require interven-
tion to allow the most effective delivery of the service 
to the patients.

However, compared with lower frequency time ser-
ies forecasting such as monthly, quarterly and yearly, 
hourly forecasts are challenging because the noise 
caused by random variation may overshadow any 
pattern in the time series. Hourly time series generally 
exhibit multiple seasonal cycles of different lengths: 
hourly, daily, weekly, and yearly. They may also 
express nonstationarity, and their profile may change 
over time. Therefore, an appropriate forecasting 
model should consider these features to accurately 
predict hourly demand arrivals.

There are few studies that look at forecasting hourly 
arrivals in ED and other hospital services using historical 
time series data and/or predictors such as patient char-
acteristics, weather, holidays and public events. These 
studies use multiple approaches, including Exponential 
Smoothing (Svetunkov, 2022), Autoregressive Integrated 
Moving Average (ARIMA) (R. J. Hyndman & 
Athanasopoulos, 2021), Autoregressive Conditional 
Heteroskedasticity (ARCH) (Bollerslev et al., 1994), 
Vector Autoregressive model (Lütkepohl, 2013), 
TBATS (De Livera et al., 2011) and Artificial Neural 
Networks (R. J. Hyndman & Athanasopoulos, 2021). 
We have identified a number of limitations and gaps in 
the area of ED forecasting that motivated us to undertake 
this study. These gaps and their importance are discussed 
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below. Most of these studies are limited to only predict-
ing future arrivals as a point forecast (a single number), 
which does not quantify any uncertainty associated with 
the number of future arrivals. There are few studies that 
report uncertainty by presenting prediction intervals, but 
there is no study generating and evaluating the entire 
forecast distribution of arrivals. Reporting the uncer-
tainty via the forecast distribution is potentially valuable 
in this setting and has practical implications for those 
managing Emergency Departments because the conse-
quences of inadequate staffing are asymmetric, i.e., hav-
ing more staff than needed is costly, but having less staff 
than required may lead to worse outcomes for patients. 
This asymmetry arises because it is preferable to incur 
a small opportunity cost associated with utilised staff 
rather than compromise service levels if staff levels are 
insufficient (Wright et al., 2006). Probabilistic forecasts 
inform decision-makers about exposure to these risks 
and potentially enable those risks to be managed more 
efficiently (Ramos et al., 2013; Rostami-Tabar & Ziel,  
2022). Furthermore, if the impact of under- and over-
staffing can be quantified, probabilistic forecasts allow 
optimal decisions that balance the cost associated with 
under- and overstaffing to be calculated. Therefore, in 
this paper, in addition to generating point forecasts, we 
also produce and evaluate density forecasts of hourly ED 
arrivals, comparing several methods for this task. 
Another drawback of existing studies is that the datasets 
used are relatively small (e.g., time period of 1–2 years), 
making it challenging to capture the inter-annual season-
ality correctly and to report the forecast accuracy using 
robust approaches such as time series cross-validation. 
Such results might not be generalisable. Additionally, 
most of the forecasting methods used in these publica-
tions do not consider the full extent of the multiple 
seasonality of hourly ED arrivals. Moreover, hourly ED 
time series may contain low volume values and zeros in 
some hours of the day, which brings additional chal-
lenges to traditional time series forecasting approaches. 
Finally, all previous publications referenced in this paper 
are not fully reproducible as underlying data, functions 
and code are not available.

In this paper, we aim at filling these gaps and 
generate forecasts for a prediction window of 48 h. 
Our contributions to the literature are summarised as 
follows:

(1) We produce probabilistic forecasts, in addition 
to the point estimation, quantifying uncertain-
ties in future hospital arrivals, and comparing 
different forecasting methods using a suite of 
well-established evaluation metrics;

(2) We develop an advanced dynamic model to 
forecast ED arrivals based on iETS (Svetunkov 
& Boylan, 2019) and ETSX models with 

a modification for multiple frequencies, which 
produced highly accurate point forecasts;

(3) We develop a novel model to produce 
a probabilistic forecast of ED arrivals based on 
Generalised Additive Models for Location Scale 
and Shape, which accounts for i) the bounded 
and non-Gaussian distribution of arrivals, ii) 
multiple seasonalities, weather and holiday 
effects, and iii) variation in forecast 
uncertainty;

(4) We benchmark the accuracy of our model 
against appropriate models used when multiple 
seasonality is present, i.e., Prophet, TBATS, 
Poisson Regression, Exponential Smoothing 
State Space model (ETS) and the simple empiri-
cal distribution of the arrivals;

(5) We provide data and code enabling reproduc-
tion and refinement of the proposed approach 
and benchmarks. The proposed approach could 
also be generalised to forecast hourly require-
ments for longer horizons and in other services 
(Al-Azzani et al., 2021), such as inpatient and 
outpatient care services, the number of 
attended incidents in ambulance services, or 
call volumes in clinical desk services.

The rest of the paper is organised as follows: In section 
2, we provide a brief overview of hourly ED arrival 
forecasting; In Section 3, we present the hourly time 
series of an ED arrival and use various plots to high-
light important patterns. In section 4, we describe the 
modelling approach and benchmark methods. We 
then discuss the performance evaluation metrics in 
section 5; in section 6, we present and discuss our 
results. Finally, we summarise our findings and pre-
sent ideas for future research in section 7.

2. Research background: hourly ED 
forecasting

There is a substantial number of studies that employ 
models to forecast admissions and arrivals to inform 
planning and decision-making in the healthcare. 
Areas such as call volume arrivals, ambulance demand 
and Emergency Department forecasting have received 
a significant attention. We refer interested readers to 
some extensive reviews of the relevant literature by Shi 
et al. (2022), Gul and Celik (2020) and Ibrahim et al. 
(2016). The time granularity considered in these stu-
dies spans from hourly to yearly across different parts 
of healthcare. However, given the focus of this study, 
we only discuss hourly ED forecasting.

Hertzum (2017) used linear regression, ARIMA, 
and Naïve to investigate whether accurate hourly acci-
dent and emergency department patient arrivals and 
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occupancy forecasts can be generated using calendar 
variables. Hertzum (2017) study found that patient 
arrival variation is larger across the hours of the day 
than across the days of the week and the months of 
the year. In terms of the hour of the day, patient 
arrivals peaked around noon. For days of the week, 
Monday is the busiest day, while weekends are the 
quietest ones. July–August are the months with the 
highest number of patient arrivals, while January and 
February have the lowest numbers. They indicate that 
regression and ARIMA models performed similarly in 
modelling patient arrivals, while ARIMA outper-
formed regression models in modelling accident and 
emergency department occupancy.

Choudhury and Urena (2020) used ARIMA, Holt- 
Winters, TBATS, and neural network methods to 
forecast hourly accident and emergency department 
arrivals. ARIMA model was selected as the best fit 
model. Authors claimed that ARIMA provided high 
and acceptable hourly ED forecasting accuracy, even 
outperforming TBATS. Cheng et al. (2021) developed 
an ARIMA model for ED occupancy with a seasonal 
component and exogenous variables, which outper-
formed a rolling-average benchmark. They also pro-
duce prediction intervals, a form of the probabilistic 
forecast, which were found to be well calibrated, 
a necessary property for such forecasts.

Morzuch and Allen (2006) used the Unobserved 
Components Model (UCM), in which each compo-
nent of the time series is separately modelled as sto-
chastic. Double-seasonal exponential smoothing and 
standard Holt-Winters were used to forecast ED arri-
val for a horizon of 168 h. The hourly data collected 
from an ED in Pennsylvania showed no trend and two 
seasonal cycles: a within-day and a within-week sea-
sonal cycles. The double seasonal model recorded 
lower RMSEs for all the 168-h horizons, which was 
expected due to the strong hourly seasonality of the 
time series.

McCarthy et al. (2008) employed a Poisson log- 
linear regression model, including independent vari-
ables such as temporal factors (e.g., hour-of-day, day- 
of-week, type-of-day, season, and calendar year), 
patient characteristics (i.e., age, gender, insurance sta-
tus, triage level, mode of arrival, and ambulance diver-
sion status) and climatic factors (i.e., temperature and 
precipitation) to model patient demand for ED ser-
vices. The authors produced probabilistic predictions 
in the form of 50% and 90% prediction intervals for 
the number of hourly arrivals. Hourly data of ED 
arrivals in the 1-year study period were modelled 
and analysed, and it was suggested that the model 
could be used for forecasting. However, model evalua-
tion was performed in-sample on only one year of 
data, so it is unclear how this approach would perform 

in a forecasting setting or compared to simpler 
approaches. However, the length of the time series in 
this study was very short (only one year), which did 
not allow for a rigorous out-of-sample evaluation.

Schweigler et al. (2009) investigated whether time 
series methods could accurately generate short-term 
forecasts of ED bed occupancy. A year-long dataset of 
hourly ED bed occupancy was collected from three 
facilities. The authors implemented an hourly histor-
ical average model, SARIMA model, and sinusoidal 
model with autocorrelated error for each facility. The 
historical average model was based on the mean occu-
pancy for each site, for each hour of the day, while the 
sinusoidal model was based on four parameters: an AR 
term, a sine coefficient, a cosine coefficient and an 
intercept. They evaluated the forecast accuracy of 
four and twelve hours forecast horizons using RMSE. 
They found that both SARIMA and the sinusoidal 
models outperformed the historical average (for 
example, at site 2, the two models improved by 33% 
the 12-h forecasts generated by the historical average).

Kim et al. (2014) compared different univariate and 
multivariate time series forecasting techniques to pre-
dict patient volume for a Hospital Medicine pro-
gramme. The study evaluated linear regression, 
exponential smoothing, ARIMA, SARIMA, 
Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) and Vector 
Autoregressive (VAR) models to forecast for 4 and 
24 h ahead. They used Mean Absolute Percentage 
Error (MAPE) to report the forecast accuracy. The 
authors found that the ARIMA outperformed all the 
other models.

Table 1 summarises the relevant papers.
Asheim et al. (2019) developed a Poisson time- 

series regression model with continuous day-of-week 
and week-of-year effects to implement a real-time 
system that could forecast ED arrivals on 1, 2, 3  
hours ahead. Measuring the accuracy using the 
MAPE, Asheim et al. (2019) noticed that significant 
improvement happened when the time of notification 
was incorporated into the model, especially in the one- 
hour horizon.

Cheng et al. (2021) used one year of ED visits time 
series to evaluate the Rolling Average, SARIMAX, 
ARIMA, VAR and Holt-Winter to forecast ED occu-
pancy up to 4 h ahead. The forecast accuracy is eval-
uated using Mean Squared Error (MSE), Mean 
Absolute Error (MAE) and MAPE for point forecast 
and coverage for prediction intervals of 80% and 95%. 
They show that SARIMAX provides a more accurate 
forecast of hourly ED occupancy.

According to the studies mentioned above, it can be 
said that they have shown complications in forecasting 
hourly patient accident and emergency department 
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visits, and the application of forecasting hourly patient 
visits is not well established. Some of the studies 
claimed that the accuracy of forecasting models on 
hourly accident and emergency department data is 
low (Boyle et al., 2012; Hertzum, 2017), while others 
mentioned that the accuracy of ED hourly forecast is 
at an acceptable level (Choudhury & Urena, 2020; 
McCarthy et al., 2008; Schweigler et al., 2009).

There are a few limitations in the literature which 
encourage us to undertake this research and examine 
different forecasting approaches:

(i) Current approaches to forecast hourly ED arrivals 
do not fully consider the feature of data such as multiple 
seasonal cycles and changing profile over time;

(ii) Almost all research studies produce point fore-
casts and, at best, report prediction intervals. There is 
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Figure 1. Distribution of admission by hour-of-day and day-of-week. Most days have a distinct pattern, such as relatively high 
arrivals on Monday mornings and in the early hours of Saturday and Sunday morning.
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Figure 2. Subseries plot: day of weekly arrivals.
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a lack of studies presenting the entire forecast distri-
bution of hourly ED arrivals that better represent the 
uncertainty of future arrivals, providing a holistic pic-
ture of future demand for a planner;

(iii) most studies are not reproducible, as it is 
almost impossible to reapply the approaches without 
the help of the authors of those papers;

(iv) studies are limited in terms of the length of 
historical data used for training purposes and forecast 
performance evaluation and

(v) some studies in this area lack a rigorous experi-
mental design, i.e., they do not use benchmark meth-
ods or report forecast accuracy.

3. Preliminary analysis

Data used in this study comprises counts of patients’ 
arrival times at one of the largest ED units in the UK 
between April 2014 and February 2019, extracted from 
the ED administrative database of the hospital. We 
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Figure 3. Arrivals by week-of-year. There is an annual trend of reduced arrivals during the summer and winter holiday period.
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Figure 4. Daily arrivals over the entire dataset with moving average trend (blue line) and dates of outliers labeled. Low outliers 
invariables correspond to public holidays.
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aggregated the patients’ arrival times to obtain hourly 
arrivals, which are used in this study. Figure 1 illus-
trates the distribution of arrivals for each hour of 
the day and the day of the week. Although the data is 
noisy, it reveals some systematic patterns.

It is clear that the number of arrivals has a sub-daily 
structure, similar to the one summarised by Hertzum 
(2017). The ED arrivals decrease between midnight 
and early morning and then increase until the evening, 
decreasing after that again. It is also clear that ED 
service gets systematically more visits on Mondays 
between 8 a.m. and 5 p.m. Moreover, the number of 
arrivals around midnight is slightly higher for 
Saturdays and Sundays.

Figure 1 also highlights significant skewness for 
almost every hour of the day that varies with time- 
of-day, which should be accounted for in forecast-
ing methods. Some skewness might be related to 
holidays and special events. It is also clear that 
arrivals are less volatile between midnight and 
early morning.

Figure 2 illustrates the daily subseries plot, with the 
x-axis representing the date and y-axis the ED arrivals. 
Each individual plot illustrates how arrivals change 
over time for each day of week from Monday to 
Saturday. The horizontal (blue) line shows the average 
arrival for the given day. It is clear that ED arrivals on 
Mondays are higher than on other days. This is fol-
lowed by Saturday. This indicates that there are sig-
nificantly more arrivals on Mondays and Saturdays 
compared to the rest of the week. This might be due 
to the closure of General Practitioners outpatient 
clinics over the weekends.

Figure 3 highlights the week of year seasonality in 
the ED arrivals. We observe that arrivals are signifi-
cantly lower from week 29 to 35, corresponding to the 
Summer period. Moreover, the number of arrivals is 
lower at the beginning and the end of the year. The 
arrivals increase from week 36 and peak in weeks 39– 
42. This corresponds to the September – October 
period.

Finally, Figure 4 presents the time plot of daily 
arrivals. Each point represents one day, and points 
are shape-coded by day-of-week to show the weekly 
cycle. The figure shows more arrivals on Mondays 
than on other weekdays, agreeing with the previous 
findings. Moreover, we can observe a long-term 
trend line and the significant effect of some holi-
days. We can see that arrivals near Christmas and 
New Year’s day are significantly lower than other 
days of the year. Moreover, Figure 4 allows us to 
identify the impact of special events on arrivals. For 
instance, we see that arrivals are significantly low 
for 01–03 of March 2018. These days correspond to 
the Storm Emma with heavy snowfall that resulted 
in travel disruption, mass power outages, and 
schools closed in the UK (Wales, n.d.).

Based on this analysis and the literature review, we 
should consider models that can take the following 
into account:

● Hour-of-day, day-of-week, and week-of-year 
seasonalities,

● Long-term trend (or a slowly changing level),
● Calendar events, such as holidays,
● Lags of calendar events to accommodate the 

potential changes in demand the next day after 
a holiday,

● Other events, such as sporting fixtures,
● Temperature effects.

We propose several forecasting models that account 
for the structures outlined above.

4. Model building

4.1. Naive

We start with one of the simplest forecasting 
approaches used in practice – assuming that in the 
next few hours, everything will be the same as in the 
similar hours of a similar day in the past. This is called 
“Naïve”. In our case, given that we need a distribution 
of values, we will use a modified approach, where the 
empirical distribution of the hourly arrival time series 
is used to forecast the future arrival distribution (La 
Salle et al., 2021). We consider the empirical distribu-
tion of all available historic data (Benchmark-1) and 
the empirical distribution of the most recent year of 
historic data on a rolling basis (Benchmark-2) to cap-
ture potential changes in behaviour over time.

4.2. Poisson regression

Regression is one of the most popular forecasting 
methods that use explanatory variables to predict 
a variable of interest (in our case, the ED arrivals). 
The classical linear regression model is formulated as 

where xt is the vector of explanatory variables, β is the 
vector of parameters, Pt is the error term, which is 
typically assumed to follow Normal distribution with 
zero mean and a fixed variance, and t is the time index. 
However, in the context of healthcare and ED arrivals, 
the assumption of Normality is unrealistic because the 
number of admitted patients is an integer and non- 
negative. So the linear regression model should be 
substituted by some other model. One of the models 
that is frequently used in practice is the Poisson 
regression (see, for example, McCarthy et al., 2008), 
which can be summarised as 
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The logarithm in (2) is needed to ensure that the 
parameter of Poisson distribution is always posi-
tive. This model can be estimated via maximisation 
of the likelihood function based on Poisson mass 
function. There is no single correct answer when 
selecting explanatory variables for the model, and 
the decision needs to be made for each specific 
case. In our experiment, we will only include 
dummy variables, capturing a variety of calendar 
events:

(1) Hour of the day,
(2) Day of the week,
(3) Week of the year,
(4) Holidays (such as Christmas, New Year etc.),
(5) 24 h lags of holidays.

The variables 1–3 allow to model the seasonal pat-
terns on the appropriate level of detail throughout 
the year, while 4 covers the changes in admittance 
due to calendar events. Finally, 5 is needed to cap-
ture the potential phenomenon of change in admit-
tance after the holiday (e.g., people might try not to 
go to the hospital on Christmas eve and thus go the 
next day). This model assumes that all these effects 
are deterministic and do not change over time. Still, 
the exponentiation in (2) introduces an interaction 
effect between dummy variables so that the 3 pm on 
Monday in January will be different from 3 pm on 
Monday in July, although the parameters for 
the hour of day and day of the week are fixed and 
do not change over time. We use the alm() function 
from the greybox package (Svetunkov, 2021b) for 
R (Team, 2021) for the experiments and denote 
this model as “Poisson Regression”.

4.3. ETS – Exponential smoothing

2008) developed a state space approach for exponen-
tial smoothing models. The model can have a set of 
elements, including different types of Error, Trend 
and Seasonal components (thus ETS). Given the popu-
larity of the ETS model in the forecasting community, 
we decided to include the basic ETS(A,N,A) model 
with the seasonal component with a frequency of 24 
(hour of the day) as a benchmark. This was done using 
the adam() function from the smooth package 
(Svetunkov, 2021c) for R and denoted as ETS. This 
model does not capture the day of week or week 
of year effects, does not include explanatory variables, 
but its seasonal component and level change over 
time. This model is included as a benchmark, only to 
see how the other models perform compared to it.

4.4. Prophet

Prophet is a forecasting procedure created by 
Facebook (Taylor & Letham, 2018) that accounts for 
multiple seasonality, piecewise trend and holiday 
effects. Prophet is robust to missing data and shifts 
in the trend and typically handles outliers well. 
Prophet works well on daily data seen in Facebook. 
It is robust and automated, making it easy to learn for 
beginners. The implementation may be less flexible 
than other methods. The model itself relies on the 
Multiple Source of Error state space model, initially 
proposed by Kalman (1960). The model is incorpo-
rated using the corresponding implementation of the 
Fable package in R. We use the prophet() function 
from the fable package (O’Hara-Wild et al., 2020). 
Note that the input data is assigned with an hourly 
and daily seasonality. This method has been adopted 
in some healthcare service providers in the United 
Kingdom to produce forecasts, therefore we have 
included it as one of our benchmarks.

4.5. TBATS

De Livera et al. (2011) proposed a model to deal with 
time series exhibiting multiple complex seasonalities 
called “TBATS”. It includes a Box-Cox 
Transformation, ARMA model for residuals and 
a trigonometric expression of seasonal terms. The latter 
gives the model more flexibility to deal with fractional 
seasonality and reduces the parameters of the model 
when the frequencies of seasonalities are high. We fit 
a TBATS model using the tbats() function from the 
forecast package in R (R. Hyndman et al., 2020).

4.6. Quantile regression and gradient boosting 
machines

Quantile regression allows the production of density 
forecasts without assuming a fixed distributions shape 
controlled by a small number of parameters, such as 
the Poisson distribution with parameter λ. By produ-
cing forecasts of multiple quantiles the full predictive 
distribution can be constructed. Quantile regression is 
particularly useful where data do not follow a simple 
distribution, the distribution shape changes over time 
with some covariate, which may be the case with ED 
arrivals.

Gradient Boosting Machines (GBM) are a tree- 
based machine learning model for regression and 
classification. Here, we produce probabilistic fore-
casts of ED arrivals via multiple quantile regression 
using GBMs as implemented in the R package gbm 
(Greenwell et al., 2020). GBMs are a best-in-class 
algorithm for similar regression problems charac-
terised by modest volumes of training data and 
possible interactions between input features, and 
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are therefore an appealing choice for ED arrival 
forecasting. Here, GBMs are fit with the following 
features: hour of the day, day of the week, school 
holiday, temperature and day of the year. 
Hyperparameters are chosen via grid search on 
the training data, and were chosen as follows: 500 
trees, an interaction depth of 2, and a shrinkage 
0.1. An advantage of GBMs is their ability to learn 
interactions in comparison to the additive models 
presented later which require the user to specify 
possible interactions between inputs. Here, GBM is 
included as a reference for the performance of out- 
of-the-box machine learning models applied with 
minimal effort (Ridgeway & Ridgeway, 2007). We 
also explored the possibility of performing linear 
regression with additive models, but these did not 
perform as well as GBM so are omitted for brevity.

4.7. ADAM: multiple seasonal iETSX

Svetunkov (2022) proposed a framework for dynamic 
models called the Augmented Dynamic Adaptive Model 
(ADAM). This framework encompasses ARIMA (Box 
& Jenkins, 1976), ETS (R. J. Hyndman et al., 2008) and 
regression, supporting multiple frequencies, non- 
normal distributions and intermittent demand 
(Svetunkov & Boylan, 2019). Based on this framework, 
we use the ETS(M,N,M) model with frequencies 24 
(hour of the day) and 168 (hour of the week), adding 
dummy variables for the week of the year, holidays and 
lagged holidays. This way, we update the hour of day 
and day of week seasonal indices, keeping the week 
of year one fixed, thus reducing the number of estimated 
parameters. Given that the data exhibits randomly 
occurring zeroes, we use the direct probability model 
of Svetunkov and Boylan (2019) to treat those values. 
Finally, given the skewness of the empirical distribution 
observed in the preliminary analysis, we use the Gamma 
distribution for the error term. This model can be for-
mulated as a set of the following equations: 

where α, β, γ1, γ2 and αa are the smoothing para-
meters, defining how adaptive the components of the 
model should be, lt is the level component for the 
demand sizes, s1;t and s2;t are the seasonal compo-
nents, β is the vector of parameters for the explanatory 
variables, ot is the binary variable, which is equal to 

one, when demand occurs and to zero otherwise, la;t� 1 
is the level component for the occurrence part of the 
model, and 1þPtð Þ,Γðs� 1; sÞ, where s ¼ 1

T
PT

t¼1 e2
t 

is the scale of the distribution. Finally, at is an unob-
servable series, underlying the occurrence part of the 
model and ð1þPa;tÞ is an unobservable error term 
for at . Svetunkov and Boylan (2019) discuss how to 
estimate such a model. We expect this model to per-
form on par with the Poisson regression, potentially 
outperforming it in some instances, due to the 
dynamic nature of the model (level and seasonal com-
ponents). Although the data is integer-valued, we 
expect that Gamma distribution will be a good 
approximation for it. If integer-valued quantiles are 
needed, then rounding up can be done for them (see 
Appendix for the explanation). This model is imple-
mented in the adam() function from the smooth pack-
age (Svetunkov, 2021c) for R and is denoted in our 
experiment as “ADAM-iETSX”.

4.8. Gamlss

Suppose we assume that our predictive distribution 
follows a given parametric distribution, as in Poisson 
regression discussed above. In that case, the forecast-
ing task becomes one of predicting the future values of 
that distribution’s parameters. We then can use 
Generalised Additive Models for Location, Scale and 
Shape (GAMLSS). These are the distributional regres-
sion models where the parameters are modelled as 
additive function of explanatory variables. This pro-
vides a powerful and flexible framework for probabil-
istic forecasting, provided that suitable distribution 
and additive model structures can be found. In prac-
tice, this means employing expert judgement and 
experimenting with various distributions and evaluat-
ing their suitability using available training data.

Let FtðytÞ be a predictive cumulative probability 
distribution of yt . In a distributional regression context, 
FtðytÞ is modelled via a parametric model, FðytjθtÞ, 
where θt is an m-dimensional vector of parameters. 
In a GAMLSS framework of Rigby and Stasinopoulos 
(2005), the elements j ¼ 1; . . . ;m of θt are modelled as 

where gj is a monotonic link function, Aj;t is the t-th 
row of the design matrix Aj, βj is a vector of regression 
coefficients, xt is a d-dimensional vector of covariates 
and Sj;i � f1; . . . ; dg is . . . . If Sj;i ¼ f1; 3g, then fol-
lowing our notation xSj;i

t is a two-dimensional vector 
formed by the first and third elements of xt . Each fj;i is 
a smooth function, constructed as 
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where bji
k are spline basis functions of dimension jSj;ij, 

while βji
k are regression coefficients. The smoothness of 

each fj;i is controlled via ridge penalties, the definition 
of smoothness being dependent on the type of effect 
and penalty being used. See Wood (2017) for 
a detailed introduction to GAM/GAMLSS models, 
smoothing splines bases and penalties.

As our data are counts, the natural starting point is 
the Poisson distribution with an additive model for 
log λt of the form 

The functions HðtÞ, DðtÞ and YðtÞ return the hour 
of the day (1–24), day of the week (1–7), and day of 
the year (1–366) at time t, respectively, and Ct is the 
temperature at time t. This model is called Poisson-1 
in discussions below.

However, experiments on the training data reveal 
that calibration of forecasts based on the Poisson dis-
tribution is poor, suggesting that the shape of the 
distribution is unsuitable for the present application. 
In particular, we observe that forecast uncertainty 
appears to vary depending on the time of day and 
possibly other explanatory variables. Therefore, we 
consider more flexible, two-parameter distributions 
to specify additive models for both location and scale 
parameters, specifically the truncated Normal distri-
bution, with truncation at 0. The resulting density 
forecasts are given by 

with additive models 

for the mean and variance parameters. This model is 
referred to as NOtr-1 below.

Furthermore, we consider an extension to the addi-
tive models for λt and μt above to incorporate school 
and public holidays into D. These models are labelled 
Poisson-2 and NOtr-2. We also performed experi-
ments with the truncated t distribution (Ttr-2) and 
negative binomial distribution (NBI-2), but these did 

not result in forecasts as well calibrated as the trun-
cated normal.

5. Forecast performance evaluation

In order to assess the performance of models, we 
evaluate predictive quantiles at probability levels 
0.05 to 0.95 in steps of 0.05 and conditional expec-
tations for 0 to 48 hours ahead produced by each 
model. We forecast up to 48 h because this is the 
operational horizon in the ED, for which it is pos-
sible to make short-term changes in the shifts for 
nurses and doctors. The forecasts are produced 
every 12 h for the holdout of 365 days in a rolling 
origin fashion (Tashman, 2000), resulting in 727 
origins. Based on these values, several error mea-
sures are calculated to evaluate the performance of 
models in terms of specific quantiles and expecta-
tion. The latter is measured via Root Mean Squared 
Error (RMSE): 

where h is the forecast horizon and etþj is the point 
forecast error j steps ahead.

The objective of density forecasts is to be as sharp as 
possible while remaining reliable/calibrated (Gneiting 
et al., 2007). A forecast is said to be sharp if the 
predictive distribution has a relatively small spread, 
indicating low uncertainty, which is valuable to deci-
sion-makers provided the forecast is calibrated. 
Calibration, also called reliability, is the property that 
forecast probabilities match the observed frequency of 
realisations. If a forecast is calibrated, then, for exam-
ple, 20% of observations should fall below the α ¼ 0:2 
predictive quantile (with some tolerance based on the 
finite sample size). This property is necessary for fore-
cast probabilities to be used in quantitative decision- 
making. Calibration is typically evaluated visually 
using reliability diagrams, which plot the nominal 
coverage, α, against the observed frequency mean 
(1ðyt � qα;tÞ). We use several scores to assess the 
quantile performance of models.

First, to measure quantile performance, we need to 
calculate the pinball score, which is a strictly proper 
score used to evaluate quantile forecasts and is the 
discrete form of the Continuous Rank Probability 
Score (R. J. Hyndman & Athanasopoulos, 2021). It 
rewards sharpness and penalises miscalibration, so it 
measures overall performance. However, calibration 
should still be verified separately. Furthermore, The 
Pinball Score for an individual quantile matches the 
loss function minimised in a quantile regression 
model. The Pinball Score is given by 
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where A ¼ f0:05; 0:1; . . . ; 0:95g is the set of quantiles 
being estimated.

To compare model performance, and the signifi-
cance of any apparent difference in performance, we 
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Figure 5. Pinball loss values by quantile. Benchmark-2, NBI-2 and NOtr-2 have similar performance with most improvement of the 
latter two over the benchmark coming from the lower quantiles. All other models have a greater Pinball score (worse 
performance) than Benchmark-2 across all quantiles.
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will use skill scores, which can be calculated for any 
metric via: 

where M is the metric’s value for the method being 
considered, Mref is the metric’s value for a reference 
method. The skill score shows by how many percent 
the reference approach is worse than the one under 
consideration. We will use bootstrap re-sampling of 
skill scores to determine if the differences in forecast 
performance (i.e., positive or negative skill) are sig-
nificantly different from zero (Efron, 1981). Here we 
use the best performing simple benchmark, Naive 
(explained in Subsection 4.1), as the reference model 
and employ a block-bootstrap with blocks of length 24  
h to account for temporal correlations of the under-
lying data (Bergmeir et al., 2016; Hongyi Li & 
Maddala, 1996).

Finally, we have calculated the computational 
time for one iteration on the first rolling origin 
to compare the speed of each function. All func-
tions were re-estimated on each iteration. ADAM 
and Poisson regression estimated the parameters, 
taking the ones obtained in the initial model 
application to the data in the first origin as the 
pre-initials. This allowed to speed up the compu-
tation for these two models. The initial estimation 
of ADAM took approximately 1 hour and 25 min. 
Each step in the experiment took the time shown 
in Section 6.

6. Results

The data is partitioned into training (from April 1 
2014 to February 28 2018) and test (from March 1 
2018 to February 28 2019) sets, with all model devel-
opment and hyper-parameter tuning performed using 
training data only. The rolling origin advances in 12-h 
steps and the forecast horizon is set for 48 steps ahead.

Figure 5 presents Pinball score aggregated across 
forecasting horizons for each quantile. It shows that 
the difference in performance among the models 
mainly comes from the middle of the distribution 
and somewhat from the upper tail. There is very little 
difference in performance for the lower tail (except for 
TBATS, which has a consistently higher Pinball value 
than the other models). This is interesting and reas-
suring that the better models are better at probabilities 
that matter more to decision-makers.

Probabilistic forecasts are evaluated following the 
principle of sharpness subject to calibration, meaning 
that the sharper forecast is prefered provided that it is 
calibrated. Mis-calibrated forecasts are unsuitable for 
use in decision-making, so they should be excluded. 
Calibration is evaluated visually in Figure 6, which 
highlights a systematic negative bias across all prob-
ability levels in many models, with only the truncated 
normal and t family GAMLSS models (NOtr-1, NOtr- 
2, Ttr-2) and ADAM-iETSX models showing good 
calibration across most probability levels. Notably, 
both benchmarks exhibit negative quantile bias as 
they struggle to capture the long-term trend of 
increasing arrivals. This could result in poor staffing 
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decisions. This is because the empirical distribution of 
whole data fails to characterise how arrivals in ED may 
change over time.

Figure 7 reports the RMSE for each forecast hor-
izon. It illustrates the times of day that are harder to 
predict – morning pick-up and afternoon peak. We 
can see that some models perform much better than 
others on specific forecast horizons. For example, 
Benchmark does an excellent job in predicting 1–5 
steps ahead ED arrivals and, in general, doing well in 
forecasting arrivals in the night. In fact, the 
Benchmark model performs consistently well in 
terms of the conditional mean, not making as huge 
mistakes as, for example, Prophet, TBATS and GBM 
do for some lead times.

In above figures (Figures 5–7), we only present 
the performance of the top seven methods. However, 
we have evaluated the performance of 14 methods 
from the test period. Evaluation metrics and compu-
tational time (in minutes) for all methods are 

presented in Table 2. They are ordered by Quantile 
Bias. The five models identified above have 
a Quantile Bias of 0.014 or less, which is substan-
tially lower than the next group of forecasts with 
Quantile Biases of 0.037 and above, ETS being the 
only exception with a value of 0.019.

One more thing to notice is that the ADAM-iETSX 
model with rounded up quantiles did not perform 
better than the simpler one with continuous ones 
(Table 2). This implies that the rounding is not neces-
sary in general, but if integer values are needed (for 
example, to decide how many nurses to have), then 
using the continuous model and then rounding up the 
quantiles could be considered a reasonable strategy.

Finally, Figure 8 reports the forecast performance 
of each approach versus the computational time 
required to generate the forecast for a given forecast-
ing horizon of 48 h, presented in Table 2. The X-axis 
shows the speed of each method presented as slow, 
moderate or fast. We observe that there is no clear 

Table 2. Summary of studies in hourly emergency care forecasting.
Method Quantile Bias Pinball RMSE Time (minutes)

NOtr-1 0.0098967 1.222583 0.2675957 451.6620471
ADAM-iETSX 0.0104673 1.417260 0.0896228 92.9348605
NOtr-2 0.0118522 1.208561 0.2675957 86.5895462
Ttr-2 0.0140221 1.210108 0.3324146 956.5532849
Prophet 0.0193799 1.447037 0.2955460 20.6755021
ETS 0.0194389 1.434862 0.0121247 10.7175205
Poisson-1 0.0372137 1.204920 0.0095263 1.4763353
Poisson-2 0.0373884 1.188109 0.0082932 5.0768588
NBI-2 0.0540725 1.206241 0.3830272 1.2791870
Benchmark-2 0.0557392 1.217429 0.2592800 0.0947247
GBM-2 0.0600153 1.261690 1.7770897 602.4317496
TBATS 0.0855702 1.536080 0.4859770 273.0558176
Regression-Poisson 0.0929416 1.293524 0.8490258 67.1401641
Benchmark-1 0.1047874 1.254491 1.0042634 0.3874450
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association between speed and accuracy improvement 
of the models used in this study.

We found that most of the methods considered in 
this paper fall into the fast category with a different 
range of performance, depending on the type of error 
measure. Among the fastest methods, ETS is very 
competitive when assessed using Quantile Bias and 
RMSE. Moreover, Poisson-1 and Poisson-2 provide 
accurate forecasts when evaluated by RMSE and 
Pinball.

Figure 8 shows that NOtr-2 is the fastest method 
that provides consistent accuracy assessed via all 
three accuracy measures. The figure also indicates 
that while the t family GAMLSS model (Ttr-2) is the 
slowest method, it has a very good performance 
across the three presented accuracy measures. 
Therefore, if the speed is not a major constraint 
when generating the forecasts, one may employ this 
approach to generate forecasts.

The main benefit of the applied models is the 
use of probabilistic forecasts to inform decision- 
making. Probabilistic forecasts contain all potential 
future outcomes and help planners to achieve more 
efficient decisions by not only predicting the most 
likely outcome but also quantifying the probability 
of all possible outcomes including extremely high 
or extremely low arrivals in the Emergency 
Departments. This information enables decision 
makers to manage risk associated with low- 
probability-high-impact events. Based on these 
forecasts, hospitals can decide how many nurses 
to have for each shift to make the work of the 
ED more efficient, e.g., to meet the service level 
targets set by the National Health Service (NHS) in 
the United Kingdom.

Practically speaking, the running time can be an 
important aspect for managers depending on the fre-
quency of generating forecasts. If it is high, one may 
employ models that do not require a lot of computa-
tional time, such as Poisson regression (Poisson 1), 
sacrificing the accuracy of forecasts. If the frequency is 
lower and running time is not a big concern, a model 
like GAMLSS (Ttr-2) should be used.

Probabilistic forecasts of hourly ED arrivals can 
benefit ED process because it provides the timing and 
the magnitude of the unlikely scenarios with huge 
impact on the service delivery, which are fundamental 
for capacity planning. Probabilistic forecasts can be 
used to better manage risks of under and over resource 
allocation, which consequently can reduce both costs 
and risks for patients, staff and the service as a whole.

7. Conclusion

Short-term forecasting of arrivals at Emergency 
Departments is an important element of hospital 
staff and resource management. Furthermore, due to 

the asymmetric impact of an excess resource shortage, 
especially in emergency departments, quantifying 
forecast uncertainty is also of value as it enables plan-
ners to manage associated risks. In this paper, we have 
developed methods for producing a probabilistic fore-
cast of hourly arrivals up to 48 h ahead, comparing 
different state-of-the-art approaches.

Two approaches produced highly accurate, cali-
brated probabilistic forecasts: a time series model 
and a model based on distributional regression. The 
first is ADAM-iESTX, an extension of exponential 
smoothing incorporating multiple seasonalities, expla-
natory variables and assuming a Gamma predictive 
distribution. The second, labelled NOtr-2, regressed 
the two parameters of a truncated (at zero) normal 
distribution on the date and time features and tem-
perature. Both approaches produced calibrated prob-
abilistic forecasts, but the point prediction produced 
by ADAM-iESTX had a lower RMSE than NOtr-2, 
while NOtr-2 produced forecasts with a lower 
Pinball score. This suggests that the latter may be 
preferred if the whole distribution is used in decision- 
making.

Having compared the performance of a wide range 
of methods, we make the following observations: the 
choice of distribution assumed for probabilistic fore-
casts and choice of model features are as if not more 
important than the type of model employed; methods 
based on quantile regression, which do not assume 
a parametric distribution for forecasts, do not perform 
as well as those based on parametric distributions; and 
the best performing models handled the non-negative 
and skewed nature of the data automatically without 
the need for post-processing. These observations 
reflect the characteristics of the data, which are repre-
sentative of ED arrivals, but determining the extent to 
which they generalise is beyond the scope of this 
paper. Furthermore, methods based on continuous- 
valued distributions are not adversely affected by the 
fact that the data are integer-valued. Rounding up 
predictive quantiles to the next integer does not 
make predictions worse.

Finally, we have found that out-of-the-box mod-
els, which require minimal tuning or manual devel-
opment, do not perform as well as well-considered 
statistical approaches. The popular TBATS, Prophet 
and Gradient Boosting Machine algorithms per-
form poorly compared to ADAM-iETSX and 
NOtr-2, and even the benchmarks. Of the models 
requiring a modest amount of user input and 
expertise, Exponential Smoothing (ETS) was 
found to perform well. ETS produces reasonably 
well-calibrated forecasts, in contrast to the poorly 
calibrated benchmarks and has highly accurate 
point forecasts. However, its probabilistic forecasts 
were considerably worse than NOtr-2 in terms of 
Pinball score.
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The dataset used in this study does not include the 
period of the COVID-19 pandemic. During COVID- 
19, the dynamics of ED arrivals has changed substan-
tially. This means that any forecasting model used for 
ED arrivals forecasting during that period would need 
to be modified to reflect those changes for that specific 
period. One of the simplest modifications would be to 
include a set of dummy variables, capturing different 
stages of the pandemic. However, this is outside of the 
scope of this paper and can be considered as 
a direction for future research.

Probabilistic forecasting opens the door to more 
sophisticated resource management in healthcare set-
tings by providing decision-makers with uncertainty 
information and enabling quantitative risk management. 
Linking forecasts of arrivals with upstream (ambulance 
call-outs) and downstream (length of stay, medical out-
comes) analytics offers an opportunity to improve fore-
casting skills and may also be necessary to maximise 
benefits through more holistic decision-making.

Further research is required to investigate the 
practical benefits of probabilistic forecasts in health-
care and how they can inform planning and deci-
sion-making. This may require employing discrete 
event simulation or application to the newsvendor 
problems. While this study has focused on hourly 
short-term forecasting, producing longer-term daily 
forecast (e.g., 180–270 days ahead) is often required 
by planners to support winter planning in ED and 
Ambulance services which requires more investiga-
tion. Moreover, more research is needed in the fore-
casting of other important variables such as length 
of stay, bed occupancy and waiting time, in addition 
to patient arrivals and admissions. This may require 
considering the dynamics among various services, 
including General Practitioners, Emergency 
Departments, Ambulance and Fire & Rescue 
services.

7.1. Reproducibility

R code to produce all results in this paper is available 
at https://doi.org/10.5281/zenodo.7874721
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Appendices

Quantiles of rounded up random variables
Before proceeding with the proof, we need to define the 

quantiles of the continuous and rounded up random variables: 

P yt < kð Þ ¼ 1 � α; (11) 

and 

P dyte � nð Þ � 1 � α; (12) 

where n is the quantile of the distribution of rounded up 
values (the smallest integer number that satisfies the 
inequality (12)) and k is the quantile of the continuous 
distribution of the variable.

In order to prove that n ¼ k, we need to use the following 
basic property: 

dyte � n, yt � n; (13) 

which means that the rounded up value will always be less 
than or equal to n if and only if the original value is less than 
or equal to n. Taking into account (13), the probability (12) 
can be rewritten as: 

P yt � nð Þ � 1 � α: (14) 

Note also that the following is true: 

P dyte � n � 1ð Þ ¼ P yt � n � 1ð Þ< 1 � α: (15) 

Taking the inequalities (11), (12), (14) and (15) into 
account, the following can be summarised: 

P yt � n � 1ð Þ< P yt < kð Þ � P yt � nð Þ; (16) 

which is possible only when k 2 ðn � 1; n�, which means 
that dke ¼ n. So the rounded up quantile of continuous 
random variable yt will always be equal to the quantile of 
the descritised value of yt : 

QαðytÞd e ¼ Qα dyteð Þ: (17) 

It is also worth noting that the same results can be 
obtained with the floor function instead of ceiling, following 
the same logic. So the following equation will hold for all yt 
as well: 

QαðytÞb c ¼ Qα bytcð Þ: (18) 
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