Skip to main content
. 2024 May 16;29(10):2337. doi: 10.3390/molecules29102337

Table 3.

Optimized hyperparameters of machine learning models by GA and PSO optimizers and the search range for the prediction of hydrogen yield.

Hyperparameter Range Unoptimized GA PSO
Random forest (RF)
n_estimators 10–500 100 187 10
max_depth 1–50 NaN * 13 41
min_samples_split 2–10 2 3 2
min_samples_leaf 1–10 1 1 1
extreme gradient boosting (XGB)
learning_rate 0.01–0.5 NaN 0.402014 0.268485
n_estimators 50–500 NaN 408 500
max_depth 3–10 NaN 9 5
min_child_weight 1–7 NaN 5 1
gamma 0–0.5 NaN 0.141899 0.267668
subsample 0.5–1 NaN 0.989653 0.715084
colsample_bytree 0.5–1 NaN 0.975411 0.500000
Decision tree (DT)
max_depth 1–50 NaN 49 50
min_samples_split 2–50 NaN 8 4
min_samples_leaf 1–50 NaN 7 1
Support vector machine (SVM)
C 0.1–1000 1 462.771600 74.618075
epsilon 0.01–1 0.1 0.424860 0.141974
gamma 0.1–1 0.035418 0.045675
Categorical boosting regressor (CatBoost)
learning_rate 0.01–0.5 0.03 0.252239 0.439795
depth 4–10 6 7 5
l2_leaf_reg 1–10 3 7.786251 9.244647
Artificial neural network (ANN)
learning_rate_init 0.0001–0.1 0.001 0.010889 0.035365
hidden_layer_sizes 5–100 100 81.428966 36.580111
activation_function identity, logistic, tanh, relu relu tanh logistic
Gaussian process regression (GPR)
sigma 0.0001–55 1 0.315774 0.050060
kernel_function RBF *, Matern RBF RBF RBF

* NaN: Not a Number; RBF: Radial Basis Function.