Table 3.
Hyperparameter | Range | Unoptimized | GA | PSO |
---|---|---|---|---|
Random forest (RF) | ||||
n_estimators | 10–500 | 100 | 187 | 10 |
max_depth | 1–50 | NaN * | 13 | 41 |
min_samples_split | 2–10 | 2 | 3 | 2 |
min_samples_leaf | 1–10 | 1 | 1 | 1 |
extreme gradient boosting (XGB) | ||||
learning_rate | 0.01–0.5 | NaN | 0.402014 | 0.268485 |
n_estimators | 50–500 | NaN | 408 | 500 |
max_depth | 3–10 | NaN | 9 | 5 |
min_child_weight | 1–7 | NaN | 5 | 1 |
gamma | 0–0.5 | NaN | 0.141899 | 0.267668 |
subsample | 0.5–1 | NaN | 0.989653 | 0.715084 |
colsample_bytree | 0.5–1 | NaN | 0.975411 | 0.500000 |
Decision tree (DT) | ||||
max_depth | 1–50 | NaN | 49 | 50 |
min_samples_split | 2–50 | NaN | 8 | 4 |
min_samples_leaf | 1–50 | NaN | 7 | 1 |
Support vector machine (SVM) | ||||
C | 0.1–1000 | 1 | 462.771600 | 74.618075 |
epsilon | 0.01–1 | 0.1 | 0.424860 | 0.141974 |
gamma | 0.1–1 | 0.035418 | 0.045675 | |
Categorical boosting regressor (CatBoost) | ||||
learning_rate | 0.01–0.5 | 0.03 | 0.252239 | 0.439795 |
depth | 4–10 | 6 | 7 | 5 |
l2_leaf_reg | 1–10 | 3 | 7.786251 | 9.244647 |
Artificial neural network (ANN) | ||||
learning_rate_init | 0.0001–0.1 | 0.001 | 0.010889 | 0.035365 |
hidden_layer_sizes | 5–100 | 100 | 81.428966 | 36.580111 |
activation_function | identity, logistic, tanh, relu | relu | tanh | logistic |
Gaussian process regression (GPR) | ||||
sigma | 0.0001–55 | 1 | 0.315774 | 0.050060 |
kernel_function | RBF *, Matern | RBF | RBF | RBF |
* NaN: Not a Number; RBF: Radial Basis Function.