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Abstract: Azido-modified nucleosides have been extensively explored as substrates for click chemistry
and the metabolic labeling of DNA and RNA. These compounds are also of interest as precursors
for further synthetic elaboration and as therapeutic agents. This review discusses the chemistry
of azidonucleosides related to the generation of nitrogen-centered radicals (NCRs) from the azido
groups that are selectively inserted into the nucleoside frame along with the subsequent chemistry and
biological implications of NCRs. For instance, the critical role of the sulfinylimine radical generated
during inhibition of ribonucleotide reductases by 2'-azido-2'-deoxy pyrimidine nucleotides as well
as the NCRs generated from azidonucleosides by radiation-produced (prehydrated and aqueous)
electrons are discussed. Regio and stereoselectivity of incorporation of an azido group (“radical arm”)
into the frame of nucleoside and selective generation of NCRs under reductive conditions, which
often produce the same radical species that are observed upon ionization events due to radiation
and/or other oxidative conditions that are emphasized. NCRs generated from nucleoside-modified
precursors other than azidonucleosides are also discussed but only with the direct relation to the
same/similar NCRs derived from azidonucleosides.

Keywords: aminyl radicals; azides; iminyl radicals; nitrogen-centered radicals; nucleosides; purines;
pyrimidines; radiation; radiosensitizers; ribonucleotide reductases

1. Introduction

Nitrogen-centered radicals (NCRs) play an important role in chemical biology and
cellular signaling [1-3] as well as in organic synthesis, as they allow access to new synthetic
pathways in nonconventional ways [4-8]. NCRs are categorized into four main types of rad-
icals: o-iminyl (R=N-), m-aminyl (RI-N(-)-R?), m-amidyl (R1-CO-N(-)-R?), and m-aminium
(R'-N(-)H-R?)*. They are generated via homolytic cleavage, reductive/oxidative con-
ditions, and proton-coupled electron transfer (PCET) methods [4,5,7,8]. Precursors to
NCRs include N-halogenated amines [9,10], aryloxyamides [11], sulfonylamides [12], or
O-aroyloximes [13], among others [4,8]. NCRs generated from azides (R-N3) are important
due to the synthetic ease of the incorporation of azido groups into the frame of complex
molecules, including natural products and their versatile application to the subsequent
functionalization reactions [14,15].

Azido-modified nucleosides have been of interest for over six decades, and the finding that
3'-azido-3'-deoxythymidine (AZT) is a therapeutic agent [16,17] for the treatment of acquired
immunodeficiency syndrome (AIDS) has sparked attention to their chemistry. The synthesis of
azidonucleosides, their reactions, and biological activities have been subject of comprehensive
reviews [18-20]. Azidonucleosides have been explored as substrates for the (a) synthesis of
amino nucleosides [21], (b) click chemistry [20], (c) bioconjugation and ligation [19], (d) the
metabolic labeling of DNA and RNA and for live cell fluorescence imaging [22], and (e) radical
biology including enzyme inhibitions [23,24], among others [18,25].

In the last twenty years, azido-modified nucleosides, nucleotides, and oligonucleotides
have been extensively explored as substrates for click chemistry [26-29]. In general, the
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application of the azidonucleosides and oligonucleotides in click chemistry is more de-
manding than their alkyne counterparts due to the challenging chemical [30-34] and
enzymatic [35] synthesis and their lack of compatibility with the solid-phase synthesis of
DNA fragments [36,37]. Also, the triazole click products are often used for the fluorescence
imaging of cancer cells [38—40] and for cross-linking cellular nucleic acids [41]. The azide
group can often cyclize with nitrogen atoms present in the pyrimidine or purine ring to
form tetrazole tautomers [42,43]. Moreover, 5-azidouracil and 8-azidoadenine have also
been utilized as photoaffinity probes. Upon UV-irradiation, these aryl azides produce
highly reactive nitrenes that can react with most amino acid residues, thereby resulting in
nucleic acid-protein photo-crosslinking in yields above 50% [25].

Recently, 2/-deoxy-2'-B-fluoro-4’-azidocytidine (Azvudine), a clinical candidate originally
developed for HIV treatment, entered clinical trials in China for evaluating its efficacy and
safety and showed promise for treating coronavirus disease (COVID-19) [44,45]. Moreover,
4'-azidocytidine is a potent inhibitor of HCV (R1479) [46]. Azido-substituted nucleosides have
been developed for use as prodrugs [42,47], as adenosine receptor antagonists [48], for determin-
ing protein-DNA /RNA interactions [34,49], or as anticancer [47] and anti-viral agents [50,51].

Furthermore, 3’-azido-3'-deoxythymidine (AZT) has been employed as a radiation
sensitizer in the radiotherapy of tumors for HIV-positive patients [52]. AZT demonstrated
significant radiosensitization in irradiated human colon cancer, larynx squamous carcinoma,
and malignant glioma cells [53-55]. The aim of this account is to discuss the application of
azidonucleosides in the selective and site-specific generation of NCRs and their biological
implications. Pulse radiolysis, photolysis, and electrochemical investigations as well as
enzymatic and biomimetic model studies in combination with electron paramagnetic
resonance (EPR) and density functional theory investigations were employed to elucidate
the formation of NCRs in azidonucleosides and their subsequent reactions. Thus, the focus
of this review is not on the synthesis of azidonucleosides but rather on the importance
of the chemistries of NCRs generated from the azido group. NCRs generated from non-
azidonucleoside-modified precursors, by ionization, or by the one-electron oxidation of
the parent nucleobase are discussed only in relation (comparison) to the azido-derived
radical chemistry.

1.1. 2'-Azido-2'-Deoxy Pyrimidine Nucleosides and Nucleotides: Inhibition of Ribonucleotide
Reductases and Importance of Nitrogen-Centered Radical Chemistry

2'-Azido-2'-deoxynucleoside 5'-diphosphates (e.g., 1, N3UDP) are potent inactivators
of ribonucleotide reductases (RDPR). Sjoberg et al. found that the inactivation of RDPR by
2'-azido-2'-deoxynucleotides was accompanied by the appearance of new EPR signals for a
nitrogen-centered radical (anisotropic triplet with a second hyperfine interaction) and the
concomitant decay of peaks for the tyrosyl radical [56], which was the first direct evidence
for free radical chemistry with RDPR. The structure of this elusive nitrogen radical was
studied extensively and shown to be derived from the azide moiety [57-59]. A proposed
mechanism postulated azide loss (as an anion) from the initial C3’ radical intermediate to
give the ketyl radical 2 and subsequent reduction by proton-coupled electron transfer to
generate the 2'-deoxy-3'-ketonucleotide 3 (Figure 1). This process leaves a thiyl radical in
the active site. The reaction of hydrazoic acid with the thiyl radical generates stoichiometric
N, and a sulfinylimine radical 8. The protonated azide (pK, of 4.6) was hypothesized to
be essential for that mechanism [57,59]. Conversion (2 — 3) is analogous to the proposed
mechanism for the reduction of natural nucleotides that proceeds by the generation of
the same 3/-keto-2'-deoxynucleotide intermediate, which makes the investigation of the
inhibition of RDPR by N3UDP even more significant [23,60]. The initial NCR 8 reacts further
with the oxygen or carbon atoms of a carbonyl group of the 3'-keto-2’-deoxynucleotide to
generate radicals 4 or 7, respectively [58].

The inactivation of the RDPR with 3/[*7O]-N3UDP [61] 1 was consistent with the
formation of the radical, R-S-N--C(3/)-OH 7, and provided the first evidence for the trap-
ping of a 3'-ketonucleotide in the reduction process by a nitrogen-centered radical 8 [59].
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Chemical requirements also favor the formation of 7 (over 4), and there is precedent in
the literature for the analogous addition of aminyl radicals to carbonyl [62] and imino
groups [63]. Moreover, the inactivation of the adenosylcobalamine-dependent RTPR with
2'-arabino-2'-azido-2'-deoxyadenosine-5'-triphosphate was accompanied by the detection
of a paramagnetic species by EPR spectroscopy. In a tentatively proposed mechanism,
perhaps due to an altered sugar pucker and the steric constraints imposed by the azido
moiety on the B-face of the nucleoside, the C2'-azide was acting here as a radical trap for
the initially formed protein thiyl radical to generate a sulfinylimine NCR [64].
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Figure 1. Proposed structures for the nitrogen-centered radicals (NCRs) and pathways for their
generation during the inactivation of RDPR by N3UDP [57-59,65].

The theoretical modeling study of the inactivation of RDPR by N3UDP by Pereira
and coworkers generated an alternative mechanistic proposal (depict by red arrow path,
Figure 1) [65]. In that hypothesis, the released azide anion (N3~) was proposed to add
to the 2'-ketyl radical 2 first with the concomitant protonation of the ketone oxygen by
E441. The resulting radical 5 is then reduced at the 2 position by Cys225 to generate the
Cys225 thiyl radical 6. A subsequent attack of the thiyl radical on an alkyl azide (instead
of HN3 or N3 ™) would lead to the same nitrogen-centered radical 7 that was detected
experimentally [59]. The addition of azide to ketones has chemical precedence [66], but
there are no model systems where azide adds to ketyl radicals. The reduction of alkyl
azides with tin [62,67], alkoxy [68], and silyl (in the presence of thiols) [69,70] radicals have
been reported [15].

1.2. Biomimetic Studies

Thao and coworkers designed model 3'-azido-3'-deoxynucleosides with thiol or vicinal
dithiol substituents at C2’ or C5’ to study reactions postulated to occur during the inhibition
of ribonucleotide reductases (RNRs) by N3UDP (9-11, Figure 2) [71]. It was presumed that
the intramolecular addition of the thiyl radical in 12 (generated from 9) to the azido group
via an eight-membered TS would produce the transient triazenyl radical 13. A loss of N
would generate nitrogen-centered radical 14 (similar to sulfinylimine radical of type 7; vide
supra), and an abstraction of a hydrogen atom by 14 should give a cyclic sulfenamide, which
might undergo ring opening to give 3’-amino-3’-deoxy products. Density functional theory
calculations predicted that intramolecular reactions between the generated thiyl radicals
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and azido group on the model compounds 9-11 will be exothermic by 33.6-41.2 kcal /mol
with low energy barriers of 10.4-13.5 kcal /mol [71].
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Figure 2. Model azidonucleosides with the cysteinate or vicinal dithiol unit attached to C2’
or C5 to study the assumed ring closure reactions between the thiyl radical and the azido
group. Plausible intramolecular interactions of the thiyl radical with an azido group at C3' for
adenosine-derived substrate 9 [71].

The heating of 3'-azido-3'-deoxy-5-O-(2,3-dimercaptopropanoyl)thymidine 11 in
H,0 with 2’-azobis-(2-methyl-2-propionamidine) dihydrochloride (AAPH) as an initia-
tor for the production of thiyl radicals gave 3’-amino-3’-deoxythymidine, whereas the
analogous treatment of 3’-azido-3'-deoxythymidine (AZT, a control substrate lacking a
thiol substituent) resulted in the isolation of major quantities of unchanged AZT. More-
over, the y-radiolysis of NpO-saturated aqueous solutions of AZT and cysteine produced
3’-amino-3'-deoxythymidine and thymine. The DFT-calculated predictions and results with
radical-initiated intramolecular azido substituent reduction with model compounds, such
as 9 and 11, bearing azido and thiol substituents might be in harmony with the enzymatic
positioning of azido-containing substrates in close proximity with thiol functionalities that
exist in the active sites of RNRs [71].

Robins and coworkers explored further biomimetic reactions to occur during the
mechanism-based inhibition of RDPR by N3UDP with model 2’-substituted nucleoside
derivatives [72], which can cause the elimination of radical or ionic species from C2’
upon the generation of a radical at C3/, including 2’-azido-substituted uridine and adeno-
sine models (e.g., 15 [21]) [73]. Azide 15 was converted to 3/-O-phenoxythiocarbonyl
(PTC) derivative 16. Compounds 15 and 16 were subjected to parallel treatment with
tributylstannane/AIBN/toluene/A (Method a) and also with triphenylsilane/dibenzoyl
peroxide/toluene/A (Method b; Figure 3). The known stannyl “radical-mediated” re-
duction [74] of azide 15 to amine 18 occurred with tributylstannane/ AIBN. Interestingly,
a reduction of azide 15 to amine 18 was not observed with triphenylsilane/dibenzoyl
peroxide. It is also noteworthy that although the radical-mediated cleavage of the carbon-
nitrogen bond with azides is unknown, the treatment of the ribo epimer of 15 with excess
triphenylsilane and a prolonged reaction time caused some dehydrogenolytic deazidation
to give small quantities of the 2’-deoxy derivative 19 in the absence of amine formation [73].
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Figure 3. Differential interaction of azidonucleosides with tributylstannane and triphenylsilane.
Reduction versus elimination of azido group from C2’ position [73].

The treatment of 3’-thionocarbonate 16 with BuzgSnH resulted in radical-mediated
elimination upon the generation of a radical at C3’ 17 to give 2/,3’-didehydro-2’,3'-dideoxy
nucleoside 21 in moderate yields, but competing reduction of the azido group and hy-
drogenolysis of the thionocarbonate group also produced byproduct 20. Elimination
product 21 was formed almost exclusively upon the treatment of 16 with Ph3SiH but at a
lower conversion rate and with the recovery of starting material 16 (Figure 3) [73].

2. Nitrogen-Centered Radicals Generated from Azidonucleosides by
Radiation-Produced Electrons

Azide anion (N3 ™) has a low reactivity with radiation-produced electrons (e.g., with
aqueous electrons, i.e., with fully solvated electrons when water is the solvent) [75]; how-
ever, the aqueous electrons react with azidonucleosides with an almost diffusion-controlled
rate (~10'° M~1s~1), forming NCRs [76]. The plausible involvement of dissociative electron
attachment pathway in the formation of NCRs from azidonucleosides could be inferred
from the dissociative electron attachment (DEA) spectra of phenyl azide (Scheme 1). Studies
establish that the major fragmentation pathway involves Nj loss [77].

RNy + e~ Attachment, [(RNg)--]* Dissociation RN*~ + N, (or,Re + N3
Scheme 1. Schematic representation of the steps involved in the dissociate electron attachment
process involving the neutral azide molecule, RN3. The first step, attachment, leads to the formation
of a transient negative ion (TNI), [(RN3)-~]*. This is followed by dissociation [78].

2.1. From Azido-Modified Nucleoside Sugars

Sevilla and Adhikary developed a method for the generation of aminyl radicals on
dissociative electron attachment (DEA) to azidonucleosides, which allows for detailed EPR
spectroscopic studies of aminyl radicals and their subsequent chemistry [79]. EPR spectral
studies and density functional theoretical calculations showed that the predominant site
of electron capture in AZT (22) is at the azide group (ca. 80%) and not at the thymine
moiety (ca. 20%), which is the most electron-affinic DNA-base [79]. In this work, the
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radiation-produced prehydrated electrons led to the site-specific formation of a localized
m-aminyl radical (RNH-) 25 [in homogeneous glassy 7.5 M aqueous (D,O or H,O) LiCl
solutions; Figure 4]. It was demonstrated that the neutral azide can capture an electron
due to its high electron affinity and form a transient negative ion (TNI), an unstable azide
anion radical RN3-~, 23 (see also Scheme 1) when irradiated. RN3-~ can then facilely lose
Ny, leaving a nitrene anion radical (RN-~, 24; neither were detected by EPR even at 77 K)
that upon protonation from the surrounding solvent becomes a neutral m-aminyl radical
(RND-/RNH-, 25), which was detected by EPR. Upon annealing to higher temperatures (ca
160-170 K), RNH- 25 undergoes bimolecular H-atom abstraction from the C5-methyl group
of 22, generating the allyl radical 26 or from the sugar moiety yielding C5'- (27) [79].

0 B o) o ] o)
M |, o |y
HN" r3 HN
oy/?N b O%N | N, O)\N | o)\N |
HO—® o e, hv |HO o _2Ho 0 *HQ | HO 0
4 e \
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22, AZT L 23, (TNI) 24 ]

AZT (22)
Bimolecular
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- H'(5CH3)
0 o)
1 6 5 7
,.|2)N\ N\>8 HN HN HN)ﬁ/
H,N
HO 5‘
.

Figure 4. The formation and reactivity of the aminyl radical generated upon the addition of radiation-
produced electrons to AZT [79].

~H'(c5'

26

A radiation-produced electron addition to 5'-azido-5'-deoxythymidine 28 forms
C5’-NH:-, which undergoes predominant (ca. 80%) bimolecular H-atom abstraction from
a proximate C5-methyl group generating the allyl radical (of type 26) and ca. 20% of
the o-type iminyl radical in the sugar moiety (similar to 32; see Figure 5 and relevant
discussion) [79,80]. Interestingly, electron attachment to 3’-azido-2’,3’-dideoxyguanosine
29 results in the one-electron oxidation of the guanine base via an intramolecular electron-
coupled proton transfer pathway to give the G(N1-H)- radical [79,81] but not the elusive
guanyl radical G(N,-H)- [82]. The latter is formed via the deprotonation of a guanyl cation
radical from the exocyclic amine of the guanine base in DNA but not in monomers [79,83,84].

Mudgal et al. reported that the site of azido substitution in the sugar moiety of
azidopyrimidine nucleosides influences the reactivity of aminyl radicals formed by dis-
sociative electron attachment (Figure 5) [80]. Employing a '®N-labeled azido group and
deuterations at specific sites in the sugar and base, it was shown that they initially form
aminyl radicals RNH- upon annealing samples from 77 K to 170 K: (i) at a primary carbon
site (e.g., 31; generated from 5'-azido-2’,5'-dideoxyuridine, 30), it is converted to a o-type
iminyl radical (R=N-) 32 via a concentration-dependent bimolecular H-atom abstraction re-
action between 30 and 31 and subsequent nitrogen loss from the intermediary «-azidoalkyl
radical 33 (path A); (ii) at a secondary carbon site RNH- 35, it is generated from 2’-azido-
2'-deoxyuridine (34, 2'-N3dU) and underwent bimolecular electrophilic addition to the
C5=C6 double bond of a proximate pyrimidine base to give C6 36a and C5 36b radicals
(path B); and (iii) at tertiary alkyl carbon (e.g., in 4’-azidocytidine 37a), RNH- 37b is quite
stable and undergoes little to no reaction (path C). These results show the influence of the
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stereochemical and electronic environment on RNH.- reactivity and potentially should allow
for the selection of azidonucleosides, which would be the most effective in augmenting
cellular radiation damage [80].

(A) Prim uazides
U
-NH
N2 OH™ HN 3° SNRdU
e re Blmolecular N
P H-atom
abstraction N2
31, T radical 33, q-amdoalkyl radical 32,5 radical
(B) Secondary azides
HN HN HN NHdU HN
NHdU
N2 OH" 2 2N;gU (34) HO
Blmolecular
addition
HO N3 HO Nj HO N3
pre 6a
(C) Tertiary azides
C (e}
HO (o) N,, OH- HO o
N %’ Stable (no reactions)
I N3 o HN
Ha
efpre HO OH HO OH
37a 37b

Figure 5. Types of reactions undergone by n-RNH- attached to a primary (path A), secondary
(path B), or tertiary (path C) alkyl carbon in the ribose sugar of pyrimidine nucleosides.

To further test the mechanism for sugar radical formation from the m-aminyl rad-
icals without the nucleobase interaction, Mudgal et al. investigated the formation and
reactivity of the 7-aminyl radicals from azidopentafuranoses [e.g., methyl 2-azido-2-deoxy-
a-D-lyxofuranoside, 38 (1-Me-2-Azlyxo), and its 3-D-ribo isomer 43 (1-Me-2-Azribo)] [85].
Prehydrated electron attachment to 38 and its 1°N- and ?H-labeled derivatives showed
unequivocal (concentration independent) intramolecular H-atom abstraction from the
C5 by RNH- in 39 via a favorable six-membered transition state ([1,5]-hydrogen shift) to
produce the primary o-hydroxy C5- 40. Subsequent ring opening (40 — 41) and unimolec-
ular conversion produced a secondary C4- 42 under the reductive environment of DEA
(Figure 6) [85]. However, for 43, EPR studies established thermally-activated (concentration
dependent) intermolecular H-atom abstraction by RNH- 44 from the methyl group at the
C1 of 43 to generate the carbon-centered radical 45.

The general character of the site-specific generation of NCRs from azide group has been
also illustrated with other natural products, such as sesquiterpene lactones [e.g., partheno-
lide (PTL) and dehydroleucodine (DhL)] [86]. The addition of radiation-produced electrons
to azido-PTL 46 leads to the formation of highly reactive oxidizing aminyl radical 47, which
transforms into a stable x-carbonyl-stabilized tertiary C-centered radical AmPTL- 48 via
[1,3]-hydrogen shift (Figure 7). Remarkably, the radiation of azido-DhL produces the
corresponding aminyl radical, which, after bimolecular H-atom abstraction from substrate
Azido-DhL, generates x-azidoalkyl radical 49. Interestingly, no iminyl radicals have been
detected upon the radiation of these sesquiterpene lactones. Azido-PTL and azido-DhL sig-
nificantly suppressed proliferation rate and colony-forming ability in MCF-7 cells [86]. The
azido-PTL in combination with radiation restricted its colony-forming ability to a greater
extent than the PTL itself. The radiosensitization has been attributed to the increased
reactive oxygen species (ROS) generated by the radicals produced from the azido group.
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Figure 6. The formation of the ring-opened C4- 42 via the ring opening of a C5- intermediate in

1-Me-2-Azlyxo (38) and thermodynamically stable -OCH,- 45 with an intact ribofuranose ring in
1-Me-2-Azribo (43).

o)

(@) Ny

AZPTL 46 PTL-NHe 47 AmPTLe 48 O H
o-azidoalkyl radical 49

Figure 7. The intramolecular formation of the neutral tertiary carbon-centered radical 48 from
azido-PTL 46. Structure of x-azidoalkyl radical 49 from azido-DhL.

2.2. From Azido-Modified Nucleobases

The synthetic ability of the regioselective incorporation of the azido group at chem-
ically distinctive positions of nucleobases (e.g., C5/C6 of pyrimidine bases or C2/C6 of
pyrimidine moiety as well as C8 of imidazole moiety of purine bases [87]) provides a possi-
bility for the selective generation of NCRs under the reductive conditions of dissociative
electron attachment. It is noteworthy that often, it is challenging to selectively generate and
elucidate the same specific NCR species during radiation and/or other oxidative conditions
used during ionization events of non-azido nucleobases.

Wen et al. have employed 5-azidomethyl pyrimidine derivatives, such as AmdU 50
and AmdC, to study the radiation-mediated formation of RNH- and its subsequent reac-
tions for potential anticancer properties (Figure 8) [88]. The authors hypothesized that the
incorporation of azido-modified nucleosides into genomic DNA would augment radiation-
induced damage in cells owing to the reactions of aminyl radicals under hypoxic conditions
and therefore act as potential radiosensitizers. Their findings revealed that radiation-
produced electron addition to 5-AmdU 50 generates the m-aminyl RNH- 51. Radical 51
then undergoes an intermolecular reaction with 5-AmdU, abstracting the H-atom from
the CHyN3 group at the C5 of 5-AmdU, to form the x-azido carbon radical 52. The
subsequent loss of N, from 52 generates the thermodynamically more stable o-iminyl
radical [15,89] (R=N-) 53. The AmdU and AmdC phosphates incorporate into DNA frag-
ments in polymerase-catalyzed reactions, and AmdU demonstrated effective radiosensi-
tization in EMT6 tumor cells in the presence or absence of oxygen [88]. AmdU has been
also metabolically incorporated into DNA in living cells for the click labeling of DNA [90],
and its 5'-triphosphate was found to be the substrate for DNA polymerases and PCR
amplification [91]. Moreover, its 5'-triphosphate prodrug was shown to enhance its in-
corporation into the DNA of wild-type cells and animals [22]. Thus, AmdU can serve a
dual purpose of labeling tumor cells prior to, during, or after radiotherapy, and it may
radiosensitize the tumor during radiotherapy.
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Figure 8. The formation of the neutral aminyl radical 51 by radiation-produced prehydrated electron
attachment to 5-AmdU and its subsequent H-atom abstraction reaction with 5-AmdU to form iminyl
radical 53 via the intermediary «-azidoalkyl radical 52 [88].

The addition of a radiation-produced electron to 5-(1-azidovinyl)-2’-deoxyuridine
(AvdU, 54) also generates T-RNH- 55, which undergoes facile tautomerization to ther-
modynamically more stable o-iminyl radical 56 (Figure 9) [88]. One-electron attachment
to the cytidine analog (AvdC) proved that the formation of the aminyl radical and its
tautomerization to the iminyl radical has a general character and occurs independently of
the nucleobase [88]. Owing to the high concentrations of various free radical scavengers in
cells [92], the bimolecular conversion of T-RNH- to 0-R=N- from 5-azidomethyl nucleosides
(e.g., AmdU) is unlikely to take place. However, the tautomerization of the n-RNH.: to
0-R=N- from 5-azidovinyl nucleosides (e.g., AvdU) should occur even in cells. Therefore, it
was expected that the -RNH-: from AmdU could augment radiation damage more effec-
tively than the 0-R=N- from AvdU. The experiments in EMT6 tumor cells indeed showed
the higher radiosensitizing effect of AmdU compared with that of AvdU [88].

efa
'e) qa 0O O
N,, OH" 0 N o
HN N HN NH
| 3 P | — )\ d

N H,0 o~ N

dR dR dR
54, AvdU 55, n-aminyl radical 56, c-iminyl radical

Figure 9. Tautomerization of 7t aminyl radical, generated from AvdU, to o-iminyl radical [88].

Distinct pathways of dissociative electron attachment have been observed in 6-azidomethyl
uracil nucleosides [93] compared to their 5-azidomethyl counterparts (Figure 10) [76].
Contrary to the results with 5-AmdU [88], where radiation-mediated prehydrated electrons
in the absence of oxygen led to m-aminyl and o-iminyl radicals (see Figure 8), radiation-
produced electron addition to 6-azidomethyluridine (6-AmU, 57) leads to the unexpected
loss of azide as an anion via dissociative electron attachment from the initially formed azide
anion radical intermediate (58, U-6-CH,-Nj3- ) or transient radical anion to generate the
C6 allylic radical 59 [76].

The characterization of nitrogen-centered radicals formed via dissociative electron
attachment to the azido group directly attached to a nucleobase, such as in 5-azidouridine
60, 6-azidouridine 61, and 4-azidopyrimidine analogue 62, which have demonstrated how
the presence of the azido group at different positions in the pyrimidine base (1meta to N1
and N3 in 60 and ortho/para to N1 and N3 in 61 and 62) distinctly affects the nature and
stability of the nitrogen-centered radicals (Figure 11) [94]. The formation of (i) RNH- (64)
from 60, (i) R=N- (65) from 61, and (iii) RN3- ~ (66) from 62, after gamma-irradiation at 77
K, was observed. Moreover, tetrazolocytidine 63 (a cylic derivative of 62), upon irradiation,
also produced azide anion radical 67 [94,95].
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Figure 10. The formation of allylic radical 59 via the unexpected loss of azide as an anion (N3 ) from
the azide anion radical intermediate 58 via dissociative electron attachment [76].
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Figure 11. Nitrogen-centered radicals formed via dissociative electron attachment to 5-azidouridine 60,
6-azidouridine 61, and 4-azidopyrimidine analogue 62 and its cyclic tetrazolo derivative 63.

Hocek's group developed azidophenyl (AzP)-labeled 5-(4-azidophenyl)-2’-deoxycytidine 68
and 7-(4-azidophenyl)-7-deaza-2'-deoxyadenosine 69a triphosphates (1AAzPTP and dCAzPTP)
as substrates for the enzymatic labeling of double- or single-stranded DNA (Figure 12) [96-98].
These novel electroactive azidophenyl-modified nucleotides and DNA gave strong signals
in voltammetric studies at —0.9 V due to the reduction of the azido group, outside the
potential region around —1.5 V, where natural bases are reduced. The proposed mech-
anism for the electrochemical reduction of dAAzP 69b on mercury surface involves the
one-electron reduction of the azido-group to nitrene anion radical 70a accompanied by
dinitrogen release. The nitrenium ion-radical is then protonated to form the 7-aminyl
radical 70b, which is stabilized by an aromatic phenylene linker bound to nucleobase. The
subsequent electrochemical reduction of the aminyl radical by one electron and one proton
yield the amine [98]. The nucleosides with the new AzP redox label are not only suitable for
the electrochemical detection but can also be transformed to another redox label or silenced
through the click reactions.

N; N* NH
N3
NHZ NH2 NH2 NHg
N7 N* N~ N
PN | Ny > ] ; gk
0"~ "N N~ N N~ N N~ N
PPPO— 0O RO o +e- RO o +H0  RO7_o
N, —OH:
HO HO HO HO
68 69a R = triphosphate 70a 70b
69bR=H

Figure 12. Azidophenyl-modified nucleosides and their electrochemical reduction on mercury surface
to the aminyl radicals.

3. Nitrogen-Centered Radicals Generated on Non-Azido Nucleobases

Approaches for the generation of the similar NCRs from the selectively modified
adenine, guanine, and cytosine substrates “armed with radical initiators” other than the
azido group have also been developed [99-101]. Thus, Wagner’s group demonstrated
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the formation of N®-aminyl radical 72 with the photolysis of 6-N-arylhydrazones of
2’-deoxyadenosine 71a and 71b in the presence of H-donors, such as glutathione (GSH;
Figure 13) [99]. Specifically, 6-N-(4-methoxyphenyl)hydrazone 71a was more efficient for
NCR formation compared to phenylhydrazone 71b. Upon the photolysis of the latter,
N®-aminyl radical 72 and benzylidene iminyl radical 73 were postulated to be generated via
homolytic cleavage as the subsequent H-atom abstraction by 72 and 73 from GSH-produced
2'-deoxyadenosine (dAdo) and benzaldehyde. The decomposition of N®-aminyl radical 72
in the excess of dAdo revealed the generation of 6-amino-2-imino product 74 (45%) via the
recombination of 72 and 73 at the C2. These studies reveal the potential new path for the
selective formation of adenosyl-6-N-aminyl radical 72 under neutral conditions.

\/©/R
AN NH q NH,
N\ NN NN
N N
< f;’ < f;’ Ph)k” HO < ]I\)\/)N\ _
N HO o N N 73 o N N” N ph

HO 0o N Photolysis
N T
HO Ph)kH HO HO

71a = OMe 73 72 74

71b=H
Figure 13. Plausible generation of dAdo-6-N-aminyl radical 72 by photolysis of dAdo-6-N-
arylhydrazones 71a and 71b and its subsequent chemistry to form 2-imino-dAdo derivative 74 [99].

Greenberg’s group identified the aminyl radicals with the photolysis of the
hydrazine modifications at the 6-N-positon of 2’-deoxyadenosine and 2-N-positon of
2’-deoxyguanosine and showed the compatibility of these hydrazine analogues for solid-
phase oligonucleotide synthesis to study DNA-hole transfer processes [100]. Specifically,
the photolysis of hydrazine dAdo precursor 75 produced C8-diphenylamino-substituted
dAdo 76 in addition to dAdo (Figure 14). The identification of these photolyzed products in-
dicated that N®-aminyl radical 72 is initially generated from 75 with the loss of the diphenyl
aminyl radical (Phy,N-). The subsequent reaction between 72 and PhyN- produced 76. The
compatibility of these hydrazines for solid-phase oligonucleotide synthesis was proven via
the generation of dodecameric duplex 77, as T, decreased significantly compared to its
dAdo duplicate [100]. Although spectroscopic evidence (UV, MS) and (in)direct synthetic
proofs were presented to indicate the formation of the aminyl radical 72, there was no
conclusive EPR results unequivocally characterizing this radical due to a very poor rate of
fragmentation in glassy systems at low temperature. It is noteworthy to point out that in
Wagner’s studies of the in situ-generated benzylidene iminyl radical, 73 was postulated to
add to the C2 position of the purine ring (7-deficient pyrimidine ring) to give 74, whereas in
Greenberg’s investigations, the diphenyl aminyl radical adds to the C8 position (7-excessive
imidazole ring) to produce 76.

The photocleavage of ketone 78 and the 3-fragmentation of the initially formed alkyl
radical 79 also led to aminyl radical 72 (Figure 14) [101]. The formation of 72 was followed
by laser flash photolysis (LFP), which yielded a transient with Apax /= 340 nm and a broader
weaker absorption centered at ~560 nm. The calculations indicate that the iminyl tautomer
80 of 72 is 13.0 kcal/mol higher in energy in the gas phase and its forms must rapidly
isomerize to 72. Precursor 78 has been incorporated into DNA fragments, and the site-
selective generation of the neutral purine nitrogen radical 72 was shown to produce tandem
lesions. The involvement of 2’-deoxyadenosin-6-N-yl radical 72 in this process could be
detected because it was independently generated from the synthetic precursors [102-104].

The photolysis of dGuo hydrazine 81 provided strong evidence for the formation of
dGuo-N2-yl radical 82 as determined by the generation of 2’-deoxyguanosine
(Figure 15) [100]. The independent generation and time-resolved detection of radical 82 was
developed by the photolysis of ketone radical initiator 83 [81]. The LFP experiments showed
no evidence for the water-assisted tautomerization of dG(N2-H)- 82 to dG(N1-H)- 85 within
hundreds of microseconds, supporting the theoretical prediction by von Sonntag [92,105].
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This observation suggests that the generation of dG(N1-H)- via dG(N2-H)- following hy-
drogen atom abstraction from dG and subsequent tautomerization is unlikely [81]. The
formation of the N1-yl radical G(N1-H)- 85 has been indirectly observed via the one-electron
oxidation of N-(aryloxy)naphthalimide 84 [106]. Photolabile N-hydroxypyrid-2(1H)-one or
thione 86 were also used for guanine radical generation [107,108]. It is noteworthy that pre-
liminary results on the addition of a radiation-produced electron to 2-azido-2'-deoxyinosine
produces the complex EPR signals, and subsequent UV photoexcitation leads to the mixture
of radicals, including the possible formation of sugar radicals rather than the elusive guanyl
aminyl radical 82 [95].

||3h
N

HN™"Ph NH,

NH
N X N
AN
| //"\l Photolysi </ij thN‘«],\/jN
otolysis .
HO— o NN %» HO— o N” _PhoN HO— o N7 N
—_—
& §

HO HO HO

75 72 76 (from 75)

5-d(CAC GT(75) TAC CCG) 77 ]/~ Me,CO

N
4

3'-d(GTG CAT ATG GGC)
o

HN/O%KI‘-BU HN/O\( N
N N N B
STy _p sy
HO— o N N/) _hv HO- o N N//, N

HO HO HO
78 79 — 80 -

Figure 14. The plausible generation of dAdo-6-N-aminyl radical 72 by the photolysis of ketone 78 as
well as hydrazine 75 and the subsequent chemistry to form 8-amino-dAdo derivative 76.
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Figure 15. Photochemical generation of guanosyl radicals from synthetic precursors.

The Greenberg’s group reported the photochemical generation of o-iminyl radical
2’-deoxycytidin-4-N-yl 88 from a nitrophenyl oxime precursor 87 and the synthesis of
oligonucleotides containing 87 for DNA incorporation (Figure 16) [109]. It is worth noting
that the attempted photolytic generation of 88 from oxime esters 89 and 90 was unsuccessful
due to instability and poor fragmentation. The formation of the iminyl radical 88 from
87 was confirmed (in)directly via LFP and transient UV-absorption spectroscopy [109].
Photolysis studies also revealed 88 can recombine with the aryloxyl radical to regenerate
87, undergo C5-C6 addition to produce diradicals, generate deoxycytidine via reduction, or
react under aerobic conditions to generate other radicals/products. Iminyl radical 88 was
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also independently generated (and characterized by EPR) via single-electron transfer to
oxime ester 89 [110]. Like with adeninyl radical 72, tandem lesion formation from cytosinyl
radical 88 is traceless because it is reduced to dC during the process. However, unlike 72,
an isolated 88, which is a stronger oxidant, directly oxidizes dG. In this regard, 88 is more
similar to a nucleoside alkyl aminyl radical, such as the one generated from AZT [79,109].
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Figure 16. The generation of 2’-deoxycytidin-N4-yl iminyl radical 88 by photolysis and radiation-
produced prehydrated electron attachment approaches.

One-electron oxidation and ESR studies of 1-methylcytosine and 2'-deoxycytidine 91
showed that the cytidine cation radical 92 preferentially deprotonates to form an aminyl
radical 94 syn to the carbonyl moiety (Figure 17). The tautomerization of syn-aminyl
radical also leads to the iminyl o-radical 88 [111,112]. Interestingly, contrary to these
findings, [109-111] the one-electron reduction (conditions for DEA) of azide precursors at
the C4 positions of pyrimidine bases (62 or 63) led to the formation of anion radicals 66 or
67 (see Figure 11) [94,95].

H
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R = Me, 2'-deoxyribosyl Tt cation radical anti aminyl radical  syn aminyl radical iminyl G -radical

92 93 94 88

Figure 17. Formation of cytidine -aminyl radicals 93 and 94 that tautomerize to o-iminyl radical 88
upon one-electron oxidation of cytosine nucleobase [111].

4. Conclusions

Nucleosides with a regioselectively inserted azido group at the sugar or base moi-
ety are unique precursors for the generation of nitrogen-centered radicals (NCRs) under
enzymatic, electrochemical, and dissociative electron attachment (reductive) conditions.
The azidonucleoside substrates under reductive conditions produce the same NCR species
that are observed upon radiation and/or other oxidative conditions of parent nucleosides,
making them unique and desired precursors. The generation of the NCRs from azidonucle-
osides and their subsequent reactivity depends on the nucleophilicity / electronegativity
as well as redox potentials of nucleobases, which define the fragmentation of the initially
formed transient negative ions [(RN3)- ~]* and their dissociation from the release of Np
(to form m-aminyl radicals, RNH:) or loss of N3~ (to form R:; Scheme 1). Due to their
reactivity, the RNH- undergo a plethora of reactions, including selective hydrogen atom
abstractions from the phosphate-sugar backbone or from the nucleobases as well as their
addition to the double bond in the proximate base moiety.

The azidonucleosides have shown significant promise in their application as radiosen-
sitizers for increasing the efficacy of tumor radiochemotherapy. For instance, 5-azidomethyl-
2’-deoxyuridine demonstrated effective radiosensitization in EMT6 tumor cells in the pres-
ence or absence of oxygen. On the molecular level, it was found that the inactivation of
RDPR by 2'-azido-2'-deoxynucleotides was accompanied by the appearance of new EPR
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signals for a nitrogen-centered radical resulting from the reaction of azide with a protein
thiyl radical. Thus, this overview summarizes the investigations outlining the involvement
and role of azidonucleoside-produced NCRs that are involved in the first signaling steps
(i.e., radicals leading to stable damage products) that affect cellular functions.

Studies on the nucleoside substrates “armed with radical initiators” other than an
azido group placed selectively on the exo-amino group of adenine, guanine, and cytosine
have led to the generation/detection of similar NCRs under photolytic conditions. These
non-azido analogues were found to be compatible for the solid-phase synthesis of DNA
fragments, and photolysis was used to study DNA interaction, stability, and hole transfer.
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