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Abstract: Camptothecin and its analogues show important antitumor activity and have been used in
clinical studies. However, hydrolysis of lactone in the E ring seriously attenuates the antitumor activ-
ity. To change this situation, aromathecin alkaloids are investigated in order to replace camptothecins.
Potential antitumor activity has obtained more and more attention from organic and pharmaceutical
chemists. As a member of the aromathecin alkaloids, rosettacin has been synthesized via different
methods. This review summarizes recent advances in the synthesis of rosettacin.
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1. Introduction

Compared with all-carbon cycles, heterocycles often own different physical and chem-
ical properties due to the presence of heteroatoms [1–7]. Thus far, heterocycles are the
largest branch of organic compounds. In addition, they are not only important in bi-
ology and industry but also have great significance in the operation of human society.
Their involvement in multiple fields should be given more attention [1–4]. The main
portion of commercial drugs based on mimicking biologically active natural products
is heterocycles. The heterocyclic scaffold is widely present in natural products, drugs,
bioactive molecules and functional materials [8–10]. In the Comprehensive Medicinal
Chemistry database, more than 60% of the compounds possess heterocycles [11]. There-
fore, researchers continuously design and produce drugs, insecticides, rodenticides and
herbicides with better effects based on natural product models [1–4]. Heterocycles play
an important role in biochemical processes and are also the most typical and important
organic compounds in living cells [1–4]. Meanwhile, heterocycles play important roles in
the metabolism of living cells [12–14]. Heterocycles have many applications in other fields,
such as being used as additives in various industries involving photocopying, cosmetics,
solvents, plastics, information storage and antioxidants [1–4]. Therefore, heterocyclic chem-
istry occupies a large proportion of organic chemistry. Moreover, heterocyclic chemistry
could be ceaselessly employed to synthesize a wide variety of heterocycles, which is a
never-ending resource [1–4]. The numerous combinations of heteroatoms, carbon and
hydrogen could give diverse heterocycles bearing various physical, chemical and biological
properties [1–4]. Thus, developing concise and efficient strategies for the construction
of diverse heterocycles is highly desired. The synthesis of novel heterocyclic scaffolds
has always been needed, providing the platform and opportunity for the discovery of
new drugs.
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As an important member of heterocyclic scaffolds, indolizino [1,2-b]quinolin-9(11H)-
one constitutes the central moiety of camptothecin (CPT) [15] and aromathecin alka-
loids [16] (Scheme 1). CPT was first isolated by Wani and Wall in 1966 from the Chinese tree
Camptotheca accuminata [17]. In their discovery, the extract exhibited significant anti-tumor
activity in in vitro experiments and in mouse leukemia models [18,19]. This result was
consistent with the utilization in traditional Chinese medicine as a natural medicine for
treating cancer. Meanwhile, some adverse issues with CPT were also observed, such as
poor stability and solubility [18,19]. Although the mechanism of action was not clear,
CPT was soon approved by the US Food and Drug Administration (FDA) for preliminary
clinical trials of colon carcinoma and evaluated as a drug for treating human cancer [18,19].
Although CPT exhibited strong anti-tumor activity in patients with gastric cancer, it also
led to serious and unpredictable side-effects such as vomiting, bone marrow suppression,
severe hemorrhagic cystic disease and diarrhea [18,19]. These results led to the suspension
of the second phase trials in 1972. When further explorations showed that the cellular
target of CPT is DNA topoisomerase 1, CPT attracted people’s attention again in the late
1980s [18,19]. Thus far, three compounds in this class (topotecan, belotecan and irinote-
can) have been used for clinical treatment of cancer [20]. However, the susceptibility to
hydrolysis of the lactone (E ring) generates a hydroxycarboxylate which is inactive and
has high affinity for human serum albumin [21]. Thus, more attention has been paid to
aromathecin alkaloids, in which the E ring is replaced by a benzene ring [22]. As a member
of the aromathecin alkaloids, 22-hydroxyacuminatine is a novel quinoline alkaloid which
was isolated along with CPT from the Chinese tree Camptotheca accuminata at an extremely
low yield of 0.000006% in 1989 [23]. Further biological activity studies indicated that 22-
hydroxyacuminatine showed significant cytotoxic activity against the murine leukemia
P-388 cells (ED50 1.32 µg/mL) and KB (ED50 0.61 µg/mL) in vitro [23]. Based on these
results, more attention has been paid to the efficient synthesis and biological activity inves-
tigations of 22-hydroxyacuminatine and its derivatives in order to obtain better anti-tumor
activity. Moreover, rosettacin, belonging to the aromathecin alkaloids, has been employed
as a CPT/luotonin A hybrid for inhibiting tumor growth by binding to topoisomerase
I [24–26]. Initial trials showed that the degree of topoisomerase I-dependent DNA cleavage
caused by rosettacin was about 50% of that in luotonin A, suggesting that rosettacin was
a weak poison [24–26]. Rosettacin was also cytotoxic to yeast strains that did not have
yeast topoisomerase I but occupied a plasmid containing the human topoisomerase I gene
under the control of a galactose promoter [24–26]. However, the expression of human
topoisomerase I in the yeast strain indeed reduced the cytotoxicity of rosettacin. Further
studies showed that 14 substituted rosettacin derivatives owned better antiproliferative
activity and anti-topoisomerase I activity than rosettacin, as well as better topoisomerase I
inhibitory activity than 22-hydroxyacuminatine [24–26]. These derivatives were proposed
to undergo the same mechanism with CPT via an intercalation and poisoning process.
Aside from the increased solubility and localization to the DNA-enzyme complex, nitroge-
nous substituents on the 14 position of rosettacin were proposed to be involved in the
major groove of the topoisomerase I-DNA complex and possess hydrogen bonds with the
amino acids in the major groove, thus stabilizing the ternary complex [24–26]. Consider-
ing the significant bioactive activity and unique structure bearing a benzo[6,7]indolizino
[1,2-b]quinolin-11(13H)-one core, different strategies have been designed to synthesize
rosettacin. These methods not only provide concise and efficient ways to synthesize
rosettacin but also give some thoughts on the synthesis of CPT and its analogues as well as
other aromathecin alkaloids. This review is focused on the synthesis of rosettacin (Table 1),
which is opportune and essential for the rapid growth of this area. This review is orga-
nized as a timeline, giving a clear insight for readers to understand the synthesis history
of rosettacin.
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Table 1. A summary on the synthesis of rosettacin.

Year Author Key Step Formed Ring Reference

1972 Warneke and Winterfeldt Oxidative rearrangement B and C [27]
1980 Walraven and Pandit Aminolysis and aldol condensation D [28]
2003 Cushman Aminolysis and aldol condensation D [29]
2008 Daïch N-Amidoacylation/aldol condensation D [30]
2015 Daïch Aryl radical cyclization C [31]
2012 Park Rh(III)-catalyzed C-H activation D [32]
2017 Glorius Co(III)-catalyzed C-H activation D [33]
2016 Gao exo Hydroamination and lactamization C and D [34]
2017 Van der Eycken Rh(III)-catalyzed C-H activation C and D [35]
2018 Reddy Rh(III)-catalyzed C-H activation C and D [36]
2018 Van der Eycken Rh(III)-catalyzed C-H activation C and D [37]
2019 Van der Eycken Rh(III)-catalyzed C-H activation C and D [38]
2018 Evano Cu-catalyzed photoinduced radical domino cyclization C and D [39]

2018 Fu and Huang Carbene-catalyzed aerobic oxidation and
Pd-catalyzed cyclization C [40]

2023 Choshi Thermal cyclization and Reissert–Henze-type reaction D [41]

2. Synthesis of Rosettacin

In 1972, Warneke and Winterfeldt reported an oxidative rearrangement from indole to
quinolone, which was used as the key step for the synthesis of rosettacin [27] (Scheme 2).
Firstly, in the presence of POCl3, amide 1a underwent cyclization to form iminium 1b,
followed by sequential NaBH4 reduction and intramolecular amidation to give lactam
1c. By using NaH under O2, lactam 1c underwent oxidative rearrangement, resulting in
quinolone 1d. Finally, quinolone 1d underwent sequential chlorination using SOCl2, fol-
lowed by aromatization and dechlorination using Pd/BaSO4 and H2, leading to rosettacin.
This approach provided interesting structural skeleton editing for the formation of B and C
rings, while the total yield of rosettacin was quite low.
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In 1980, Walraven and Pandit reported the synthesis of rosettacin [28] (Scheme 3)
by learning from Corey’s strategy for the total synthesis of (S)-CPT [42]. Dihydropy-
rroloquinoline 2a reacted with pseudo-anhydride 2b under KOAc to give amide 2c,
followed by aldol-type condensation in the presence of KOAc and AcOH to deliver
rosettacin. Later on, Cushman et al. employed a similar strategy to synthesize
rosettacin [29] (Scheme 4). Dimesylate 3a reacted with liquid ammonia to afford
dihydropyrroloquinoline 2a, followed by aminolysis of pseudo-anhydride 3b to form
amide 2c. Under 10% NaOAc/AcOH, intramolecular cyclization of 2c occurred to
produce rosettacin.
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In 2008, Daïch et al. disclosed a form of domino N-amidoacylation/aldol-type
condensation to generate poly-N-heterocycles, which was employed as the key step
for the synthesis of rosettacin [30] (Scheme 5). Firstly, lactam 4a reacted with HOBt
ester 4b in the presence of NaH, resulting in tricyclic product 4c. When subjected to
Bredereck’s reagent [43] at 110 °C followed by oxidation using NaIO4, keto derivative
4d was formed. Sequential condensation with 2-aminobenzaldehyde in the presence
of p-TSA yielded pentacyclic product 4e according to the Friedländer reaction [44].
Final removal of the ester group upon treatment with 48% HBr at 135 °C delivered
rosettacin. Although this route was not long, the removal of the ester group required
concentrated HBr.

Subsequently, the same group reported another route for the synthesis of rosettacin by
using an aryl radical cyclization of enamide as the key ring-closing step [31] (Scheme 6).
Firstly, homophthalic acid 5a reacted with SOCl2 under reflux to generate homophthalic
anhydride 5b. Subsequent treatment with N,N-dimethylhydrazine in AcOH under reflux
resulted in product 5c. This was followed by NaBH4 reduction to afford α-hydroxylactam
5d. In the presence of p-TSA, 5d underwent dehydration to produce enamide 5e. Treatment
with magnesium monoperoxyphthalate [45] delivered isoquinolin-1(2H)-one 5f. Under
phase transfer conditions using K2CO3, KI and 18-crown-6, N-alkylation of 5f through a
reaction with 3-(bromomethyl)-2-chloroquinoline was achieved, affording product 5g. Se-
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quential treatment with AIBN and (Me3Si)3SiH via radical cyclization delivered rosettacin.
This route required a multistep sequence to isoquinolinone.
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Scheme 6. Aryl radical cyclization of enamide as the key ring-closing step for the synthesis of
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In 2012, Park et al. presented Rh(III)-catalyzed intramolecular C-H activation and
annulation of alkyne-tethered hydroxamic esters for the construction of 3-hydroxyalkyl
isoquinolones, which served as the key step for the synthesis of rosettacin [32] (Scheme 7).
First, hydroxamic ester 6a bearing a TMS-protected alkyne underwent Rh(III)-catalyzed
intramolecular C-H activation and annulation to produce isoquinolone 6b. This was
followed by a Mitsunobu reaction using a PPh3/DIAD system and subsequent removal
of the TMS group using TBAF to give benzoindolizidine 6c. Sequential oxidation using
SeO2 and DMP formed ketone 6d, which further reacted with N-(2-aminobenzylydene)-
p-toluidine in the presence of p-TSA to deliver rosettacin. This method did not tolerate
substrates bearing a terminal alkyne, requiring an additional step to remove the TMS
group. The mechanism of the generation of product 6b from substrate 6a was proposed
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by the authors (Scheme 8). The dimer [RhCp*Cl2]2 undergoes the cleavage of the Rh-Cl
bond by using CsOAc to afford an active catalyst RhIIICp*(OAc)2. An irreversible C-H
bond activation of substrate 6a catalyzed by the Cp*RhIII complex occurs to give a five-
member rhodacycle species A with the concomitant formation of HOAc. Subsequent
coordination of alkyne with the RhIII center produces intermediate B. Intermediate B
undergoes alkyne insertion into the Rh-C bond to afford a seven-member rhodacycle
C. Sequential reductive elimination and oxidative addition into the N-O bond forms
intermediate D. Final protonation by HOAc delivers product 6b and regenerates the active
catalyst RhIIICp*(OAc)2 for the next cycle.
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Along the same line, Glorius et al. developed Cp*Co(III)-catalyzed intramolecular
C-H activation and annulation of alkyne-tethered hydroxamic esters for the construc-
tion of 3-hydroxyalkyl isoquinolones, which was used as the key step for the synthe-
sis of rosettacin [33] (Scheme 9). First, hydroxamic ester 7a bearing a terminal alkyne
underwent Cp*Co(III)-catalyzed intramolecular C-H activation and annulation to give
isoquinolone 7b. This was followed by a Mitsunobu reaction using a PPh3/DIAD sys-
tem and sequential oxidation, using SeO2 and PCC to generate ketone 6d. Subsequent
treatment with N-(2-aminobenzylydene)-p-toluidine in the presence of p-TSA produced
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rosettacin. Compared with Rh(III) catalysis, this method not only provided cheap and
earth-abundant Co(III) catalysis but also tolerated substrates bearing a terminal alkyne.
The mechanism of the generation of product 7b from substrate 7a was proposed by the
authors (Scheme 10). CoCp*(CO)I2 undergoes dehalogenation with silver salt to give the
active catalyst CoIIICp*(OPiv)2. Subsequent C-H bond cleavage of substrate 7a followed
by metalation catalyzed by the Cp*CoIII complex generates a five-member cobaltacycle A
with the concomitant formation of HOPiv. The coordination between alkyne and the CoIII

center occurs to form intermediate B, followed by alkyne insertion into the Co-C bond to
produce a seven-member cobaltacycle C. Subsequent reductive elimination forms a C-N
bond followed by oxidative addition into the N-O bond, which affords intermediate D.
After protodemetalation of intermediate D, product 7b is released, and the active catalyst
CoIIICp*(OPiv)2 is regenerated for the next cycle.
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In 2016, Gao et al. developed cascade exo hydroamination followed by spontaneous
lactamization, which was used as the key step for the synthesis of rosettacin [34] (Scheme 11).
Here, 2-Chloroquinoline-3-carbaldehyde 8a underwent NaBH4 reduction, and subsequent
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azidation using DPPA and DBU yielded azide 8b. Sequential treatment with PPh3 and
NaOH formed the primary amine, which reacted with Boc2O to afford Boc-protected
product 8c. Subsequent palladium-catalyzed Sonogashira coupling with TMS-protected
alkyne and the removal of the TMS group using K2CO3 generated terminal alkyne 8e,
which underwent a second palladium-catalyzed Sonogashira coupling with ortho ester-
substituted trifluoromethanesulfonate to give alkyne 8f. Treatment with TFA formed the
primary amine, followed by adding Cs2CO3 to deliver rosettacin via exo hydroamination
and sequential spontaneous lactamization. Although C and D rings could be formed in
one step in this route, the substrate required multistep synthesis. The mechanism of the
generation of rosettacin from compound 8f was proposed by the authors (Scheme 12).
Compound 8f firstly undergoes treatment with TFA to give the primary amine A. The
alkyne in the primary amine A is effectively polarized and activated by the ortho ester-
substituted phenyl group, enabling the 5-exo cyclization to form a C-N bond via the primary
amine’s addition to a triple bond under basic conditions. This process forms the enamine
adduct B with a Z or E geometry, in which the enamine bearing the Z geometry favors
intramolecular lactamization to deliver rosettacin. For the enamine bearing the E geometry,
E/Z isomerization may occur via the formation of imine intermediate C to complete the
intramolecular lactamization, resulting in the generation of rosettacin.
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In 2017, Van der Eycken et al. reported the Rh(III)-catalyzed intramolecular C-H
activation and annulation of alkyne-tethered benzamides for the construction of poly-N-
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heterocycles, which served as the key step for the synthesis of rosettacin [35] (Scheme 13).
Quinoline 8c underwent palladium-catalyzed Sonogashira coupling with TBS-protected
alkyne. This was followed by removal of the Boc group with TFA treatment. Sequential
amidation with benzoyl chloride gave amide 9b. Rh(III)-catalyzed intramolecular C-H
activation and annulation of the amide 9b afforded pentacyclic product 9c, followed by
removal of the TBS group under TBAF to deliver rosettacin. This method did not tolerate
substrates bearing a terminal alkyne, requiring an additional step to remove the TBS group.
The mechanism of the generation of compound 9c from compound 9b was proposed by
the authors (Scheme 14). The dimer [RhCp*Cl2]2 undergoes cleavage of the Rh-Cl bond by
using CsOAc to afford the active catalyst RhIIICp*(OAc)2. Irreversible C-H bond cleavage
of compound 9b catalyzed by the Cp*RhIII complex occurs to give five-member rhodacycle
species A, with the concomitant formation of HOAc. Subsequent coordination of alkyne
with the RhIII center produces intermediate B. Intermediate B undergoes alkyne insertion
into the Rh-C bond to afford seven-member rhodacycle C. Sequential reductive elimination
delivers product 9c, followed by regeneration of the active catalyst RhIIICp*(OAc)2 from
the oxidation of Cp*RhI by Cu(OAc)2.

Molecules 2024, 29, x FOR PEER REVIEW 10 of 18 
 

 

 
Scheme 13. Rh(III)-catalyzed intramolecular C-H activation and annulation of alkyne-tethered ben-
zamide as the key step for the synthesis of rosettacin. Created by us and based on the original work. 

 
Scheme 14. Proposed mechanism for the construction of poly-N-heterocycle 9c from alkyne-teth-
ered benzamide 9b via Rh(III)-catalyzed intramolecular C-H activation and annulation. Created by 
us and based on the original work. 

In 2018, Reddy and Mallesh disclosed the Rh(III)-catalyzed intermolecular C-H acti-
vation and annulation of N-(pivaloyloxy)benzamides and 2-alkynyl aldehydes for the con-
struction of isoindolo [2,1-b]isoquinolin-5(7H)-one, which served as the key step for the 
synthesis of rosettacin [36] (Scheme 15a). Rh(III)-catalyzed intermolecular C-H activation 
and annulation of N-(pivaloyloxy)benzamide 10a and 2-alkynyl quinoline-3-carbalde-
hyde 10b was performed to yield pentacyclic product 10c. This was followed by the re-
duction of aminal using BF3•Et2O/Et3SiH to deliver rosettacin. In the same year, Van der 
Eycken et al. reported a similar form of Rh(III)-catalyzed intermolecular C-H activation 
and annulation for the synthesis of rosettacin [37] (Scheme 15b,c). Compared with intra-
molecular versions, the intermolecular methods avoided multistep sequences to synthe-
size the substrates, providing a concise and efficient approach to rosettacin. The mecha-
nism of the generation of compound 10c from substrates 10a and 10b was proposed by 
the authors (Scheme 16). The dimer [RhCp*Cl2]2 undergoes dehalogenation with CsOAc 
to yield the active catalyst RhIIICp*(OAc)2. Subsequent C-H bond cleavage of substrate 10a 
followed by metalation catalyzed by the Cp*RhIII complex generates five-member 
rhodacycle species A with the concomitant formation of HOAc. Coordination between the 

Scheme 13. Rh(III)-catalyzed intramolecular C-H activation and annulation of alkyne-tethered
benzamide as the key step for the synthesis of rosettacin. Created by us and based on the
original work.

Molecules 2024, 29, x FOR PEER REVIEW 10 of 18 
 

 

 
Scheme 13. Rh(III)-catalyzed intramolecular C-H activation and annulation of alkyne-tethered ben-
zamide as the key step for the synthesis of rosettacin. Created by us and based on the original work. 

 
Scheme 14. Proposed mechanism for the construction of poly-N-heterocycle 9c from alkyne-teth-
ered benzamide 9b via Rh(III)-catalyzed intramolecular C-H activation and annulation. Created by 
us and based on the original work. 

In 2018, Reddy and Mallesh disclosed the Rh(III)-catalyzed intermolecular C-H acti-
vation and annulation of N-(pivaloyloxy)benzamides and 2-alkynyl aldehydes for the con-
struction of isoindolo [2,1-b]isoquinolin-5(7H)-one, which served as the key step for the 
synthesis of rosettacin [36] (Scheme 15a). Rh(III)-catalyzed intermolecular C-H activation 
and annulation of N-(pivaloyloxy)benzamide 10a and 2-alkynyl quinoline-3-carbalde-
hyde 10b was performed to yield pentacyclic product 10c. This was followed by the re-
duction of aminal using BF3•Et2O/Et3SiH to deliver rosettacin. In the same year, Van der 
Eycken et al. reported a similar form of Rh(III)-catalyzed intermolecular C-H activation 
and annulation for the synthesis of rosettacin [37] (Scheme 15b,c). Compared with intra-
molecular versions, the intermolecular methods avoided multistep sequences to synthe-
size the substrates, providing a concise and efficient approach to rosettacin. The mecha-
nism of the generation of compound 10c from substrates 10a and 10b was proposed by 
the authors (Scheme 16). The dimer [RhCp*Cl2]2 undergoes dehalogenation with CsOAc 
to yield the active catalyst RhIIICp*(OAc)2. Subsequent C-H bond cleavage of substrate 10a 
followed by metalation catalyzed by the Cp*RhIII complex generates five-member 
rhodacycle species A with the concomitant formation of HOAc. Coordination between the 

Scheme 14. Proposed mechanism for the construction of poly-N-heterocycle 9c from alkyne-tethered
benzamide 9b via Rh(III)-catalyzed intramolecular C-H activation and annulation. Created by us and
based on the original work.



Molecules 2024, 29, 2176 10 of 17

In 2018, Reddy and Mallesh disclosed the Rh(III)-catalyzed intermolecular C-H ac-
tivation and annulation of N-(pivaloyloxy)benzamides and 2-alkynyl aldehydes for the
construction of isoindolo [2,1-b]isoquinolin-5(7H)-one, which served as the key step for the
synthesis of rosettacin [36] (Scheme 15a). Rh(III)-catalyzed intermolecular C-H activation
and annulation of N-(pivaloyloxy)benzamide 10a and 2-alkynyl quinoline-3-carbaldehyde
10b was performed to yield pentacyclic product 10c. This was followed by the reduction of
aminal using BF3•Et2O/Et3SiH to deliver rosettacin. In the same year, Van der Eycken et al.
reported a similar form of Rh(III)-catalyzed intermolecular C-H activation and annulation
for the synthesis of rosettacin [37] (Scheme 15b,c). Compared with intramolecular versions,
the intermolecular methods avoided multistep sequences to synthesize the substrates,
providing a concise and efficient approach to rosettacin. The mechanism of the generation
of compound 10c from substrates 10a and 10b was proposed by the authors (Scheme 16).
The dimer [RhCp*Cl2]2 undergoes dehalogenation with CsOAc to yield the active catalyst
RhIIICp*(OAc)2. Subsequent C-H bond cleavage of substrate 10a followed by metalation
catalyzed by the Cp*RhIII complex generates five-member rhodacycle species A with the
concomitant formation of HOAc. Coordination between the alkyne in substrate 10b and the
RhIII center in intermediate A occurs to form intermediate B, followed by alkyne insertion
into the Rh-C bond to produce seven-member rhodacycle C. Subsequent reductive elimi-
nation forming a C-N bond is followed by oxidative addition into the N-O bond, which
affords intermediate D. After adol-type addition and protonation with HOAc, product 10c
is released, and the active catalyst RhIIICp*(OAc)2 is regenerated for the next cycle.
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Scheme 15. Rh(III)-catalyzed intermolecular C-H activation and annulation of N-(pivaloyloxy)benzamide
and 2-alkynyl aldehyde as the key step for the synthesis of rosettacin. Created by us and based on the
original work.

Based on the above work, Van der Eycken et al. presented Rh(III)-catalyzed sequential
C(sp2)-H activation and C(sp3)-H amination of alkyne-tethered hydroxamic esters, which
were employed as the key steps for the synthesis of rosettacin [38] (Scheme 15d). First,
alkyne-tethered hydroxamic ester 10f underwent intramolecular C-H activation and annu-
lation via a rhodium hydride intermediate, resulting in pentacyclic product 10g, followed
by treatment with BF3•Et2O/Et3SiH, at which point rosettacin was formed. This method
did not tolerate substrates bearing a terminal alkyne, requiring an additional step to remove
the TBS group. Additionally, the alkyne-tethered hydroxamic esters required multistep
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sequences to prepare. The mechanism of the generation of compound 10g from substrate
10f was proposed by the authors (Scheme 17). The dimer [RhCp*Cl2]2 undergoes cleavage
of the Rh-Cl bond by using CsOAc to afford the active catalyst RhIIICp*(OAc)2. Irreversible
C-H bond cleavage of substrate 10f catalyzed by the Cp*RhIII complex occurs to give
five-member rhodacycle species A, with concomitant formation of HOAc. Subsequent
coordination of alkyne with the RhIII center and alkyne insertion into the Rh-C bond pro-
duces seven-member rhodacycle B. Sequential reductive elimination and oxidative addition
into the N-O bond forms intermediate C. Then, two possible pathways are involved. For
path a, intermediate C undergoes β-H elimination to yield Cp*RhI species D, followed
by adol-type addition of the amide to the aldehyde, forming intermediate E. Sequential
protonation with HOAc delivers product 10g and produces Rh-H intermediate F. Through
an AcOH-O2-assisted H2O formation process, the active catalyst RhIIICp*(OAc)2 can be
regenerated from intermediate F for the next cycle. For path b, intermediate C can undergo
protonation to yield intermediate G, which would undergo deprotonation to generate
intermediate C again, and then follow path a to deliver product 10g.
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from N-(pivaloyloxy)benzamide 10a and 2-alkynyl aldehyde 10b via Rh(III)-catalyzed intermolecular
C-H activation and annulation. Created by us and based on the original work.

Additionally, Evano et al. reported the copper-catalyzed photoinduced radical domino
cyclization of ynamides for the construction of poly-N-heterocycles, which was used as the key
step for the synthesis of rosettacin [39] (Scheme 18). Here, 2-Iodo-3-aminomethylquinoline 11a
underwent benzoylation with benzoyl chloride. Subsequent alkynylation using Witulski’s
method [46] yielded N-benzoylynamine 11b. Subsequent copper-catalyzed photoinduced
radical cyclization generated pentacyclic product 11c, followed by the removal of the TMS
group under TBAF to deliver rosettacin. In this route, copper-catalyzed photoinduced
cyclization provided a mild and green method to construct the C and D rings. The mecha-
nism of the generation of compound 11c from compound 11b was proposed by the authors
(Scheme 19). The ground state LCuI photocatalyst is excited by visible light, followed
by single-electron transfer (SET) with the tertiary amine to yield LCu0 species and amine
radical cation. The subsequent SET between compound 11b and LCu0 affords radical
anion A and regenerates the ground state LCuI for the next cycle. After deiodination of
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intermediate A, radical intermediate B is formed, followed by radical addition to the triple
bond via 5-exo-dig cyclization, at which point vinylic radical intermediate C is generated.
Intermediate C undergoes radical cyclization to produce intermediate D via a 6-endo-
trig process, followed by aromatization via hydrogen atom transfer (HAT) with amine
radical cation to deliver product 11c and amine salt. Under K2CO3, the tertiary amine is
regenerated from the amine salt for the next cycle.
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from alkyne-tethered hydroxamic ester 10f via Rh(III)-catalyzed sequential C(sp2)-H activation and
C(sp3)-H amination. Created by us based on the original work.
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Later on, Fu and Huang developed a form of carbene-catalyzed aerobic oxidation of
isoquinolinium salts for the construction of isoquinolinones, which was employed as the
key step for the synthesis of rosettacin [40] (Scheme 20). First, the isoquinolinium salt 12a
underwent carbene-catalyzed aerobic oxidation to form isoquinolinone 12b. Subsequent
palladium-catalyzed intramolecular cyclization of 12b delivered rosettacin. This method
provided a metal-free approach to constructing the isoquinolinone scaffold which avoided
the employment of transition metals. The mechanism of the generation of compound 12b
from substrate 12a was proposed by the authors (Scheme 21). The addition of NHC to
substrate 12a yields intermediate A, followed by deprotonation under DBU to generate
aza-Breslow intermediate B. Single-electron transfer (SET) between intermediate B and
O2 followed by radical recombination affords intermediate C. Intermediate C undergoes
interaction with another intermediate B to produce intermediate D, in which intermediate
B may serve as the reducing reagent. The final formation of product 12b from intermediate
D occurs, regenerating the free NHC for the next cycle.
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In 2023, Choshi et al. reported a new method for the synthesis of rosettacin by using
thermal cyclization and a Reissert–Henze-type reaction as the key step [41] (Scheme 22).
Here, 2-Chloroquinoline-3-carbaldehyde 8a reacted with NaI and concentrated HCl to
yield 2-iodoquinoline 13a. Sequential NaBH4 reduction and methylation using MeI af-
forded 3-methoxymethyquinoline 13c. Palladium-catalyzed Sonogashira coupling with
2-ethynylbenzaldehyde followed by treatment with hydroxylamine produced oxime 13e.
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Oxime 13e underwent thermal cyclization in 1,2-DCB to form N-oxide 13f, followed by a
Reissert–Henze-type reaction using Ac2O and microwave conditions to afford isoquinolone
13g. Heating with H2SO4 in EtOH transformed the isoquinolone 13g into rosettacin. This
route required a multistep sequence to construct the C/D rings.
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3. Conclusions

Heterocycles are a significant kind of organic compound in synthetic chemistry. Hete-
rocyclic scaffolds widely exist in many natural products, drugs, bioactive molecules and
functional materials. Due to their versatile bioactive activities and functions, heterocycles
not only play vital roles in biology and industry but also serve as important building
blocks for an array of useful transformations. As a representative member of heterocycles,
camptothecin (CPT) has been isolated from the Chinese tree Camptotheca accuminata and
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shows significant anti-tumor activity. Unfortunately, poor solubility and stability as well
as unpredictable adverse drug–drug interactions limit its development. A wide range of
structural modifications of CPT and the corresponding anti-tumor activity tests produce
three compounds (topotecan, belotecan and irinotecan), which have been employed for
the clinical treatment of cancer. However, CPT and its analogues face inherent structural
problems. The susceptibility to hydrolysis of the lactone in the E ring generates a hy-
droxycarboxylate, which is inactive and has high affinity for human serum albumin. This
seriously reduces antitumor activity. To change this situation, aromathecin alkaloids were
investigated in order to replace camptothecins with them.

Rosettacin, belonging to the aromathecin family, has attracted the attention of organic
and pharmaceutical chemists. Considering its important bioactive activity and unique
structure, an array of strategies have been developed for the synthesis of rosettacin. For
example, oxidative rearrangement from indole to quinolone occurs to yield a pentacyclic
core. Aminolysis using pseudo-anhydride is performed to afford a tricyclic scaffold. A
domino N-amidoacylation/aldol-type condensation process is used to form a tricyclic
structure. Aryl radical cyclization of enamide is employed as the key ring-closing step
for the construction of rosettacin. Rh(III)-catalyzed or Co(III)-catalyzed intramolecular
C-H activation and annulation are used for the synthesis of isoquinolones. Cascade exo
hydroamination followed by spontaneous lactamization is utilized as the key ring-closing
step for the synthesis of rosettacin. Rh(III)-catalyzed intramolecular or intermolecular
C-H activation and annulation are used as the key ring-closing step for the synthesis of a
pentacyclic core. Copper-catalyzed photoinduced radical domino cyclization of ynamides
serves as the key ring-closing step for constructing a pentacyclic core. Carbene-catalyzed
aerobic oxidation of isoquinolinium salts is used for the construction of isoquinolinones.
Thermal cyclization and a Reissert–Henze-type reaction are used for the synthesis of
isoquinolones. These strategies not only provide a platform for the efficient preparation of
rosettacin and its analogues but also bring some directions for the synthesis of CPT and
its analogues, as well as other aromathecin alkaloids. This is essential for pharmaceutical
chemists studying its antitumor activity. They are also beneficial for the discovery of new
anticancer drugs. This review summarizes recent advances in the synthesis of rosettacin,
which is timely and desirable for the rapid development of this field. Despite major
advances, greener as well as more concise and efficient routes are still in demand. We hope
this review will help researchers find hidden opportunities and stimulate the development
of novel and concise routes for the synthesis of rosettacin.
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