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Abstract: The sky may seem big enough for two flying vehicles to collide, but the facts show that
mid-air collisions still occur occasionally and are a significant concern. Pilots learn manual tactics
to avoid collisions, such as see-and-avoid, but these rules have limitations. Automated solutions
have reduced collisions, but these technologies are not mandatory in all countries or airspaces, and
they are expensive. These problems have prompted researchers to continue the search for low-cost
solutions. One attractive solution is to use computer vision to detect obstacles in the air due to its
reduced cost and weight. A well-trained deep learning solution is appealing because object detection
is fast in most cases, but it relies entirely on the training data set. The algorithm chosen for this
study is optical flow. The optical flow vectors can help us to separate the motion caused by camera
motion from the motion caused by incoming objects without relying on training data. This paper
describes the development of an optical flow-based airborne obstacle detection algorithm to avoid
mid-air collisions. The approach uses the visual information from a monocular camera and detects
the obstacles using morphological filters, optical flow, focus of expansion, and a data clustering
algorithm. The proposal was evaluated using realistic vision data obtained with a self-developed
simulator. The simulator provides different environments, trajectories, and altitudes of flying objects.
The results showed that the optical flow-based algorithm detected all incoming obstacles along their
trajectories in the experiments. The results showed an F-score greater than 75% and a good balance
between precision and recall.

Keywords: mid-air collision; obstacle detection; computer vision; optical flow; DBSCAN

1. Introduction

Approximately 66 potential and 23 actual mid-air collisions occurred in the United
States in 2020 [1]. A total of 75% of actual collisions result in fatalities [1]. As a preventative
measure, pilots are instructed to keep one eye on the cockpit, scan the sky for potential
threats, and be prepared to maneuver to avoid a potential accident [2,3]. However, this
see-and-avoid rule has several important limitations. First, it may be physically impossible
for pilots to see approaching aircraft, especially when climbing or descending in an airport
traffic pattern. Moreover, the high speed of commercial aircraft makes the see-and-avoid
rule inadequate [4]. Pilots are also instructed to follow a pattern by dividing the horizon
into regions and taking a moment (1–2 s) to focus before moving on to the next region.
Thus, if the horizon is divided into nine regions, the pilot’s eye scans one ninth at a time. In
other words, at least 89% of the horizon remains unattended at all times. To make matters
worse, the performance of the human eye can be reduced by cloud cover, glare from the sun,
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fatigue, and many other factors. With the present technologies, which include Secondary
Surveillance Radar (SSR) [5], transponders, Traffic Collision Avoidance System (TCAS) [6],
and, more recently, Automatic Dependent Surveillance-Broadcast (ADS-B) [7], one might
think that mid-air collisions should no longer occur. However, they do happen because
these technologies are not mandated equally in all countries, airspaces, or aircraft.

Various safety agencies and pilot associations are encouraging pilots and users of
unmanned aerial vehicles (UAVs) to install some form of electronic conspicuity (EC) device
on their vehicles to make them more aware of nearby aircraft. An example of such EC
technology is Flight Alarm (FLARM, https://flarm.com/, accessed on 6 May 2024). EC
devices transmit the position of the host aircraft to other EC devices. The most advanced
devices also receive the position of surrounding aircraft and warn the pilot of conflicting
traffic [8,9]. FLARM devices also have some limitations. There are incompatibilities,
for example, where the communication solution is different due to the use of different
frequencies or different protocols [10]. In addition, some devices are active, i.e., they
transmit and share their position with others, while others are only passive, i.e., they listen
to the transmissions of others but remain invisible to them. Therefore, pilots should rely not
only on their eyes to detect threats, but also on an artificial eye that is capable of scanning
the sky faster, farther, wider, more sharply, and more consistently [11].

To address the current limitations, the contributions of this work can be summarized
as follows:

1. The development of a system leveraging computer vision technology represents a
significant advancement in overcoming the limitations inherent in human visual
perception. This system operates autonomously, requiring no communication with
analogous devices onboard other aircraft to function effectively.

2. The system integrates a suite of sophisticated techniques: light morphological fil-
ters, optical flow, the focus of expansion, and Density-Based Spatial Clustering of
Applications with Noise (DBSCAN), aimed at averting mid-air collisions. The uti-
lization of traditional computer vision techniques presents a significant advantage
over deep neural networks due to the latter’s reliance on extensive training datasets.
Such datasets, particularly those concerning mid-air collisions, are exceptionally chal-
lenging to acquire, rendering traditional methods more feasible and effective in this
context [12].

3. A self-engineered, three-dimensional (3D) simulator, designed to offer a broad spec-
trum of test environments, is introduced. Within these environments, users have the
flexibility to select flight paths over land or sea, adjust the cloud cover, and define
aircraft proximity (airprox) scenarios. The simulator is capable of generating datasets
from various airprox scenarios, including those with the potential to result in fatal
accidents. This functionality enables the researchers to refine the system, enhancing
its ability to distinguish between airprox scenarios that are likely to result in a collision
and those that are not.

Therefore, the motivation behind this approach is to develop a realistic, optical flow-
based collision avoidance system. In such a system, the optical flow of incoming obstacles
during flight is calculated in real time using an on-board camera, and the distance and
relative speed between the aircraft and the object are estimated. If the system detects a
potential collision, it sends a signal to the pilot to take an evasive action, such as changing
altitude or direction. The main goal is to make the solution applicable to general aviation.
In other words, a sport/light aircraft will detect another aircraft in time to avoid a mid-air
collision. The algorithm can also be applied to the UAV field, but there are differences in
speed and approximation that can be explored in future work.

The rest of the paper is organized as follows. Section 2 presents the current state of
the art in computer-vision obstacle detection. Section 3 describes the proposed solution.
Section 4 presents the experimental setup and the evaluation of the algorithm. Finally,
Section 5 presents the conclusions of the study.

https://flarm.com/
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2. Related Work

Since 2005, the interest in utilizing computer vision for aircraft proximity (airprox)
and mid-air collision avoidance has significantly increased. Both stereo (two or more
sensors) and monocular (single sensor) cameras can perform object detection, but only
stereo cameras can calculate the distance from an object with high accuracy [13]. Ref. [14]
introduces a collision detection system for Unmanned Aerial Vehicles (UAVs) that leverages
stereo vision, utilizing two or more sensors for object detection, as opposed to monocular
vision, which relies on a single sensor. The system is capable of processing up to 48 frames
per second for images sized 320 × 240, with a power consumption of only 13.5 watts. The
choice of stereo cameras is justified by their advantages of being compact, lightweight, and
energy-efficient, offering a viable alternative to more power-intensive and bulky methods
such as LiDAR or infrared time-of-flight depth sensors.

Monocular camera systems offer distinct advantages over their stereo counterparts,
particularly in the context of detecting objects at considerable distances—a critical capability
for mid-air collision avoidance systems. Due to their singular lens setup, monocular
cameras can streamline the data processing workflow. Leveraging sophisticated algorithms,
these systems adeptly extrapolate the trajectory, velocity, and orientation of objects, thus
minimizing the need for extensive processing power and computational resources [15]. This
efficiency is further bolstered by advanced computer vision techniques including object
recognition, motion analysis, and predictive modeling. Such strategies adeptly mitigate
the absence of inherent depth perception, employing contextual cues and historical data to
accurately gauge potential threats. Moreover, the simplicity of a monocular setup translates
to ease in installation and calibration, sidestepping the intricate alignment processes that
are essential for stereo cameras to derive precise depth measurements. This comparative
simplicity, combined with advanced analytical capabilities, positions monocular cameras
as a potent tool in the arsenal against mid-air collisions, balancing technical sophistication
with operational pragmatism [16]. These reasons could elucidate why our systematic
review [17] determined that monocular cameras are the favored option.

The same review also showed that the most commonly used aircrafts for testing
obstacle detection algorithms are multirotor UAVs. In contrast to the cost of testing with
real aircraft and helicopters, the increasing availability and affordability of multi-rotor
UAVs equipped with on-board cameras and additional computing space has led many
researchers to focus on these unmanned vehicles and use them to test their solutions. Prior
to real-world testing, most authors begin by testing their solutions in simulators [18]. As
UAVs often differ from airplanes and helicopters in speed, weight, and size, the solutions
applied to one may not be valid for the other. It is important to review what has been
achieved in this regard in the UAV field, to which researchers seem to have paid more
attention because of its novelty and affordability.

For example, an obstacle detection technique based on time-to-collision estimates,
solved in real time using a model predictive control approach, has been proposed [19]. The
algorithm avoided obstacles without being computationally expensive. However, detection
failed for images with insufficient features. The authors believed that adding a depth
sensor to the system could improve its performance. An algorithm for detecting rapidly
approaching obstacles has also been developed [20]. The method detected incoming objects
10 to 40 frames before collision. A Bayesian framework helped identify an object-free
region in which the UAV could move to avoid the collision. The solution was tested using
videos of drones observing incoming obstacles such as birds, balls, and other drones. A
different approach [21] was able to detect an impact between 8 and 10 s in advance, which
is close to the recommended 12.5 s reaction time for human pilots. The algorithm uses an
image pre-processing approach that uses morphological operations to distinguish potential
obstacles, combined with temporal filtering to detect and track persistent features.

In a recent paper, a deep reinforcement learning-based method was presented to
enable a quadrotor UAV equipped with a monocular camera to autonomously avoid
collisions with obstacles in unstructured and unknown indoor environments [22]. Also, a
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collision avoidance control method for non-cooperative moving obstacles was introduced
for a multicopter with altitude hold mode by using a Lyapunov-like barrier function [23].
The multicopter was able to avoid obstacles as soon as they entered the safety zone and
converge to the waypoint. Finally, the autonomous navigation of a UAV in an unknown
environment was addressed with a deep reinforcement learning approach [24].

In our approach, we are interested in traditional optical flow-based methods that
do not use deep learning [25–27]. These techniques have already been applied to flying
robots for ego-motion estimation [28], path planning [29], and attitude estimation [30],
among other uses. In addition, optical flow shows excellent results in mid-air collision
avoidance [29,31–34]. Optical flow refers to the motion of visual features in an image over
time [35,36]. It can be used to estimate the relative motion of objects in a camera’s field of
view. Optical flow-based mid-air collision avoidance methods work by analyzing the mo-
tion of objects in the camera’s field of view to detect potential collisions. Optical flow-based
collision avoidance has been described for multirotor UAVs in urban environments [33].
Recently, a paper described an optical flow-based moving object detection algorithm [34].
The authors of [37] developed an intruder detection system for light and unmanned aerial
vehicles. The system uses optical flow and contour block to separate objects from the
background. The solution was tested under laboratory conditions using a light aircraft.
The results showed that the algorithm can detect the obstacle, but has problems with false
positives, especially in good-visibility conditions. Stereovision and optical flow have also
been used to avoid collisions between fast moving UAVs [31]. The aforementioned work on
3D path planning for a quadrotor UAV [29] included optical flow-based obstacle avoidance.
In addition, a monocular camera, a multirotor UAV, and optical flow were used to avoid
incoming obstacles [32].

3. Materials and Methods

The algorithm proposed in this paper is an optical flow-based solution that uses a
monocular camera to detect incoming flying obstacles. It is an attractive solution due to the
relatively low cost, light weight, and reduced computational requirements of the sensors
involved. The solution is based on the previously mentioned studies because it uses a
monocular camera, morphological operations, and optical flow. However, our algorithm
relies entirely on the optical flow vectors to detect incoming obstacles. The algorithm
analyzes the direction of the vectors by area to find anomalies that may be caused by an
incoming obstacle. The test results presented in Section 4 show promising results in terms
of filtering the noise caused by the environment and possible obstacles.

In addition, the solution was extensively tested on a realistic mid-air collisions sim-
ulator developed by the authors using the game engine Unity (version 2020.3.41f, Unity
Technologies, San Francisco, CA, USA). The simulator was used to test the algorithm in
different environments and situations, helping us to prove the effectiveness of the detection.
A comparison between the simulator and real footage is shown in Figure 1.

Figure 1. Comparison of simulated and real footage.

The system is engineered to identify obstacles during flight, initiating with imagery
captured by a monocular camera. Initially, the close-minus-open (CMO) morphological
filter [38] is applied to the image, as depicted in Figure 2a, to diminish noise, segregate
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elements, and consolidate separated entities. Subsequently, motion vectors are obtained
by comparing the current image frame with its predecessor using the Gunnar–Farnebäck
(GF) dense optical flow method [39] (see Figure 2b). These optical flow vectors facilitate the
determination of the aircraft’s direction through the computation of the focus of expansion
(FOE) [40], which is derived from the motion vectors.

In scenarios where the motion vectors of the surrounding environment align with the
FOE, an obstacle’s movement will be non-aligned, indicating its presence. The presence
of an obstacle is suggested by increased environmental noise, complicating the focus
estimation (FE). To compute the FE, the image is partitioned into four equal sections, with
the motion vectors in each quadrant being analyzed. These vectors are then cross-referenced
across quadrants to pinpoint their intersections, culminating in a compilation of intersection
points. To mitigate noise, an averaged intersection point is determined, establishing the
FOE. Utilizing the approximated FOE, non-conforming motion vectors are filtered out, as
illustrated in Figure 2c. The final step involves clustering the remaining vectors via the
DBSCAN algorithm [41,42], with each cluster representing a potential incoming obstacle’s
location on Figure 2d.

Start Get frame from
video

Yes

NoFirst frame
Morphological

Close-Minus-Open
Operation

Optical flow (old
frame and current

frame)

Focus of
expansion and
vector filtering

DBSCANUpdate old frame
with current frame

No

Last frameEnd

(a)

(b)

(c)

(d)

Figure 2. Algorithm flowchart.

Previous research has utilized various combinations of the discussed algorithms,
yielding promising results, e.g., [40,43,44]. However, our literature review revealed no
instances where the close-minus-open (CMO) filter, optical flow, focus of expansion (FOE),
and DBSCAN algorithms were employed collectively for the detection of aerial obstacles.
Our current methodology does not inherently limit the detection to a single obstacle;
however, the primary objective of this study is to evaluate the algorithm’s performance
in identifying a singular obstacle. Future work will expand on this foundation, exploring
the algorithm’s efficacy in scenarios involving multiple obstacles. The integration of these
techniques holds the potential to forge a detection system that is both resilient and precise,
capable of operating effectively in varied and challenging conditions. Nonetheless, the
system’s ultimate performance and its specific deployment efficacy are contingent upon
the quality of the image data and the operational environment’s characteristics.

3.1. Morphological Close-Minus-Open Operation

The CMO filter eliminates large regions of clutter, such as large background regions
with different mean values, such as sky and mountain regions. It also makes all objects of a
given size or smaller and brighter than the background [45]. The CMO algorithm is the
difference between the morphological closure and opening of the input scene. The closing
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operation removes all dark objects or scene regions smaller than a given size. The opening
operation removes all light objects or scene regions smaller than a given size [46].

Both closing and opening are combinations of two basic grayscale morphological
operations: dilation and erosion. An opening is an erosion followed by a dilation, and a
closing is the opposite, a dilation followed by an erosion. The dilation operation grows or
thickens objects in a binary image [45]. The grayscale dilation of an input image f (x, y)
with a given size k(x, y) is described by Equation (1). The operation involves taking a
shifted version of f , raising it until it touches k, and recording the maximum value of f
within the support of k. This process is repeated for all displacements (x, y) of f , and the
set of maximum points is the final grayscale dilation result [45].

f (x, y)⊕ k(x, y) = max
i,j

[ f (x − i, y − j) + k(i, j)] (1)

The CMO filter is used in the solution to reduce the noise generated by the clouds,
ground, or sun to facilitate the detection of incoming obstacles. Figure 3b shows a frame
after applying the CMO filter.

Figure 3. (a) Original frame. (b) Frame after morphological processing. (c) Result of obstacle detection
from optical flow; the FOE is represented by a red dot; the red frame indicates the obstacle.

3.2. Gunnar–Farnebäck’s Optical Flow

Optical flow is the motion of objects or the camera between every two consecutive
frames in a sequence represented by a 2D vector field. Each vector represents the displace-
ment of points from the first frame to the second [47–49]. Optical flow can be applied to
video stabilization or compression and motion detection [50]. Optical flow assumes that the
pixel intensities of an object do not change between frames and that nearby pixels have the
same motion. Consider a pixel I(x, y, t) that moves by distance (dx, dy) in the next frame,
so that:

I(x, y, t) = I(x + dx, y + dy, t + dt) (2)

Then, the Taylor series approximation of the right-hand side is taken, common terms
are removed, and a division by dt is performed to obtain the following equation:

fxu + fyv + f t = 0 (3)

where
fx =

δ f
δx

; fy =
δ f
δy

; u =
dx
dt

; v =
dy
dt

(4)
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fx and fy are image gradients and ft is the gradient over time. (u, v) are unknown.
Several ways of solving Equation (4) with two unknown variables are provided and one
of them is GF’s optical flow. GF’s algorithm computes the optical flow for all points in
the frame. The first step is to approximate each neighborhood of both images through
quadratic polynomials. Then, considering these quadratic polynomials, a new signal is
constructed via global displacement. Finally, this global displacement is calculated by
equating the coefficients in the yields of the quadratic polynomials.

GF’s optical flow provides us with a list of 2D vectors that help us infer the direction
in which the plane is moving and detect any incoming obstacles, as shown in Figure 3c.

3.3. Focus of Expansion

The intersection of the 3D velocity vector characterizing the camera motion and the pro-
jection plane is represented by the FOE in the image plane. Time-to-impact estimation [51]
and motion control [28], especially collision warning systems and obstacle avoidance, are
prominent applications of FOE. In our implementation, we use the obtained optical flow
with GF’s algorithm and compute the estimated FOE. With the resulting FOE, the algorithm
can find the velocity vectors that do not coincide with the FOE, indicating the area of a
possible incoming obstacle. Figure 3c shows an example of the calculated FOE.

3.4. Density-Based Spatial Clustering of Applications with Noise

DBSCAN is a data clustering algorithm that groups data points that are close to each
other and marks them as outliers if they are far from any group. It works by starting at a
random point in the data and looking for other points that are within a certain distance
(eps). If it finds a minimum number of points (min_samples) within that distance, it forms
a cluster around those points. It then repeats this process for each point in the cluster until
it has gone through all the data [42].

An advantage of DBSCAN is that it can find clusters of any shape, as long as there are
enough points within the EPS distance. It is also able to identify points that are outliers,
or very different from the rest of the data. DBSCAN is an unsupervised algorithm, which
means that it does not require that the data are labeled or that the number of clusters
is specified in advance. It is often used in applications where the number and shape of
the clusters are unknown, or where the clusters are uneven in size. DBSCAN is used to
cluster the vectors that do not match the FOE. The resulting clusters indicate where a
possible obstacle is approaching from. Figure 3c shows a cluster of vectors, indicating an
approaching obstacle.

4. Data and Results
4.1. Experimental Setup

We developed a flight simulator using Unity (version 2020.3.41f, Unity Technologies,
San Francisco, CA, USA) game engine to test the performance of the algorithm. For this
purpose, the simulator rendered the view from the front camera of an aircraft flying across
the sky in different environments and cloud covers, while reproducing different airprox
scenarios with another aircraft. We selected a generic light aircraft model to simulate
potential threats. The specifications of the model match those of Cessna 172 because of its
popularity for personal and business travel, as well as flight training. The model accurately
represents the dimensions of the real aircraft, with a length of 8.28 m and a wingspan of
11 m. To match the cruising speed of the Cessna 172, the camera-equipped model flew at
about 108 knots. During testing, we maintained an altitude of approximately 1000 feet
above sea level or ground level (depending on the scenario). We chose this altitude because
most mid-air collisions occur below 2000 feet [52].

For this work, we focused on three of the situations addressed in the internationally
agreed-upon rules of the air [3], as follows: head-on approach, convergence, and overtaking.
These rules are very important because they describe situations in which a mid-air collision
can occur if pilots do not take the appropriate action, i.e., if one gives way to the other. We
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then simulated three airprox scenarios, one for each of these three rules, focusing on the
initial situation described in each one, not on the avoidance actions that should be taken in
each case. In this way, we simulated two aircraft approaching head-on, one aircraft crossing
the path of the other at 90 degrees, and one aircraft approaching another from behind. We
will refer to these scenarios with the usual names: head-on, close-in, and crossing (see
Figure 4).

Figure 4. Airprox scenarios. The red frames indicate the detected obstacle. (a) Head-on; (b) close-in;
(c) crossing.

The environments selected for testing were flights over mountains and the ocean. In
addition, the simulator allowed for clouds to be added to the sky. These environments
were chosen to test the algorithm in environments with different noise levels. The resulting
surroundings are mountains with clear skies, mountains with clouds, oceans with clear
skies, and an ocean with clouds, as shown in Figure 5. Each airprox scenario was tested
with three different altitudes for the incoming threat. The obstacle could approach at a
higher altitude, a lower altitude, or the same altitude. The difference between the obstacle
altitude and the camera for the higher and lower tests was approximately 65 feet. The
simulation of four environments, three scenarios, and each individual scenario with a
different threat altitude resulted in thirty-six simulations.

The algorithm can detect obstacles as small as 32 pixels wide in an image. Objects
smaller than this size are not recognised. The tests are conducted at an altitude of approxi-
mately 1000 feet, which is the altitude at which an aircraft approaches an airport or airfield.
An “accident”, in the context of this paper, is a collision between two or more flying objects.
To be clear, not all approaches result in an accident. The situations that result in accidents
are close approaches at the same altitude and all head-on simulations. The other tests
simulate very dangerous approaches.
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Figure 5. Simulator environments.

4.2. Evaluation

The efficiency of the algorithm was evaluated in terms of detected true positives
(TP), true negatives (TN), false positives (FP) and false negatives (FN). In short, TP and
TN correspond to correctly classified hits and misses. On the other hand, FP is a false
detection (non-obstacle) and FN is a failure to detect a present obstacle. Performance
indices such as precision (P), recall (R), accuracy (Acc), and F-score (F) were calculated
from the obtained values.

Precision, also known as positive predictive value, tells us the probability of success-
fully making a correct positive classification. Equation (5) shows the formula for precision.

P =
TP

TP + FP
(5)

Furthermore, recall is the sensitivity of the model in identifying a positive class. The
mathematical calculation of recall is expressed in Equation (6).

R =
TP

TP + FN
(6)

In addition, accuracy represents the number of correctly classified data instances
compared to the total number of data instances. All instances are equally important. The
accuracy is shown in Equation (7).

Acc =
TP + TN

TP + TN + FP + FN
(7)

The F-score takes into account both precision and recall, which are measures of a
model’s ability to correctly identify a positive class. This can provide a more complete view
of a model’s performance than accuracy alone. The calculation of the F-score is shown in
Equation (8).

F = 2 × P × R
P + R

(8)
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4.3. Results

The overall results of the tests are shown in Table 1. Furthermore, it should be noted
that, thanks to the good values of the evaluation variables, it has been possible to observe,
in all cases, that the proposal detected the obstacle during a sufficient number of trajectory
frames, allowing the obstacle to be avoided. The table shows the precision, recall, accuracy,
and F-score for the four environments, the three airprox scenarios, and the three obstacle
altitudes. At first glance, looking at the precision, it seems that (1) the ocean environments
outperform the mountain environments, (2) the crossing airprox scenario performs better
than the other two scenarios, and (3) the obstacle altitude results do not show much
variation within each environment/scenario block.

In fact, after calculating the averages for each block, it can be confirmed that obstacle
altitude leads to small differences, as shown in Table 2.

Since obstacle altitude does not play a role in this study, Table 3 provides a more
compact view of the results.

Table 1. Simulation results.

Environment Airprox
Scenario

Obstacle
Altitude Precision Recall Accuracy F-Score

ocean with clouds

close-in
higher 75.00% 55.85% 61.44% 64.02%
same 77.39% 46.11% 56.95% 57.79%
lower 80.24% 69.43% 70.23% 74.44%

head-on
higher 77.78% 45.90% 80.38% 57.73%
same 75.41% 37.10% 60.26% 49.73%
lower 72.00% 48.65% 73.47% 58.06%

crossing
higher 81.88% 100.00% 88.69% 90.04%
same 86.15% 100.00% 91.55% 92.56%
lower 81.29% 100.00% 88.29% 89.68%

ocean with clear sky

close-in
higher 96.80% 58.45% 71.79% 72.89%
same 94.57% 42.44% 61.32% 58.59%
lower 95.56% 63.86% 75.00% 76.56%

head-on
higher 89.66% 47.27% 89.26% 61.90%
same 88.64% 42.39% 79.21% 57.35%
lower 77.50% 43.06% 82.27% 55.36%

crossing
higher 94.92% 100.00% 97.35% 97.39%
same 95.69% 100.00% 97.77% 97.80%
lower 94.69% 100.00% 97.29% 97.27%

mountains with clear sky

close-in
higher 60.33% 82.22% 63.40% 69.59%
same 60.13% 82.88% 67.48% 69.70%
lower 65.87% 85.94% 70.12% 74.58%

head-on
higher 61.40% 92.11% 81.75% 73.68%
same 60.94% 95.12% 79.85% 74.29%
lower 65.12% 93.33% 85.71% 76.71%

crossing
higher 68.94% 100.00% 75.85% 81.62%
same 71.52% 100.00% 77.94% 83.39%
lower 67.66% 100.00% 74.65% 80.71%

mountains with clouds

close-in
higher 62.30% 72.15% 59.35% 66.86%
same 65.67% 71.54% 66.25% 68.48%
lower 65.05% 81.76% 66.42% 72.46%

head-on
higher 67.65% 79.31% 90.17% 73.02%
same 67.27% 80.43% 83.93% 73.27%
lower 73.91% 80.95% 87.73% 77.27%

crossing
higher 71.33% 100.00% 77.47% 83.27%
same 72.55% 100.00% 78.13% 84.09%
lower 71.15% 100.00% 76.92% 83.15%

Table 2. Results according to obstacle altitude.

Obstacle Altitude Precision Recall Accuracy F-Score

higher 74.98% 74.29% 76.86% 74.63%
same 76.19% 67.06% 73.18% 71.33%
lower 76.81% 78.20% 78.26% 77.50%
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Table 3. Results according to airprox scenario and environment.

Environment Airprox Scenario Precision Recall Accuracy F-Score

ocean with clouds
close-in 77.73% 57.14% 62.92% 65.86%
head-on 74.83% 42.47% 70.89% 54.19%
crossing 83.05% 100.00% 89.48% 90.74%

ocean with clear sky
close-in 95.94% 54.89% 69.36% 69.77%
head-on 83.88% 60.79% 73.96% 70.49%
crossing 95.10% 100.00% 97.47% 97.49%

mountains with clear sky
close-in 62.10% 83.69% 66.93% 71.30%
head-on 62.20% 93.58% 82.31% 74.73%
crossing 69.34% 100.00% 76.12% 81.90%

mountains with clouds
close-in 64.21% 75.29% 63.89% 69.31%
head-on 69.63% 80.34% 87.30% 74.60%
crossing 71.68% 100.00% 77.50% 83.51%

4.3.1. Results According to Environment

Table 1 showed that the two ocean environments outperformed the mountain envi-
ronments in terms of precision. This is confirmed in Table 4, which reports the results by
grouping the data from the two ocean and the two mountain environments. The opposite
is true for recall, which causes the accuracy and F-score to be quite similar.

Table 4. Results according to environment.

Environment Precision Recall Accuracy F-Score

ocean 85.81% 67.02% 76.01% 75.26%
mountains 66.53% 88.34% 73.96% 75.90%

Total 75.55% 75.57% 75.11% 75.56%

The better precision of the ocean compared to mountainous environments is due to
the fact that a calm ocean has fewer irregularities, which translates into less noise and fewer
false positives. An interesting future test would be to check the algorithm’s performance on
a rough ocean. The effect of noise on the algorithm can be seen by comparing the accuracy
of cloudy scenarios compared to clear sky scenarios (see Table 5).

Table 5. Results according to environment and cloud cover.

Environment Precision Recall Accuracy F-Score

ocean with clouds 79.51% 66.27% 73.10% 72.29%
ocean with clear sky 91.98% 67.67% 78.65% 77.97%

mountains with clear sky 65.16% 91.71% 73.54% 76.19%
mountains with clouds 67.98% 85.17% 74.37% 75.61%

As you can see, there is one outstanding scenario in terms of precision. The ocean
with clear skies has an accuracy of 91.98%; this is because the clouds produce irregularities
in the image (noise), and the higher the noise, the higher the possibility of false positives.

In the future, the noise caused by environmental irregularities such as clouds or
mountains could be reduced by analyzing whether there are significant color variations in
the obtained clusters. A color variation in a cluster compared to its neighbors could mean
that an obstacle has been encountered. Alternatively, it could be due to a variation in the
environment, which could mean that the cluster should be ignored.

4.3.2. Results According to Airprox Scenario

In addition, Table 1 showed that the crossing airprox scenario outperformed both the
close-in and the head-on scenarios in terms of precision. This is now confirmed in Table 6,
but not so much for precision as for recall, accuracy, and F-score.
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Table 6. Results by airprox scenario.

Airprox Scenario Precision Recall Accuracy F-Score

Close-in 73.05% 65.34% 65.83% 68.98%
Head-on 74.72% 62.04% 77.39% 67.79%
Crossing 78.55% 100.00% 85.60% 87.98%

This is obviously due to the 100% recall obtained for the crossing airprox scenario.
This is because the optical flow of the moving obstacle is in a completely different direction
to the optical flow of the camera movement. Therefore, the algorithm detects the threat
more easily. This is comparable to the worst recall score (see 37.10% for ocean with clouds,
head-on, and same altitude in Table 1). In this case, the optical flow of the threat is aligned
with the optical flow of the camera feed. This makes it more difficult for the algorithm to
separate the obstacle from the background, which explains the lower recall. We believe that
it would be possible to improve recall in such cases by using the motion vectors to estimate
the speed of the aircraft [53].

4.4. Comparison

One goal of this study is to provide pilots with a user interface that can detect potential
obstacles in time to prevent fatal accidents. With an accuracy of over 75%, the solution
shows a good performance regardless of weather conditions. It is important to note that
every obstacle was detected in all tests. This is a step forward in achieving the proposed
goal. When comparing our algorithm with other, similar studies, it should be noted that a
fair comparison is not always easy. Most approaches to mid-air collision avoidance do not
provide the efficiency parameters traditionally used in computer vision. Nevertheless, we
were able to find some works for comparison to improve our future work.

Reference [54] outlines a novel vision-based sense-and-avoid (SAA) algorithm tailored
to Unmanned Aerial Vehicles (UAVs), aimed at preventing mid-air collisions through the
detection and tracking of approaching aircraft. The algorithm processes video data from
an onboard camera, employing these techniques to accurately identify and track potential
collision threats. Key operations include the sampling of new particles around detected
objects, likelihood estimation for particle weighting based on proximity to objects, and
the selection of high-likelihood particles to represent objects posing a collision risk. The
effectiveness of tracking is enhanced by continuously adjusting the particle set through
resampling, ensuring that computational resources are focused on the most probable
object paths.

To validate the algorithm, the authors of [54] conducted flight experiments involving
two UAVs equipped with navigation systems, where one UAV also carried an onboard
camera for implementing the SAA tasks. These UAVs flew along a predefined circular
path in opposite directions, simulating potential collision scenarios. The experiments
demonstrated the algorithm’s ability to detect approaching aircraft at a practical distance,
enabling the execution of avoidance maneuvers. The successful detection and tracking of
the UAV without false alarms in a real flight situation underscore the algorithm’s potential
for enhancing the safety and autonomy of UAV operations.

Although the authors of the referenced study did not release the dataset used to
validate their solution, they provided comprehensive documentation of their algorithm.
This detailed documentation enabled us to replicate their approach and apply the algorithm
within our simulator for testing purposes. We evaluated their solution using identical tests
and parameters to those used in the assessment of our algorithm, ensuring a consistent
and fair comparison. Table 7 displays the results, categorized by airprox scenario and
environment, while additional comparisons are detailed in Appendix A.

Table A3 illustrates that algorithm [54] achieves higher precision in mountainous
environments than in oceanic ones. This disparity arises from the algorithm’s reliance on
below-horizon features to identify obstacles. Despite the ocean tests yielding better overall
results for our solution, it was during the mountain teststhat algorithm [54] demonstrated
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superior precision. This outcome can be attributed to our solution’s heightened sensitivity
to noise relative to the proposed algorithm, which necessitates a rich feature set for effective
obstacle detection.

In the context of airprox scenarios (Table A5), both solutions delivered comparable
outcomes, with no particular scenario showing marked superiority. However, when
dissecting the results further, our solution exhibited a notable performance in crossing
scenarios, attributed to its enhanced sensitivity to abrupt movements. This contrast did not
extend to altitude tests (Table A2), where both algorithms performed similarly, underscoring
a general parity in their abilities.

Despite each algorithm excelling under different test conditions, their overall perfor-
mance was commendably robust. In the future, the aim is to integrate the strengths of both
algorithms to forge a more reliable solution, hoping to achieve promising advancements in
obstacle detection efficacy.

Table 7. Results obtained by the airprox scenario and the environment of the solution presented
by [54].

Environment Airprox Scenario Precision Recall Accuracy F-Score

ocean with clouds
close-in 67.34% 67.64% 63.20% 67.49%
head-on 75.96% 55.82% 70.04% 64.35%
crossing 74.39% 77.07% 68.26% 75.70%

ocean with clear sky
close-in 83.03% 75.29% 74.63% 78.97%
head-on 67.89% 58.11% 75.52% 62.62%
crossing 74.33% 76.94% 68.77% 75.62%

mountains with clear sky
close-in 82.77% 90.69% 84.33% 86.55%
head-on 82.42% 83.95% 89.70% 83.18%
crossing 86.03% 98.85% 90.83% 92.00%

mountains with clouds
close-in 96.03% 98.37% 97.03% 97.19%
head-on 79.84% 79.80% 79.63% 79.82%
crossing 74.33% 76.94% 68.77% 75.62%

We also conducted a comparative analysis of our solution and two other
studies [55,56], basing the comparison on the results reported by the authors of these
works. The first study uses the CMO morphological filter as we did, to reduce noise and
highlight small features [55]. The authors decided to compare two algorithms for obstacle
detection: the Hidden Markov Model (HMM) and Viterbi-based target detection. Both
algorithms were preceded by the CMO filter. The authors used two fixed-wing UAVs to
collect the test data. The tests included head-on and intersection scenarios. They also
collected test data using a Cessna 172 aircraft. The results showed that their solution could
detect obstacles from 400 to about 900 m. At these distances, the system could provide 8
to 10 s of warning. The tests also focused on the effect of jitter on detection. The authors
found that the HMM filter was more sensitive to the effects of jitter. They suggested that
the effects of jitter could be reduced by using gyroscopes, accelerometers, and other inertial
sensors, or by directly tracking salient features. The effect of jitter was not considered in
our tests and would be a valuable topic for future work.

The second study uses a very different approach [56]. It uses a stereo camera with an
independent rotational degree of freedom to actively sense the obstacles. The detection
starts with a combination of the Kalman filter and the SORT algorithm to define regions
of interest. Then, the actual obstacle is detected using an algorithm that uses the YOLOv3
deep convolutional neural network.

As mentioned at the beginning of this paper, we based our solution on a traditional
optical flow algorithm. However, the door is open to compare traditional methods with
modern optical flow-based methods using deep learning, such as Full Flow [57], FlowNet
2.0 [58], LiteFlowNet [59], and 3D-FlowNet [60], among others.
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5. Conclusions

In this research, we investigated the development of an optical flow-based airborne
obstacle detection algorithm to avoid mid-air collisions. The goal was to develop an
application to alert a pilot of incoming obstacles in real time to prevent mid-air collisions.
The proposal used the CMO filter to reduce the noise in the environment. Then, Gunnar–
Farnebäck’s optical flow algorithm is applied to obtain the velocity vectors. The vectors are
filtered and grouped using the focus of expansion and the data clustering algorithm called
DBSCAN. The resulting cluster can indicate a possible incoming obstacle.

We evaluated the algorithm using an in-house simulator. The dataset of images used in
the tests was obtained using the simulator. The tests showed that although the intruder was
identified in all tests, the performance was affected by the motion of the incoming obstacle,
which caused a significant amount of false positives. Consistent with the limitations of
optical flow, when the flying object matches the motion of the environment, it is harder
to detect. However, the results of the simulations showed that the system can identify
incoming obstacles under normal weather conditions. In the future, the authors plan to
explore ways to mitigate the matching motion, such as checking the color range of the
detected clusters and adding deep neural networks.

In future work, we will evaluate the presented algorithm using real-time tests to see
if it is fast enough to warn a pilot of an approaching obstacle. A comparison with the
human eye will tell us if our proposal can outperform human classification. The authors
also want to investigate the most efficient and least invasive way to warn a pilot of an
approaching obstacle.
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Appendix A

This appendix presents the results obtained after testing the solution presented in [54].

Table A1. Ref. [54] simulation results.

Environment Airprox
Scenario

Obstacle
Altitude Precision Recall Accuracy F-Score

ocean with clouds

close-in
higher 62.84% 65.03% 58.82% 63.92%
same 70.86% 68.59% 66.06% 69.71%
lower 68.24% 69.18% 64.48% 68.71%

head-on
higher 72.58% 60.00% 72.51% 65.69%
same 75.86% 57.89% 70.89% 65.67%
lower 79.37% 51.02% 67.03% 62.11%

crossing
higher 77.56% 80.13% 71.98% 78.83%
same 74.84% 75.80% 67.90% 75.32%
lower 71.10% 75.46% 65.25% 73.21%

ocean with clear sky

close-in
higher 82.76% 73.17% 71.25% 77.67%
same 84.55% 72.66% 75.93% 78.15%
lower 82.09% 80.29% 77.03% 81.18%

head-on
higher 75.00% 49.45% 74.48% 59.60%
same 64.52% 57.97% 73.85% 61.07%
lower 64.71% 70.97% 78.46% 67.69%

crossing
higher 75.00% 78.95% 69.86% 76.92%
same 69.93% 71.81% 63.33% 70.86%
lower 79.17% 81.20% 74.59% 80.17%

mountains with clear sky

close-in
higher 82.39% 92.13% 85.11% 86.99%
same 81.40% 92.92% 85.45% 86.78%
lower 84.09% 88.10% 82.80% 86.05%

head-on
higher 82.61% 92.68% 94.18% 87.36%
same 83.33% 91.67% 90.36% 87.30%
lower 81.13% 70.49% 84.36% 75.44%

crossing
higher 83.94% 99.14% 89.59% 90.91%
same 88.98% 99.12% 92.89% 93.78%
lower 85.40% 98.32% 90.09% 91.41%

mountains with clouds

close-in
higher 96.85% 99.19% 97.88% 98.01%
same 95.58% 98.18% 96.86% 96.86%
lower 95.65% 97.78% 96.39% 96.70%

head-on
higher 95.92% 87.04% 96.96% 91.26%
same 91.18% 92.54% 95.69% 91.85%
lower 91.76% 96.30% 96.54% 93.98%

crossing
higher 72.56% 99.17% 83.75% 83.80%
same 73.51% 98.23% 84.39% 84.09%
lower 72.22% 99.15% 83.21% 83.57%

Table A2. Ref. [54] results according to obstacle altitude.

Obstacle Altitude Precision Recall Accuracy F-Score

higher 79.26% 81.40% 81.59% 80.32%
same 79.55% 81.82% 81.33% 80.67%
lower 80.61% 83.33% 82.03% 81.95%

Table A3. Ref. [54] results according to environment.

Environment Precision Recall Accuracy F-Score

ocean 74.03% 70.52% 69.80% 72.34%
mountains 83.60% 88.42% 85.11% 86.09%

Total 78.85% 79.07% 77.42% 84.09%

Table A4. Ref. [54] results according to environment and cloud cover.

Environment Precision Recall Accuracy F-Score

ocean with clouds 71.82% 68.93% 66.75% 70.35%
ocean clear sky 76.51% 72.29% 73.00% 74.34%

mountains clear sky 84.01% 92.60% 88.03% 88.10%
mountains with clouds 83.24% 84.96% 82.33% 84.09%
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Table A5. Ref. [54] results according to airprox scenario.

Airprox Scenario Precision Recall Accuracy F-Score

Close-in 81.70% 82.19% 79.44% 81.94%
Head-on 76.93% 69.41% 78.72% 72.97%
Crossing 77.08% 81.71% 74.06% 79.33%
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