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Abstract: This paper proposes a dual-loop discrete-time adaptive control (DDAC) method for three-
phase PWM rectifiers, which considers inductance-parameter-mismatched and DC load disturbances.
A discrete-time model of the three-phase PWM rectifier is established using the forward Euler
discretization method, and a dual-loop discrete-time feedback linearization control (DDFLC) is
given. Based on the DDFLC, the DDAC is designed. Firstly, an adaptive inductance disturbance
observer (AIDO) based on the gradient descent method is proposed in the current control loop. The
AIDO is used to estimate lump disturbances caused by mismatched inductance parameters and
then compensate for these disturbances in the current controller, ensuring its strong robustness to
inductance parameters. Secondly, a load parameter adaptive law (LPAL) based on the discrete-time
Lyapunov theory is proposed for the voltage control loop. The LPAL estimates the DC load parameter
in real time and subsequently adjusts it in the voltage controller, achieving DC load adaptability.
Finally, simulation and experimental results show that the DDAC exhibits better steady and dynamic
performances, less current harmonic content than the DDFLC and the dual-loop discrete-time PI
control (DDPIC), and a stronger robustness to inductance parameters and DC load disturbances.

Keywords: three-phase PWM rectifier; discrete-time adaptive control; inductance parameter
mismatches; load disturbance; discrete-time feedback linearization control

1. Introduction

Microgrids (MG) are essential components of modern power systems, offering various
benefits including environmental friendliness, economic viability, flexibility, controllability,
and high-power electronics [1]. As illustrated in Figure 1, rectifiers establish connections
between AC buses and DC loads. In this context, the primary control objectives of rectifiers
are to maintain a stable DC bus voltage for the DC load, operate at a unity power factor,
and draw grid current with minimal harmonic distortion. However, PWM rectifiers are in-
herently nonlinear, multivariable, and coupled systems [2], and their control performances
are susceptible to practical disturbances such as DC load disturbances and mismatched
parameters (parameter disturbances). Therefore, anti-disturbance control strategies for
rectifiers have garnered significant attention in recent years [3–5].

Currently, three-phase PWM rectifiers typically use a dual-loop control structure
consisting of a voltage outer loop and a current inner loop [2]. Linear proportional–integral
(PI) controllers are commonly used in this structure because of their simple structure
and ease of engineering implementation. However, PI controllers have a relatively slow
dynamic response. Moreover, since PI controllers are designed with a bounded operating
range, their anti-disturbance performance degrades when the system encounters a large
disturbance. Consequently, scholars have proposed various control methods to enhance
the rectifier’s resilience to disturbances. These methods mainly include backstepping
control (BSC) [6], passivity-based control (PBC) [7,8], sliding mode control (SMC) [9,10],
and adaptive control [11–14].

Of these control methods for rectifiers, adaptive control is a powerful control method,
playing a leading role in addressing the global stability problems of nonlinear systems subject
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to parameter uncertainty and disturbance. Reference [11] introduces an adaptive BSC to
compensate for the inherent nonlinearities and uncertainties in the rectifier. On this basis,
reference [12] presents an improved adaptive backstepping sliding mode control, which
enhances the global stability of the adaptive BSC by incorporating error compensation and
SMC. Reference [13] proposes a robust adaptive control for a three-phase PFC converter. This
method utilizes a model reference adaptive control for the voltage outer loop to adapt to loads
and capacitor variations. Simultaneously, SMC is used to strengthen the robustness of the
current controller. In [14], an efficient adaptive controller is established in the voltage outer
loop to improve the controller’s ability to regulate DC bus voltage in the presence of external
disturbances, and H∞ controllers are applied in the current loop. References [11–14] employ
adaptive control to substantially enhance rectifier performance from multiple perspectives.
However, the methods in [11–14] are designed in the continuous-time domain and are not
directly applicable to a microprocessor using a digital controller. In recent years, with the
increasing speed and decreasing cost of microprocessors, controller design utilizing discrete-
time control has become a research hotspot in power electronics [15]. Additionally, it is well
known that discrete-time systems, rather than continuous-time systems, are widely regarded
as being closer to describing a real controlled system [16].
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Figure 1. Rectifier system in an AC microgrid. 
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BSC to compensate for the inherent nonlinearities and uncertainties in the rectifier. On 
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strengthen the robustness of the current controller. In [14], an efficient adaptive controller 
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Currently, discrete-time adaptive control is widely used in power electronic sys-
tems [17–20]. Reference [17] introduces a discrete-time model reference adaptive control
method to reduce the number of sensors and improve robustness against unmodeled
dynamics and sinusoidal disturbances in an LCL grid-connected inverter. Reference [18]
proposes a discrete-time model reference adaptive controller based on adaptive super-
twisting sliding mode control, effectively suppressing the 5th, 7th, 11th, and 13th current
harmonic components. Reference [19] introduces a new discrete-time direct robust adaptive
PI controller featuring fast current tracking, robustness to disturbances and grid inductance
variations, and global stability. References [17–19] demonstrate the feasibility and effective-
ness of employing discrete-time adaptive control in power electronic systems. However, to
the best of our knowledge, most dual-loop adaptive controller methods for three-phase
PWM rectifiers are formulated in the continuous-time domain [21,22]; there are no reports
on dual-loop discrete-time adaptive controller methods for rectifiers.

This paper proposes a dual-loop discrete-time adaptive control (DDAC) method for
three-phase PWM rectifiers, addressing inductance-parameter-mismatched and DC load
disturbances. The main contributions of this work include the following:

1. An adaptive inductance disturbance observer (AIDO) is developed in the current
control loop using the gradient descent method, ensuring its strong robustness and
adaptability to mismatched inductance parameters.
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2. A load parameter adaptive law (LPAL) is developed in the DC bus voltage control loop
using the discrete-time Lyapunov stability theory, improving the DC load disturbances
rejection ability of the DC bus voltage regulator.

3. Comparison experiments are conducted between the DDAC, dual-loop discrete-
time feedback linearization control (DDFLC), and dual-loop discrete-time PI control
(DDPIC) in a real three-phase PWM rectifier, thereby verifying the superiority of
the DDAC.

The remainder of this paper is organized as follows: Firstly, Section 2 briefly introduces
a discrete-time model of three-phase PWM rectifiers. Secondly, the shortcomings of the
DDFLC are discussed and analyzed in Section 3. After that, in Section 4, the design and
analysis of the DDAC are presented in detail. Then, Section 5 presents the simulation and
experimental results of the proposed DDAC, which are compared with those of the DDFLC
and the DDPIC to verify its effectiveness and advantages. Finally, some conclusions are
given in Section 6.

2. Discrete-Time Model of Three-Phase PWM Rectifiers

The AC MG is depicted in Figure 1a. Since the energy storage unit can stabilize the AC
bus, the AC bus is considered an ideal AC source in this paper. The circuit of a three-phase
PWM rectifier is shown in Figure 1b. Ua, Ub, and Uc are the three-phase grid voltages; Vdc
is the DC bus voltage; ia, ib, and ic are the three-phase grid currents; L is the inductance; r
is the equivalent resistance of the inductance; C is the filter capacitance; and RL is the DC
load. From Figure 1b, the three-phase PWM rectifier dq model is modeled as follows [23].

L did
dt = Ud − rid + ωLiq − urd

L diq
dt = Uq − riq − ωLid − urq

C dVdc
dt = 3

2 (Sdid + Sqiq)− Vdc
RL

(1)

where ω represents the voltage angular frequency, Ud and Uq are the active and reactive
voltage, id and iq are the active and reactive current, Sd and Sq are the d-axis and q-axis
switching components, and urd = SdVdc and urq = SqVdc represent the control inputs.

Considering the fact that L and r change in a certain range during rectifier operation [24,25],
the dq model can be rewritten as follows:

L0
did
dt = Ud − r0id + ωL0iq − urd − fd

L0
diq
dt = Uq − r0iq − ωL0id − urq − fq

C dVdc
dt = 3

2 (Sdid + Sqiq)− Vdc
RL

(2)

where fd and fq denote the inductance parameter disturbances induced by L and r.{
fd = ∆rid + ∆L did

dt − ∆Lωiq
fq = ∆riq + ∆L diq

dt + ∆Lωid
(3)

where L = L0 + ∆L. r = r0 + ∆r. The forward Euler discretization method is used to discretize
Equation (2), which yields

L0
id(k+1)−id(k)

Ts
= Ud(k)− r0id(k) + ωL0iq(k)− urd(k)− fd(k)

L0
iq(k+1)−iq(k)

Ts
= Uq(k)− r0iq(k)− ωL0id(k)− urq(k)− fq(k)

C Vdc(k+1)−Vdc(k)
Ts

= 3
2
(
Sd(k)id(k) + Sq(k)iq(k)

)
− Vdc(k)

RL

(4)

where Ts denotes the sampling time and

{
fd(k) = ∆rid(k) + ∆L id(k+1)−id(k)

Ts
− ∆Lωiq(k)

fq(k) = ∆riq(k) + ∆L iq(k+1)−iq(k)
Ts

+ ∆Lωid(k)
.

Since the bandwidth of the current loop is considerably larger than that of the voltage
loop, it can be assumed that id (k) = id*(k) and iq(k) = iq*(k) in a steady state. id*(k) and iq*(k)
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are the d-axis and q-axis reference currents, respectively. Considering that the three-phase
PWM rectifier normally operates at a unity power factor, iq*(k) = 0. Consequently, the
discrete-time model of the rectifier can be obtained from Equation (4).

L0
id(k+1)−id(k)

Ts
= Ud(k)− r0id(k) + ωL0iq(k)− urd(k)− fd(k)

L0
iq(k+1)−iq(k)

Ts
= Uq(k)− r0iq(k)− ωL0id(k)− urq(k)− fq(k)

C Vdc(k+1)−Vdc(k)
Ts

= urdc(k)− ξ(k)Vdc(k)

(5)

where urdc(k) = 3
2 Sd(k)id

∗(k), ξ(k) = 1
RL

.

3. Design of the DDFLC

For the purpose of designing the controller efficiently and conveniently, the control
objectives of these controllers are listed as follows:

1. In the current control loop, tracking the respective references of the active current id
and reactive current iq is required. In this control module, the reference of the active
current id* is calculated based on the DC bus voltage control loop, and the reference
of the reactive current iq* is set to 0.

2. In the DC bus voltage control loop, the DC bus voltage Vdc must be controlled
according to reference Vdc

* when the system achieves a stable state.

Based on the above control objectives, current tracking errors and the voltage tracking
error are defined as follows: 

eid(k) = id(k)− id
∗(k)

eiq(k) = iq(k)− iq∗(k)
eu(k) = Vdc(k)− Vdc

∗(k)
(6)

where Vdc
* is the reference DC bus voltage. Combining Equation (6) and the DFLC the-

ory [15], we can obtain the current and voltage controllers, shown as follows:
urd(k) = Ud(k) + ωL0iq(k)− r0id(k)− L0

[
id
∗(k+1)−id

∗(k)
Ts

− kdeid(k)
]

urq(k) = Uq(k)− ωL0id(k)− r0iq(k)− L0

[
iq∗(k+1)−iq∗(k)

Ts
− kqeiq(k)

]
urdc(k) = C

[
Vdc

∗(k+1)−Vdc
∗(k)

Ts
− kvdceu(k)

] (7)

where kd and kq are the control parameters for the current loop and kvdc is a control parame-
ter for the voltage loop, kd > 0, kq > 0, kVdc > 0. By substituting Equation (7) into Equation (5),
it can be found that 

eid(k + 1) = eid(k)− Tskdeid(k)− Ts
L0

fd(k)
eiq(k + 1) = eiq(k)− Tskqeiq(k)− Ts

L0
fq(k)

eu(k + 1) = eu(k)− Tskvdceu(k)− Ts
C

Vdc(k)
RL

(8)

Lemma 1 [26]. For the system z(k + 1) = z(k)− lz(k) + g(k), if |l| < 1 and |g(k)| < γ, γ > 0,
then it follows that z(k) is always bounded. There exists a finite number K* > 0 such that |z(k)| <
γ
|l| , ∀k > K∗.

Assumption 1. The disturbances fd(k), fq(k), and ξ(k) are bounded, and they satisfy | fd(k)| <
M,
∣∣ fq(k)

∣∣ < N, |ξ(k)| < G, M > 0, N > 0, G > 0.

In accordance with the stipulations of Lemma 1, it can be demonstrated that the control
parameters must satisfy the following conditions:

0 < kd <
1
Ts

, 0 < kq <
1
Ts

, 0 < kvdc <
1
Ts

(9)
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then the steady state errors are bounded and satisfy

|eid(k)| ≤
M

L0kd
,
∣∣eiq(k)

∣∣ ≤ N
L0kq

, |eu(k)| ≤
G

Ckvdc
(10)

From Equation (10), it can be seen that eid(k), eiq(k), and eu(k) will increase with the
increments of M, N, and G, and that increasing kd, kq, and kvdc aids in decreasing tracking
errors. However, kd, kq, and kvdc cannot be too large due to the fact that excessive gain will
lead to system instability [15]. Therefore, with the DDFLC, it is challenging to achieve no
tracking error in the presence of mismatched parameters or load conditions. To address
this issue, this paper proposes the DDAC method for three-phase PWM rectifiers.

4. Design of the DDAC

Based on the DDFLC, this section proposes an AIDO for the current inner loop and an
LPAL for the voltage outer loop. The AIDO, designed using the gradient descent method,
estimates mismatched inductance parameter disturbances and compensates for them in
the current controller, ensuring a strong robustness to inductance parameters. The LPAL,
designed based on the discrete-time Lyapunov stability theory, estimates the DC load and
adjusts it within the voltage controller, thereby achieving DC load adaptability. The design
process is as follows, and a flow diagram of the DDAC’s design is shown in Figure 2.
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4.1. Adaptive Controller for the Current Loop

According to Equation (5), the current discrete-time model can be expressed as

is(k + 1) = Ais(k) + B[vs(k)− urs(k)− fs(k)] (11)

where is(k) =
(

id(k)
iq(k)

)
, vs(k) =

(
Ud(k) + ωL0iq(k)
Uq(k)− ωL0id(k)

)
, urs(k) =

(
urd(k)
urq(k)

)
, fs(k) =(

fd(k)
fq(k)

)
, A = 1 − r0Ts

L0
, B = Ts

L0
.
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To estimate fs(k), a current adaptive observer with an input–output relationship is
designed, as shown in Equation (12).

îs(k + 1) = Ais(k) + B[vs(k)− urs(k)− f̂s(k)] (12)

where îs(k) is the estimated value of is(k) and f̂s(k) is the estimated value of fs(k).
The disturbance estimation error es(k) and f̃s(k) are defined as

es(k) =
(

ed(k)
eq(k)

)
=

(
id(k)− îd(k)
iq(k)− îq(k)

)
f̃s(k) =

(
fd(k)
fq(k)

)
=

(
fd(k)− f̂d(k)
fq(k)− f̂q(k)

) (13)

The gradient descent method is employed to design the AIDO. The gradient descent
method is a local parameter optimization approach that assumes that parameters should be
updated in a way that minimizes estimation errors [20]. Therefore, the following estimation
error functions are considered as candidates:

Es(k) =
(

Ed(k)
Eq(k)

)
=

( 1
2 ed

2(k)
1
2 eq

2(k)

)
(14)

Combining Equations (11)–(14), the following Jacobian matrix J can be obtained.

J =
∂Es(k)
∂ f̂s(k)

= Bes(k) (15)

In accordance with the gradient descent idea [20], f̂s(k) should change in the direction
of the negative gradient. Combining this with Equation (15), this paper proposes an AIDO
as follows:

f̂s(k + 1) = f̂s(k) + ∆ f̂s(k) = f̂s(k)− λBes(k) (16)

where λd, λq are adaptive gain, and they satisfy

0 < λd <
2

B2 , 0 < λq <
2

B2 (17)

Based on the concept of feed-forward compensation, we develop current controllers
as follows:

urs(k) =
(

urd(k)
urd(k)

)
=

 Ud(k) + ωL0iq(k)− f̂d(k)− r0id(k)− L0

[
id
∗(k+1)−id

∗(k)
Ts

− kdeid(k)
]

Uq(k)− ωL0id(k)− f̂q(k)− r0iq(k)− L0

[
iq∗(k+1)−iq∗(k)

Ts
− kqeiq(k)

]  (18)

To prove the stability of the current adaptive observer, we define the Lyapunov
function as

V1(k) =
1
2

es
2(k) (19)

Assumption 2. The disturbance fs(k) is slow time-varying, it satisfies fs(k) = fs(k + 1).

Combining Equations (11), (12), and (16), and Assumption 2, it obtains

∆es(k) = es(k + 1)− es(k) = −λB2es(k) (20)

From Equations (19) and (20), we obtain

∆V1(k) = V1(k + 1)− V1(k) = 1
2
[
es

2(k + 1)− es
2(k)

]
=
(
−λB2es

2(k) + 1
2 λ2B4es

2(k)
) (21)
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From Equation (17), this can be obtained as

−λB2es
2(k) +

1
2

λ2B4es
2(k) < 0 (22)

Therefore ∆V1 < 0. According to the discrete Lyapunov stability condition [27]

V1(k)∆V1(k) < 0 (23)

From Equation (23), it is evident that es(k) will converge to zero. There is es(k) =
−B f̃s(k), thus f̃s(k) will converge to zero. Consequently, it is reasonable to assume that
there exists a finite number K*1 > 0 such that∣∣∣ f̃d(k)

∣∣∣ ≤ M1,
∣∣∣ f̃q(k)

∣∣∣ ≤ N1, ∀k ≥ K∗
1 (24)

where 0 < M1 << M, 0 < N1 << N. Substituting Equation (18) into Equation (5), it can be
found that {

eid(k + 1) = eid(k)− Tskdeid(k)− Ts
L0

f̃d(k)
eiq(k + 1) = eiq(k)− Tskqeiq(k)− Ts

L0
f̃q(k)

(25)

From Equations (24) and (25), and Lemma 1, we obtain

|eid(k)| ≤
M1

L0kd
<<

M
L0kd

,
∣∣eiq(k)

∣∣ ≤ N1

L0kq
<<

N
L0kq

, ∀k ≥ K∗
1 (26)

It can be seen that, with the same control parameters kd and kq, the proposed DDAC
can significantly reduce the current tracking error compared to DDFLC.

4.2. Adaptive Controller for the Voltage Loop

DC loads in the AC MG are frequently unknown and time-varying, which places
higher requirements on the performance of the voltage controller. This section employs the
discrete-time Lyapunov stability theory to design the LPAL for estimation of DC loads in
real-time, thereby ensuring the voltage controller’s adaptability to DC loads. The design
process is as follows.

Firstly, the proposed discrete-time adaptive voltage controller is as follows:

urdc(k) = ξ̂(k)Vdc(k) + C
[

Vdc
∗(k + 1)− Vdc

∗(k)
Ts

− kvdceu(k)
]

(27)

where ξ̂(k) is the estimated value of ξ(k).
Secondly, we employ discrete-time Lyapunov theory to design the LPAL. The specific

process is as follows.
Define the following Lyapunov function:

V2(k) =
1
2
[Ceu(k)

2 +
1
γ

ξ̃2(k)] (28)

where ξ̃(k) is the load parameter estimation error, ξ̃(k) = ξ̂(k)− ξ(k). γ is the adaptive
gain, γ > 0.

Assumption 3. ξ(k) is slow time-varying, it satisfies ξ(k + 1) = ξ(k). ξ̃(k) is bounded and satisfies
ξ̃(k) ≤ M2 , and M2 is the upper bound of ξ̃(k).

Combining Equations (5) and (27), and Assumption 3, we obtain
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∆V2(k) = V2(k + 1)− V2(k)
= 1

2
[
Ceu

2(k + 1)− Ceu
2(k)

]
+ 1

2

[
1
γ ξ̃2(k + 1)− 1

γ ξ̃2(k)
]

= 1
2 [eu(k + 1) + eu(k)][Ceu(k + 1)− Ceu(k)] + 1

2

[
ξ̃(k + 1) + ξ̃(k)

][
1
γ ξ̃(k + 1)− 1

γ ξ̃(k)
]

= −CTskvdceu
2(k) +

(
[
√

CTskvdc√
2

eu(k)]− [ Ts√
2C

ξ̃(k)Vdc(k)]
)2

+ Ts
2 eu(k)Vdc(k)[ξ̃(k)− ξ̃(k + 1)]

(29)

This paper designs the LPAL as follows.

ξ̂(k + 1)− ξ̂(k)
Ts

= −γeu(k)Vdc(k) (30)

Substituting Equation (30) into Equation (29) yields

∆V2(k) = −CTskvdceu
2(k) +

(
[

√
CTskvdc√

2
eu(k)]− [

Ts√
2C

ξ̃(k)Vdc(k)]

)2

+
Ts

2

2
γeu

2(k)Vdc
2(k) (31)

According to the Cauchy–Buniakowsky–Schwarz Inequality [28], we obtain

∆V2(k)
kvdc

2 ≤ −CTseu
2(k)

kvdc
+ CTs

2eu
2(k) +

Ts
2Vdc

2(k)γ
2kvdc

2 eu
2(k) +

Ts
2Vdc

2(k)ξ̃2(k)
Ckvdc

2 (32)

Combing this with Assumption 3, if the selected kvdc satisfies

kvdc >>
TsVdc(k)M√

C
>

TsVdc(k)ξ̃(k)√
C

(33)

then form Equations (32) and (33); we obtain

∆V2(k) ≤ −CTskvdceu
2(k) + CTs

2kvdc
2eu

2(k) +
Ts

2Vdc
2(k)γ

2
eu

2(k) (34)

Further, if

0 < γ <
2
(

Ckvdc − CTskvdc
2
)

TsVdc
2 (35)

then ∆V2 < 0. Combining Equations (9) and (33), kvdc satisfies

TsVdc(k)M√
C

<< kvdc <
1
Ts

(36)

From the above analysis, it can be concluded that eu(k) and ξ̃(k) can converge to zero.
Further, M2 can be chosen as a smaller value close to zero. The parameter design procedure
for the DDAC is summarized as follows:

Step 1: Use Equations (9) and (36) to select kd, kq, and kvdc. They should be initially set
to large values to avoid a slow dynamic response, and then gradually decreased until the
system stabilizes and an acceptable dynamic response is achieved.

Step 2: Set the adaptive parameters λd, λq, and γ to large values based on
Equations (17) and (35). Adjust these values until the system achieves an optimal steady
state and dynamic performance.

Based on the above analysis, a block diagram of the DDAC is illustrated in Figure 3.
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Remark 1. Considering the physical properties of inductors and current protection, it is obvious
that ∆L, ∆r, id(k), and iq(k) must be limited. For rectifiers, the sampling frequency is usually high.
Related to the sampling system, fs(k) and ξ(k) can be considered slow time variables, fs(k) and ξ(k)
are approximated as constants in a sampling period, namely fs(k) = fs(k + 1), ξ(k + 1) = ξ(k).

5. Simulation and Experimental Verification

This paper uses MATLAB/Simulink (2018) for simulations, with the experimental
platform shown in Figure 4. In Figure 4, an autotransformer is connected to a 311 V
grid to generate 38 V. The voltage and current sensors are LV-25P and LA-55P (LEM
Company, Geneva, Switzerland), respectively. The power switching device is IRFP460
(INFINEON Company, Neubiberg, Gemany), and the control algorithm is implemented
via TMS320F28335 (TI Company, Dallas, TX, USA). The experimental data are acquired
using TPS2024B (Tektronix Inc., Beaverton, OR, USA), TDS1012B-SC (Tektronix Inc.), and
DS1204B (RIGOL Company, Suzhou, China). The estimated inductance disturbances and
the DC load are obtained from a four-channel DAC7724 (TI Company). A six-channel
AD7656 (Analog Devices Company, Wilmington, MA, USA) is selected to collect voltage
and current signals. To verify the superiority of the DDAC, experimental and simulation
comparisons are conducted with the DDFLC and the DDPIC. The main circuit parameters
are listed in Table 1, and the control parameters are listed in Table 2.
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Table 1. System parameters.

Meaning Parameters Value Units

Grid voltage (peak voltage) Vm 30 V
Grid frequency f 50 Hz

Filter inductance L 5.62 mH
Equivalent resistance r 1.2 Ω

DC bus reference voltage Vdcref 100 V
DC filtering capacitor C 1000 µF
Sampling frequency fs 9000 Hz

Table 2. Parameters of control systems in the experiment.

Controllers Parameters Value

DDAC

kd 50
kq 50
λd 10
λq 10

kvdc 180
γ 0.00005

DDFLC
kd 50
kq 50

kvdc 180

DDPIC

kp_d 50
ki_d 150
kp_q 50
ki_q 150

kp_vdc 180
ki_vdc 370

5.1. Dynamic and Steady-State Performance at Nominal Parameters

In this case, the DC load steps up from no load to a load composed of a 50 Ω resistor.
Figures 5 and 6 show the transient response of the DC bus voltage. In Figures 5 and 6e,
DDPIC exhibits an excellent steady-state performance. However, the PI controller based on
the deviation control principle makes it difficult to overcome the control time lag caused
by the capacitive element [4], resulting in a low response. From Figures 5 and 6c, it is
evident that the DDFLC exhibits a significant steady-state error. This is because increasing
the kvdc can reduce the error, as illustrated in Equation (10). However, a large kvdc will
lead to Vdc instability [15]. Therefore, a compromise kvdc is selected in this paper. It
can be further observed from Figures 5 and 6a,c that, under the same kvdc condition, the
steady state error of DDAC is significantly smaller than that of DDFLC, confirming the
correctness of Equations (10) and (26). Figure 7 illustrates the response of the LPAL when L0
is equal to L. It can be seen that ξ̂(k) can quickly and smoothly converge to the steady state
value (≈0.025). The theoretically calculated value is about 0.02. This slight discrepancy is
attributed to practical factors such as measurement errors, measurement noise, and line
impedance. However, this discrepancy does not impact the DC bus voltage tracking effect,
as demonstrated in Figures 5 and 6a.
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Figure 6b,d,f display the steady-state current waveforms of three control methods.
Harmonic analyses with an a-phase current are shown in Figure 8. The current THD values
for DDFLC are 4.444% (ia), 4.383% (ib), and 4.609% (ic). The current THD values for DDPIC
are 3.117% (ia), 3.008% (ib), and 3.396% (ic), while the current THD values for DDAC are
2.174% (ia), 2.543% (ib), and 2.668% (ic). These results indicate that all methods meet the
IEEE 519-2014 standards [29] of a THD below 5%; however, the DDAC exhibits the smallest
current THD. As illustrated in Figure 8, the 5th and 7th harmonics under DDAC are smaller
than those of DDFLC and DDPIC. Moreover, the 9th, 11th, and 13th harmonics are reduced
compared to the DDFLC and the DDPIC. These findings suggest that the DDAC has the
best steady-state performance. Additionally, from Figure 8, it is observed that even when
the grid voltage THD is high, the DDAC still maintains the minimum current THD. This is
because grid voltage harmonics can be considered as a part of fs(k) in Equation (11), and
grid voltage harmonics are estimated by the AIDO and compensated for in the DDAC,
thereby reducing the influence of grid voltage harmonics on the grid-side current.
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5.2. Parameter Robustness

In this section, the robustness of both the DDFLC and the DDAC are investigated
under different combinations of L0 and r0. It should be noted that the parameters in the
control system are mainly changed to evaluate the robustness of the control, because this
method can avoid the degradation of filter performance due to the physical changes in
its L filter and r [30]. Figures 9 and 10 show the simulation and experimental results with
different combinations of L0 and r0. In Figures 9 and 10a, it is observed that the voltage
drops and transition times do not change significantly, regardless of how L0 and r0 change.
These results indicate that the DDAC has a strong robustness to L and r due to the AIDO
compensating for fd(k) and fq(k). Figure 10c shows the transient response of the LPAL and
the AIDO when L0 is equal to 1.5 L. It can be seen that ξ̂(k) and f̂q(k) can quickly and
smoothly transition to steady-state values (ξ̂(k) ≈ 0.025, f̂q(k) ≈ 5.3). This indicates that
the proposed the LPAL and the AIDO are effective under inductance parameter variations.
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Figure 11 shows the current tracking errors of the DDFLC and the DDAC. It can be
observed that the current tracking errors with the DDFLC are 0.2 A (d-axis current) and 1 A
(q-axis current), while those with the DDAC consistently remain near zero. This indicates
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that the AIDO significantly enhances the current tracking accuracy of the DDAC, while
simultaneously enhancing the DDAC’s robustness to inductance parameters.
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6. Conclusions

Based on the DDFLC, this paper proposes a DDAC for a three-phase PWM rectifier,
which considers inductance-parameter-mismatched and DC load disturbances. An AIDO
is designed in the current loop using the gradient descent method to enhance its robustness
against inductance-parameter-mismatched disturbances. Additionally, an LPAL is designed
in the voltage loop to enable the rectifier system to adapt to load disturbances. The proposed
DDAC can be directly employed in digital control systems. Compared with the DDFLC
and the DDPIC, in simulation and experiment, the proposed DDAC exhibits the fastest
response, the smallest DC bus voltage drop, the smallest current tracking error, and a
strong robustness to inductance parameter and load disturbances, while also minimizing its
current harmonics contents. The DDAC has the potential to be applied to other converters,
such as three-phase three-level Neutral Point Clamped (NPC) rectifiers, thus possessing
significant theoretical and engineering value.
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