Skip to main content
. 2024 May 10;24(10):3022. doi: 10.3390/s24103022

Table 1.

Comparison of different neural network models based on the number of layers.

Layer Name Output Size 18-Layer 34-Layer 50-Layer 101-Layer 152-Layer
conv1 112 × 112 7 × 7, 64, stride 2
3 × 3 max pool, stride 2
conv2_x 56 × 56 3×3,643×3,64× 2 3×3,643×3,64× 3 1×1,643×3,641×1,256× 3 1×1,643×3,641×1,256× 3 1×1,643×3,641×1,256× 3
conv3_x 28 × 28 3×3,1283×3,128× 2 3×3,1283×3,128× 4 1×1,1283×3,1281×1,512× 4 1×1,1283×3,1281×1,512× 4 1×1,1283×3,1281×1,512× 8
conv4_x 14 × 14 3×3,2563×3,256× 2 3×3,2563×3,256× 6 1×1,2563×3,2561×1,1024× 6 1×1,2563×3,2561×1,1024× 23 1×1,2563×3,2561×1,1024× 36
conv5_x 7 × 7 3×3,5123×3,512× 2 3×3,5123×3,512× 3 1×1,5123×3,5121×1,2048× 3 1×1,5123×3,5121×1,2048× 3 1×1,5123×3,5121×1,2048× 3
1 × 1 Average pool, 1000-d fc, softmax
FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109