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Abstract

Cell lineage tree reconstruction methods are developed for various tasks, such as investi-

gating the development, differentiation, and cancer progression. Single-cell sequencing

technologies enable more thorough analysis with higher resolution. We present Scuphr, a

distance-based cell lineage tree reconstruction method using bulk and single-cell DNA

sequencing data from healthy tissues. Common challenges of single-cell DNA sequencing,

such as allelic dropouts and amplification errors, are included in Scuphr. Scuphr computes

the distance between cell pairs and reconstructs the lineage tree using the neighbor-joining

algorithm. With its embarrassingly parallel design, Scuphr can do faster analysis than the

state-of-the-art methods while obtaining better accuracy. The method’s robustness is inves-

tigated using various synthetic datasets and a biological dataset of 18 cells.

Author summary

Cell lineage tree reconstruction carries a significant potential for studies of development

and medicine. The lineage tree reconstruction task is especially challenging for cells taken

from healthy tissue due to the scarcity of mutations. In addition, the single-cell whole-

genome sequencing technology introduces artifacts such as amplification errors, allelic

dropouts, and sequencing errors. We propose Scuphr, a probabilistic framework to recon-

struct cell lineage trees. We designed Scuphr for single-cell DNA sequencing data; it

accounts for technological artifacts in its graphical model and uses germline heterozygous

sites to improve its accuracy. Scuphr is embarrassingly parallel; the speed of the computa-

tional analysis is inversely proportional to the number of available computational nodes.

We demonstrated that Scuphr is fast, robust, and more accurate than the state-of-the-art

method with the synthetic data experiments. Moreover, in the biological data experiment,

we showed Scuphr successfully identifies different clones and further obtains more sup-

port on closely related cells within clones.
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Introduction

Reconstructing cell lineage trees, from single-cell data, for healthy tissue is a fundamental

computational problem with enormous potential for studies of development and differentia-

tion [1–6]. There are two related reconstruction problems for cancer tumors: reconstruction

of clonal trees and the reconstruction of tumor phylogenies from single cells. Several data

types, e.g., bulk DNA, single-cell DNA, and single-cell RNA, have been used for the latter two

problems [7–11]. All these reconstruction methods exploit mutations and attempt to recon-

struct trees in which the proximity between a pair of cells, or clones, is correlated with the sim-

ilarity between their patterns of mutations. The somatic mutation rate in humans is 10−9 per

locus per cell division [12], and the copy number is not considered to carry substantial infor-

mation regarding cell lineage membership in healthy tissue. Therefore, mutations are scarce

when reconstructing lineage trees for healthy tissues, implying that more sophisticated models

and computational methods are needed to capitalize fully on the existing mutations. This scar-

city also highlights the need for single-cell DNA sequencing (scDNA-seq) data since it reveals

more point mutations than any other current data type [13].

Regardless of its potential to reveal mutations, scDNA-seq data comes with its challenges

[14–18]. Due to the small amount of genomic data available in a single cell, the genome needs

to be amplified before sequencing [19]. Unfortunately, the whole-genome amplification meth-

ods, such as the multiple displacement amplification (MDA) method [20] and the multiple

annealing and looping-based amplification cycles (MALBAC) method [21], introduce techni-

cal artifacts known as amplification errors (AEs) that are hard to distinguish from mutations.

Moreover, so-called allelic dropout (ADO) events remain even after the amplification. In addi-

tion, the subsequent sequencing of the amplified materials introduces sequencing errors [22–

25].

There have been several methods explicitly made for scDNA-seq data, both for identifying

mutations (single nucleotide variant (SNV) callers) and for reconstructing cell lineage trees,

although several of them are targeting cancer data. Monovar [26] is an SNV caller designed

specifically for scDNA-seq data; for each position, it models the ADO with a Bernoulli distri-

bution, the AEs with independent and identically distributed (i.i.d.) Bernoulli random vari-

ables and base-calling error probabilities depend on Phred quality scores, [27, 28], while

utilizing dynamic programming. LiRA [29] and Conbase [30] are scDNA-seq SNV callers that

leverage read-phasing, while the latter does variant calling based on the population of single

cells.

There has been a sequence of single-cell tree reconstruction methods targeting cancer data,

[31–36], leading up to the SCIF method [37]. Interestingly, for the cancer case, the infinite

sites assumption (ISA, [38–40]) may be violated due to segmental deletions. However, for

healthy tissue, the ISA is an appropriate assumption. So, since SCIF is based on ISA, it is also

relevant to the analysis of healthy tissue. SCIF has a probabilistic model that allows joint SNV

calling and tree reconstruction using the Markov chain Monte Carlo (MCMC) method. More

recently, the Phylovar [41] method was shown to handle millions of loci and be faster than

SCIF while having similar accuracy by taking advantage of the efficient vectorized

computations.

Method overview

Scuphr is a distance-based phylogenetic inference method that reconstructs cell lineage trees

from scDNA-seq data, produced by experimental procedures that amplify the cells’ genomes,

using amplification methods such as the MDA method [20] and the MALBAC method [21].

Analyses of this data type need to distinguish somatic mutations from sequencing errors and
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nucleotide substitutions caused by amplification. Therefore, Scuphr relies on a probabilistic

model of read-phasing and these two error sources. Read-phasing is a technique applied to

identify which allele the read comes from, which is used to distinguish if the read could be

from a mutated or a non-mutated segment. We first describe our model without read-phasing

and then introduce the details of the read-phasing.

The amplification process is modeled as a generalized Pólya urn process, in which a drawn

ball with an error probability is replaced by one of the same color and one of another, in con-

trast to the ubiquitous replacement by two of the same color in the Pólya urn. The observed

Phred scores define the base-calling error probabilities. The model also contains a probability

for the ADO events. Another vital part of Scuphr is a dynamic programming-based inference

algorithm that, based on the error model, computes the probability that two cells have different

genotypes at any investigated potential mutation site.

Scuphr processes the scDNA-seq data using a site selectionmethod that identifies the candi-

date sites that will be analyzed using the probabilistic model and contribute to the distance.

The distance is obtained by combining the probabilities of different genotypes across the

selected sites for each pair of cells. Finally, this distance is used as an input to a distance-based

phylogenetic method, the neighbor-joining (NJ) algorithm [42].

The summary of the Scuphr workflow is shown in Fig 1. The input to Scuphr consists of

bulk and single-cell DNA reads. First, candidate mutation sites are detected using the site

selection method, Fig 1a. These candidate mutation sites can consist of a single base pair, like

in most state-of-the-art methods, or two base pairs where the candidate mutation site is

accompanied by a nearby germline SNV (gSNV). We call these site types singleton sites and

paired sites, respectively. These site types will be referred to as sites throughout the paper.

Fig 1. The workflow of Scuphr and the illustration of read-phasing. a-d: The workflow of Scuphr. a: The sites are selected for analysis from bulk and

single-cell DNA sequencing data. b: The distance matrix of each chosen site is calculated independently. c: The distance matrices are combined. d: The

cell lineage tree is constructed from the final distance matrix using the NJ algorithm. e-h: Illustration of read-phasing. The first base pair is the gSNV

locus and the second base pair is the candidate site. The gSNV nucleotides are shown in blue and pink colors. The reference and the mutation

nucleotides are shown in gray and yellow, respectively. e: The non-mutated and mutated genomes are displayed. The mutation is associated with the

blue allele (blue gSNV nucleotide). f: An example read covering both sites, but the gSNV information is disregarded as in many methods of SNV calling

and tree reconstruction. The reference nucleotide is observed at the candidate site. The read might belong to either the non-mutated or the mutated

genome. g: An example read with available gSNV site information. We can phase the read (identify which allele it originates from). The read must come

from the blue allele; in this case, the read comes from the non-mutated genome. h: An example read with available gSNV site information. The read

must come from the pink allele; in this case, the read might belong to either the non-mutated or mutated genome.

https://doi.org/10.1371/journal.pcbi.1012094.g001

PLOS COMPUTATIONAL BIOLOGY Scuphr: A probabilistic framework for cell lineage tree reconstruction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012094 May 9, 2024 3 / 25

https://doi.org/10.1371/journal.pcbi.1012094.g001
https://doi.org/10.1371/journal.pcbi.1012094


Second, site-associated distance matrices are calculated in parallel for each selected site, Fig 1b.

Third, a single distance matrix is obtained by combining the site-associated distance matrices,

Fig 1c. Finally, the cell lineage tree is reconstructed by applying the NJ algorithm to the final

distance matrix, Fig 1d. In addition, the site-associated distance matrices can be sampled with

replacement several times to obtain bootstrap lineage tree samples, which could be used to get

consensus trees and edge supports.

The read-phasing assists in identifying missing data and separating somatic mutations and

errors using patterns of co-occurrence of the nucleotides at the gSNV loci and the candidate

sites. Fig 1e shows an example of a non-mutated and a mutated cell’s genome. Each cell has

two alleles; one maternal and one paternal. The first locus is a gSNV, where the nucleotides at

the first and second allele differ. The second locus is the candidate site, where the non-mutated

cell has the reference nucleotide in both alleles, and the mutated cell has a reference and an

alternate nucleotide. The non-mutated and mutated cells have the same second allele, and

their difference is due to the mutation located at the first allele. The mutation is associated

with the blue gSNV nucleotide. In Fig 1f, a read with the candidate site is shown. One cannot

decide if this read comes from a non-mutated or a mutated genome since no information is

available for the gSNV locus. Therefore, it cannot be attributed to any of the alleles. In Fig 1g, a

read from the site pair is observed. Since both nucleotides are observed, and the blue gSNV

nucleotide accompanies the candidate reference nucleotide, one can conclude that the read

comes from the non-mutated genome. However, in Fig 1h, the reference nucleotide is accom-

panied by the pink gSNV nucleotide, which could come from either of the genomes.

Results

The two state-of-the-art methods, SCIF [37] and Phylovar [41], can exploit amplified, diploid

scDNA-seq data. We compared the performance of Scuphr with SCIF in terms of cell lineage

tree reconstruction accuracy and runtime in synthetic data experiments. For the biological

data experiment, we compared the performance of Scuphr to both SCIF and Phylovar.

Synthetic dataset experiments

In order to compare the performances of the methods in a controlled way, we synthetically

generated datasets. We created the ground truth cell lineage trees, and assigned mutations to

the edges of the tree; all cells under the edge inherit the mutation. We generated the genomes

of the cells and simulated the amplification and read sequencing processes. We accounted for

various amplification, allelic dropout, and sequencing errors, as well as different levels of

gSNVs within the genome. The details of the synthetic data generation process are presented

in Methods. We used the synthetic datasets to compare the methods in two ways; the lineage

tree reconstruction accuracy and runtime.

Accuracy evaluation on synthetic datasets. To evaluate the performance of cell lineage

tree reconstruction, we compared the topologies of the trees inferred by Scuphr and SCIF

with the ground truth cell lineage tree. We use a similarity measure defined as one minus the

normalized Robinson-Foulds (RF) distance. The similarity score is in [0, 1], where 1 means the

tree topologies are the same. We investigated the accuracy across several combinations of AE

rates, ADO rates, frequencies of loci with paired sites, and the number of cells. We investigated

two AE rates: 10−5, see Fig 2 and 10−3, see Fig 3. First, for each choice of other parameters, the

frequencies of loci with paired sites considered were 0.001, 0.01, 0.1, and 1. Second, for each

choice of the other parameters, the ADO probabilities considered were 0, 0.1, and 0.2. Third,

all parameter configurations were investigated for inputs having 10, 20, and 50 cells.
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Both methods perform well for the lower error rate 10−5, Fig 2. However, with a few excep-

tions, Scuphr has a higher mean accuracy, and other quantiles are higher for Scuphr than for

SCIF. This trend is accentuated for the case where the frequency of loci with paired sites is 1.

For the higher error rate of 10−3, Fig 3 shows a readily noticeable difference between the

two methods. The average accuracy for Scuphr is always better than that of SCIF, and other

quantiles are, in almost all cases, higher for Scuphr than for SCIF. In particular, when all of the

loci are paired, Scuphr exploits the paired sites for read-phasing, but SCIF has more or less the

same average accuracy for lower frequencies of paired sites. In this case, the average accuracy

of Scuphr is almost twice as high as that of SCIF.

Interestingly, when SCIF is provided with the sites selected by our candidate site selection

method, its accuracy is improved in several cases. However, its accuracy is also, in many

instances, decreased. Moreover, for the biological data, it is, due to the number of sites, that it

takes an even longer time to run SCIF with the sites selected by our site selection method.

Therefore, in Figs 2 and 3, we presented the results of the entire SCIF method, as described in

[37]. The accuracy obtained when SCIF is provided with the site selected by our candidate site

selection method is described in the S1 Appendix.

Fig 2. Similarities between the true and inferred trees for low amplification errors. Top row: Results for 10 cells. Center row: Results for 20 cells.

Bottom row: Results for 50 cells.

https://doi.org/10.1371/journal.pcbi.1012094.g002
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Runtime analysis on synthetic datasets. In addition to the lineage tree reconstruction

accuracy, we also compared the wall-clock runtime of Scuphr to that of SCIF. All runtime

experiments were performed on a single cluster node with 32 CPU cores, and each configura-

tion was repeated ten times. As Scuphr can be used with default and estimated parameters, the

runtime analysis for the parameter estimation step was performed separately, and the results

are presented in the S1 Appendix. We ran both methods with the same sites to compare the

runtimes. The time used to obtain these sites is excluded from the runtimes reported here. We

run SCIF with both single and multiple cores. The runtimes were very similar across the num-

ber of cores, and in this section, the single-core runtimes are presented for SCIF. For the mul-

tiple core runs, we direct the reader to the S1 Appendix.

Fig 4 shows how the runtime changes across fractions of singleton sites and the number of

cores. The left, center, and right subfigures display the runtime analysis for 10, 20, and 50 cells,

respectively. Since each distance matrix is calculated independently, the main part of our pro-

posed algorithm is embarrassingly parallel, i.e., the wall-clock runtime scales linearly with the

number of available cores, as seen in the figure. Additionally, the algorithm’s runtime is linear

in the number of sites. For 10 and 20 cells, our software infers the lineage tree faster than

Fig 3. Similarities between the true and inferred trees for high amplification errors. Top row: Results for 10 cells. Center row: Results for 20 cells.

Bottom row: Results for 50 cells.

https://doi.org/10.1371/journal.pcbi.1012094.g003
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SCIF. Our software is faster for singleton sites and 50 cells when at least two cores are used for

computation.

The wall-clock runtime comparisons for paired sites are shown in Fig 5. Also, in this case,

the left, center, and right subfigures correspond to 10, 20, and 50 cells, respectively. Our paired

site analysis is slower than the singleton site analysis due to the number of fragment types con-

sidered. Nonetheless, the method has the same scalability trend as in the singleton site experi-

ments. Our method is faster than SCIF for the 10 cells case when at least eight cores are used

and for the 20 and 50 cells datasets when at least 16 cores are used.

These runtime analyses were performed on a single cluster node. Nevertheless, one can use

multiple nodes to compute the distance matrices without communication overhead. Conse-

quently, Scuphr achieves a linear speedup in the total number of available cores on a cluster.

The final step of Scuphr, the lineage tree reconstruction, runs on a single core; however, this

step is very efficient and does not change the overall asymptotic runtime.

Biological data analysis

In this section, the accuracy of Scuphr SCIF, and Phylovar are compared using a fibroblast

dataset previously used in [30]. The dataset used in this study is a slightly modified version of

the dataset in [30]. For details, see S1 Appendix. The dataset consists of scDNA-seq data for 18

cells with a recent common origin and a known lineage tree topology. This single-cell DNA

data has been obtained by amplifying the DNA using MALBAC before the sequencing. These

cells are so closely related that very few mutations distinguish them; hence, it is very hard to

Fig 4. Runtime comparison for singleton sites. The x-axis is the number of sites, and the y-axis is the wall-clock time in seconds. The red dashed line

is the runtime of SCIF using a single core. The remaining lines are the runtimes of the proposed method for varying numbers of cores. The left, center,

and right subplots are the results for 10, 20, and 50 cells datasets, respectively.

https://doi.org/10.1371/journal.pcbi.1012094.g004

Fig 5. Runtime comparison for paired sites. The x-axis is the number of sites, and the y-axis is the wall-clock time in seconds. The red dashed line is

the runtime of SCIF using a single core. The remaining lines are the runtimes of the proposed method for varying numbers of cores. The left, center,

and right subplots are the results for 10, 20, and 50 cells datasets, respectively.

https://doi.org/10.1371/journal.pcbi.1012094.g005
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reconstruct the true lineage tree topology. The cells belong to two main monophyletic groups,

one containing cells 0–11 and one containing cells 12–17. The dataset also includes a bulk

DNA sample from the donor, which can be used as an outgroup.

The data were preprocessed using the pipeline described in S1 Appendix, and the sites of

interest were identified as described in Methods. More than 3 million sites were selected for

analysis; the details are presented in S1 Appendix.

Since the fibroblast dataset is so hard that a reconstruction method would at most identify

the two main monophyletic groups correctly, we devised a test based on bootstrapping, using

the transfer bootstrap expectation (TBE) [43] edge supports. 100 bootstrap lineage trees were

constructed by bootstrapping sites (hence, bootstrapping the distance matrices). The TBE sup-

ports of the bootstrapped trees on the true lineage tree topology were computed with the

Booster software [43]. The TBE support of a branch b is in the [0, 1] range where “0 means

that the bootstrap trees contain the edge b in a random fashion and 1 means that b appears in

all bootstrap trees” [43].

Scuphr separates the two main monophyletic groups with very high TBE support, 0.8, Fig

6a. Also, all branches within two smaller monophyletic groups, cells 4-5 and cells 10-11,

respectively, are correctly inferred in all bootstrap rounds.

To compare accuracy, we also applied SCIF to the fibroblast data (Fig 6b). Due to the input

format requirement (bulk and single-cell sequencing data in Mpileup format), we could not

Fig 6. The TBE supports of bootstrap trees are projected onto true lineage tree topology. The clones are marked with blue and beige colors. a: TBE

supports of Scuphr. b: TBE supports of SCIF.

https://doi.org/10.1371/journal.pcbi.1012094.g006
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run SCIF on the whole genome in a single run. Instead, we applied SCIF independently to

each chromosome, see S1 Appendix for details. We sampled 100 bootstrap trees from the line-

age trees reported by SCIF for the chromosomes; the trees were weighted by the number of

identified mutations per chromosome. The TBE supports are evaluated on the true lineage

tree topology (Fig 6b). SCIF got the same TBE supports for a subset of branches (separation of

two clones and the subclone consisting of cells 3, 9, 10, and 11). SCIF reported higher support

for a single branch, 0.28, than Scuphr, 0.17. For the rest of the branches, Scuphr reported

higher support or equal support to that reported by SCIF. In the monophyletic group consist-

ing of cells 0, 1, 4, 5, and 6, in contrast to SCIF, Scuphr inferred substantial subclonal

structure.

Finally, we compared the performance of Scuphr against Phylovar on the biological data in

Fig 7. Phylovar uses the same candidate site selection scheme as SCIF, hence using the same

sites for analysis. Following the software documentation, we extracted the sites picked by SCIF

and created a new Mpileup file, which enabled us to run Phylovar on a cluster node. We ran

Phylovar 5 times, each with 20 hill-climbing chains on a cluster node of 32 cores, and obtained

100 trees for analysis. For experimental details, see S1 Appendix.

As with the other methods, Phylovar successfully separated two clones. Although Phylovar

was able to infer the relation of subclone consisting of cells 0, 1, 4, 5, and 6 better than SCIF;

its support scores are lower than Scuphr, Fig 7b. Moreover, Phylovar was unable to identify

Fig 7. The TBE supports of bootstrap trees are projected onto true lineage tree topology. The clones are marked with blue and beige colors. a: TBE

supports of Scuphr. b: TBE supports of Phylovar.

https://doi.org/10.1371/journal.pcbi.1012094.g007
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the sibling relation of cells 4 and 5, which was supported by all Scuphr trees. Phylovar obtained

similar support scores for the remainder of the blue clone as the other methods. In the beige

clone, Phylovar had high support for a sibling relation (cells 12 and 13), which was not sup-

ported by either Scuphr or SCIF.

Materials and methods

In this section, we describe the proposed model step-by-step. First, we present the probabilistic

graphical model of Scuphr in detail and outline important components and formulas. Second,

we describe how to reconstruct the cell lineage tree from the outcome of the first part. Third,

we describe the candidate loci selection criteria in detail. Fourth, we show how the model

parameters are estimated. Fifth, the simulated data generation procedure is presented. Finally,

two accuracy metrics, the similarity score, and the TBE support, used in the study are

described.

The probabilistic model

First, we introduce some important concepts. Recall that, as most state-of-the-art methods do,

a set of candidate mutation loci is used for analysis. We call a candidate locus that covers a sin-

gle base pair a singleton site. Moreover, Scuphr can facilitate gSNVs near candidate loci and do

Fig 8. The graphical model of Scuphr. The shaded nodes are the observed random variables. The site superscript π is

omitted for brevity. α, a, and b are the model hyperparameters. pm, pae, pado are the model parameters and correspond

to the mutation, amplification error, and allelic dropout probabilities respectively. B is the bulk genotype, Z is the

common mutation type. Each single-cell c 2 [C] has a mutation status Gc. B, Z and Gc deterministically define a cell’s

genotype; Xc. D1
c andD2

c indicate the dropout status of each allele, and Ac indicates the number of amplification errors.

Fc and Nc are the fragment types and their corresponding counts. Rc and Qc are the reads and their Phred quality

scores, and Lc is the total number of reads of the cell.

https://doi.org/10.1371/journal.pcbi.1012094.g008
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read-phasing. A candidate mutation locus paired with a gSNV site is called a paired site. We

will refer to all site types as sites throughout the Methods section for brevity. Unless otherwise

stated, the model descriptions hold for all site types. Let P be the set of sites selected for analy-

sis and C be the number of single cells.

The probabilistic graphical model. Fig 8 shows the probabilistic graphical model of

Scuphr at π 2P. a, b, and α are the model hyperparameters. pado, pae, and pm are the model’s

parameters and correspond to the ADO, AE, and mutation probabilities. A set of reads, their

corresponding base-calling error probabilities, and the coverage of each cell c are observed and

represented by Rc, Qc, and Lc. Moreover, the bulk genotype, B, is observed. The single-cell

mutation status is represented with Gc; Gc, B, and the common mutation type random variable,

Z, define the single-cell genotype, Xc. The aforementioned scDNA-seq specific challenges are

modeled with D1
c ;D

2
c , and Ac random variables; D1

c and D2
c model the ADO events of each

allele, and Ac represents the number of errors that have happened during amplification. The

fragment types generated at the end of the amplification process and their counts are expressed

by Fc and Nc, respectively.

The graphical model consists of cell lineage, DNA amplification, and read sequencing.

• Cell lineage: At π, all the non-mutated cells have the bulk genotype, and all the mutated cells

must share the same mutation type under the ISA. This shared mutation type is modeled

with a Dirichlet-Categorical distribution with the hyperparameter α. The cells’ mutation sta-

tuses are modeled with i.i.d. Bernoulli random variables with a mutation probability, pm.

The mutation probability has a Beta prior distribution with hyperparameters a and b. The

mutation status random variable, bulk, and mutation type variables define the genotype of

the cell, Xc.

• DNA amplification: Here, we model the ADO events of each allele with Bernoulli random

variables, with the same ADO probability pado. The number of AEs that have happened dur-

ing the amplification is modeled with a Binomial random variable with probability pae, and

its number of trials depends on the ADO random variables and the observed read coverage.

These ADO and AE random variables, the observed read coverage, and the single-cell geno-

type form the amplified fragments, Fc and their corresponding counts, Nc.

• Read sequencing: Finally, the amplified fragments are sequenced and create observed reads.

Since the read sequencing is an erroneous process, the observed Phred scores are used to

obtain the base-calling error probabilities, Qc, and the uncertainty of read sequencing is

modeled.

We briefly discussed the graphical model. More details of its components are presented in

the following parts of this section. Fig 9 illustrates the cell lineage, DNA amplification, and

sequencing steps described above. For simplicity, the site superscript π is omitted.

Distance matrix. For each selected site, π 2P, we construct a symmetric nonnegative

(C + 1) × (C + 1) distance matrixMπ.Mc,c0 is the distance between single-cells c and c0, com-

puted by

Mc;c0 ¼

P
p
Mp

c;c0 � 1½Lpc > 0; Lpc0 > 0�
P

p
1½Lpc > 0; Lpc0 > 0�

; 8ðc; c0Þ 2 ½C�; ð1Þ

where 1 is the indicator function, and Lpc is the coverage of c at π. Only the sites where both

cells have coverage are considered during distance computation. The matrix’s last row and
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Fig 9. Illustration of the random variables for a singleton site on the left column and a paired site on the right column. a: The cell lineage tree.

Bulk, common mutation type, and single-cell genotypes for the sites of interest are shown. Mutations and the branch they originate from are colored

differently. b: The DNA amplification step for cell 0 is illustrated. AE and ADO event indicators are specified. The corresponding fragment types and

the counts are written. c: The sequencing step is illustrated; the reads and the base-calling error probabilities are generated from the fragments.

Sequencing errors are colored differently.

https://doi.org/10.1371/journal.pcbi.1012094.g009
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column are the distances between the cell and the non-mutated bulk, b, computed by

Mc;b ¼

P
p
Mp

c;b � 1½Lpc > 0�
P

p
1½Lpc > 0�

; 8c 2 ½C�: ð2Þ

Distance between two single-cells at π. The binary random variable Gp
c represents the

mutation status of single-cell c at π: Gp
c ¼ 0 if the cell is not mutated and Gp

c ¼ 1 if the cell is

mutated. The distance between two single-cells at π is

Mp
c;c0 ¼ PðGc ¼ 0;Gc0 ¼ 1jB;R1:C;Q1:C; L1:C;YÞ

þ PðGc ¼ 1;Gc0 ¼ 0jB;R1:C;Q1:C; L1:C;YÞ;
ð3Þ

where B is the bulk genotype, Θ = {α, a, b, pado, pae} is the set of model parameters and hyper-

parameters, and R1:C, Q1:C, and L1:C are the observed reads, base-calling error probabilities,

and read coverages of single-cells. The distance to non-mutated bulk is simply

Mc;b ¼
X1

i¼0

PðGc ¼ 1;Gc0 ¼ ijB;R1:C;Q1:C; L1:C;YÞ:

On the random variables of the right-hand side of the above equation, we omit the π super-

script and use the same convention in the following parts.

The mutation status probability of two cells at a site satisfies

PðGc;Gc0 jB;R1:C;Q1:C; L1:C;YÞ / PðGc;Gc0 ;R1:CjB;Q1:C; L1:C;YÞ:

P(Gc, Gc0, R1:C|B, Q1:C, L1:C, Θ) is computed through series of marginalizations done on the

latent variables defined in the graphical model, shown in Eq 4. In order to describe the process

clearly, we introduce the marginalizations one at a time in the following subsections.

PðGc;Gc0 ;R1:CjB;Q1:C; L1:C;YÞ

¼
X

Z

X

G1:C fc;c0g

Z

pm

X

F1:C ;N1:C

X

D1
1:C

X

D2
1:C

X

A1:C

PðGc;Gc0 ;R1:C;Z;G1:Cnfc;c0g; pm; F1:C;N1:C;D1
1:C;D

2
1:C;A1:CjB;Q1:C; L1:C;YÞdpm

ð4Þ

Lineage model. The ISA implies that (i) a site can be mutated at most once, and (ii) all the

mutated cells at the loci share the same mutation. We marginalize the mutation types

PðGc;Gc0 ;R1:CjB;Q1:C; L1:C;YÞ

¼
X

z

PðZ ¼ zjB; aÞ PðGc;Gc0 ;R1:CjZ ¼ z;B;Q1:C; L1:C;YÞ;

where Z is the mutation type random variable and follows the Dirichlet-Categorical distribu-

tion as described previously;

PðZ ¼ zjB; aÞ ¼
Bð
PK

k¼1
ak; 1Þ

Bðaz; 1Þ
; ð5Þ

where K is the number of possible mutation genotypes, α is the concentration parameter, and

B is the Beta function. B stands for the bulk genotype whereas B is the Beta function. Z differs
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from the non-mutated bulk genotype by a single nucleotide, e.g., we may have B = (A, A) and

Z = (A, G) for a singleton site or B = (AA, AT) and Z = (AA, GT) for a paired site. See S1

Appendix for details.

Marginalization of other single-cells. Using the notation G1:C\{c,c0} for the mutation status

random variables of all cells except c and c0, the joint distribution of the reads and the mutation

statuses of the single-cells c and c0 can be expressed as

PðGc;Gc0 ;R1:CjZ;B;Q1:C; L1:C;YÞ

¼
X

G1:C fc;c0g

PðG1:Cja; bÞ PðR1:CjG1:C;Z;B;Q1:C; L1:C; pae; padoÞ

¼
XC

m¼0

X

G1:Cnfc;c0g :

P
iGi ¼ m

PðG1:Cja; bÞ PðR1:CjG1:C;Z;B;Q1:C; L1:C; pae; padoÞ;

wherem ¼
PC

i¼1
Gi 2 ½0;C� is the number of mutated cells at the site π. The summation over

mutation counts and mutation statuses in the above equation can be computed efficiently

using dynamic programming.

As mentioned earlier, we assign Beta prior distribution on the mutation probability, pm,

with the hyperparameters a and b. Given pm, the mutation statuses of all single-cells are condi-

tionally independent and are i.i.d. Bernoulli random variables. The joint distribution of single-

cell mutation statuses is

PðG1:Cja; bÞ ¼
Z

pm

PðG1:Cjpm; a; bÞ Pðpmja; bÞ dpm

¼
Bðmþ a;C � mþ bÞ

Bða; bÞ
:

The derivation is presented in S1 Appendix.

Genotypes of single-cells. We define the auxiliary random variables, X1:C, to denote sin-

gle-cell genotypes. The genotype of a single-cell c is

Xc ¼
B; if Gc ¼ 0

Z; if Gc ¼ 1:

(

ð10Þ

The values of X1:C are deterministic functions of G1:C, Z, and B. From now on, we will use X1:C

notation instead of {G1:C, Z, B}, e.g.,

PðR1:CjG1:C;Z;B;Q1:C; L1:C; pae; padoÞ ¼ PðR1:CjX1:C;Q1:C; L1:C; pae; padoÞ:

Conditional independence of single-cells. Given the genotypes of single cells, the ampli-

fication, and the allelic dropout probabilities, the likelihoods of reads are conditionally inde-

pendent. The read likelihood is factorized by

PðR1:CjX1:C;Q1:C; L1:C; pae; padoÞ ¼
YC

c¼1

PðRcjXc;Qc; Lc; pae; padoÞ:

PLOS COMPUTATIONAL BIOLOGY Scuphr: A probabilistic framework for cell lineage tree reconstruction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012094 May 9, 2024 14 / 25

https://doi.org/10.1371/journal.pcbi.1012094


Introduction of fragments. We introduce the fragments created during the DNA amplifi-

cation. The fragment types, Fc, and their counts, Nc, are marginalized as follows;

PðRcjXc;Qc; Lc; pae; padoÞ

¼
X

Fc ;Nc

PðRcjFc;Nc;QcÞ PðFc;NcjXc; Lc; pae; padoÞ:

Amplification model. The DNA amplification is modeled with a generalized Pólya urn

model. Two ADO events determine the initial state of the urn. These ADO events are modeled

by two Bernoulli random variables with the same ADO probability, pado;

PðFc;NcjXc; Lc; pae; padoÞ

¼
X1

D1
c¼0

X1

D2
c¼0

PðD1

c ;D
2

c jpadoÞ PðFc;NcjD
1

c ;D
2

c ;Xc; Lc; paeÞ;

and

PðD1
c ;D

2
c jpadoÞ ¼ p

D1
cþD

2
c

ado ð1 � padoÞ
2� ðD1

cþD
2
c Þ:

In the case of no ADO events, the process starts with one copy of each allele. The process

starts with the other allele if there is one ADO event.

One can describe the urn process as follows; the urn is initialized with one or two colored

balls. At each step, a ball is drawn from the urn, a copy of the ball is made, and both the original

and the copy is put back into the urn. The outcome of this process can be represented by one

or two lineage trees where the roots of the trees are the original copies of the alleles. We will

refer to these trees as amplification trees. Given the initial state and the final number of balls in

the urn, which is observed as the read coverages, the total number of edges in amplification

trees is (an additional incoming edge to the root is introduced to account for subsampling)

ELcD1
c ;D

2
c
¼

2Lc � 2; if D1
c ¼ 0;D2

c ¼ 0

2Lc � 1; if D1
c ¼ 0;D2

c ¼ 1

2Lc � 1; if D1
c ¼ 1;D2

c ¼ 0

0; if D1
c ¼ 1;D2

c ¼ 1:

8
>>>>>><

>>>>>>:

DNA amplification sometimes replaces a nucleotide; therefore, occasionally, the copy of a

ball has a different color than the original. Let Ac be the random variable describing the num-

ber of AEs has happened during the DNA amplification,

PðFc;NcjD1
c ;D

2
c ;Xc; Lc; paeÞ

¼
X

Ac

PðAcjD
1

c ;D
2

c ; Lc; paeÞ
X

Fc;Nc

PðFc;NcjD
1

c ;D
2

c ;Ac;Xc; LcÞ:

The probability of the number of AEs is a Binomial distribution over the edges of the ampli-

fication trees

PðAcjD
1

c ;D
2

c ; Lc; paeÞ ¼
ELcD1

c ;D
2
c

Ac

 !

pAcae ð1 � paeÞ
ELc
D1
c ;D

2
c
� Ac
;
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where pae is the probability of an AE happening on an edge. In practice, pae is very small (e.g.,

[10−6, 3 × 10−4] [19, 30]); hence we neglect the cases where Ac> 1.

Marginalizing amplification trees. Let the fragment types and counts be Fc ¼ ðF1
c ; F

2
c ; F

3
c Þ

and Nc ¼ ðN1
c ;N

2
c ;N

3
c Þ, respectively. Let d(Fi||Fj) be the function that computes the Hamming

distance between two fragment types, Fi and Fj.
The first two elements of Fc are the cell genotype, ðF1

c ; F
2
c Þ ¼ Xc, and the third element is the

fragment type caused by an AE. In the case of no AE, F3
c ¼ ;. In the case of one AE, F3

c must

differ a single nucleotide from its originating fragment, either dðF3
c jjF

1
c Þ ¼ 1 or dðF3

c jjF
2
c Þ ¼ 1.

Similar to the Fc tuple, N1
c ;N

2
c , and N3

c are the numbers of fragments of the first allele, sec-

ond allele, and fragments carrying a nucleotide introduced by the AE. The total number of

fragments is Lc ¼ N1
c þ N

2
c þ N

3
c . In case of an AE event, N3

c > 0; otherwise, N3
c is zero. Finally,

the first two elements of fragment counts must satisfy the ADO events, i.e., N1
c ¼ 0 if D1

c ¼ 1

and N2
c ¼ 0 if D2

c ¼ 1.

With the above conditions satisfied, given the cell genotype, read coverage, ADO, and AE

events, the probability of a fragment type and count pair is a product that contains up to three

important factors. The first factor regards dividing Lc fragments into one or two amplification

trees. There is a single way to partition if there is an ADO event, e.g., (0, Lc) if the first allele is

dropped out or (Lc, 0) if the second allele is dropped. Otherwise, due to the Pólya urn, the

number of reads follows a Beta-Binomial distribution, and each partition, {(1, Lc − 1), (2, Lc
− 2), . . ., (Lc − 1, 1)} has a 1/(Lc − 1) probability. See S1 Appendix for details. The second factor

regards the AE event; if an AE has happened, how many ways are there to get N3
c erroneous

fragments? Here we should note that, even though we know how Lc is partitioned into amplifi-

cation trees, we do not know the internal structure of the trees. We need to consider all possi-

ble ways of forming the amplification trees (i.e., marginalization of the amplification tree

topologies). We model an amplification tree as described in S1 Appendix. Assuming a count

configuration of Nc ¼ ðN1
c ;N

2
c ;N

3
c Þ where Ni

c > 0 for all i 2 {1, 2, 3} and that the AE is happen-

ing strictly on the first amplification tree, there are CðN1
c þ N

3
c Þ possible tree topologies of the

first amplification tree, each with the probability of 1=CðN1
c þ N

3
c Þ. The subscript c is the sin-

gle-cell id, whereas C(.) or C(., .) is a function that returns the number of possible tree topolo-

gies given specific tree details in the parenthesis. Moreover, CðN1
c þ N

3
c ;N

3
c Þ out of ELcD1

c ;D
2
c

edges

satisfy the specified count configuration in this marginalized amplification tree space. When

all these are combined, the second component becomes

CðN1
c þ N

3
c ;N

3
c Þ=ðCðN

1
c þ N

3
c Þ � E

Lc
D1
c ;D

2
c
Þ. An example of tree topologies and edges supporting

a count configuration is shown in Fig 10. We direct the reader to Tables A and B in S1 Appen-

dix for all the count and fragment type configurations.

The final component is the probability of F3
c given AE; in the case of no AE, the probability

is

PðF3
c jAc ¼ 0Þ ¼

1; if F3
c ¼ ;

0; otherwise;

8
<

:

and in the case of AE, the probability is 1/3 for the singleton sites (1 × 3 = 3 different possible

genotypes differ by 1 nucleotide), and 1/6 for paired sites (there are 2 × 3 = 6 possibilities).

The product of the three components leads to the fragment type and counts probability;

PðFc;NcjD1
c ;D

2
c ;Ac;Xc; LcÞ, which is detailed in Tables A and B in S1 Appendix.

PLOS COMPUTATIONAL BIOLOGY Scuphr: A probabilistic framework for cell lineage tree reconstruction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012094 May 9, 2024 16 / 25

https://doi.org/10.1371/journal.pcbi.1012094


Read sequencing. Read sequencing is also erroneous and depends on sequencing technol-

ogy [22–25]. We use the Phred quality scores (ρ) to compute the base-calling error probabili-

ties, Q, [27, 28]; Q = 10−0.1×ρ.

For a single read with a known originating fragment, the likelihood of the read at a single-

ton site is

PðRlcjF
l
c;Q

l
c ¼ qÞ ¼

1 � q; if no error

q
3
; if error;

8
><

>:
ð6Þ

and the likelihood of the read at a paired site is

PðRlcjF
l
c;Q

l
c ¼ ðq

s; qs0 ÞÞ ¼

ð1 � qsÞ ð1 � qs0 Þ; if no errors

ð1 � qsÞ
qs0

3
; if error only at locus s

qs

3
ð1 � qs0 Þ; if error only at locus s0

qs

3

qs0

3
; if errors at both positions:

8
>>>>>>>>><

>>>>>>>>>:

ð7Þ

We use dynamic programming to efficiently compute the likelihood of multiple reads,

PðRc ¼ R1:Lc
c jFc;Nc;Qc ¼ Q1:Lc

c Þ, of cell c. In the dynamic programming algorithm, we intro-

duce the reads of a cell one at a time, assign them to different fragments, and track how the

likelihood of reads changes with the addition of the new read. For instance, when introducing

the l’th read, we know what the likelihood of the previous reads (R1:l� 1
c ) is if they all originate

from the first fragment, all from the second one, or any other partition (e.g., 2 reads from first

fragment, no reads from second fragment, l − 3 from the third fragment). After adding the

Lc’th read, we extract the likelihood of the corresponding Nc configuration from the dynamic

programming. The pseudocode is shown in S1 Appendix.

Runtime analysis. The runtime complexity for the dynamic programming algorithm

computing the probability of the observed reads for cell c, P(Rc|Xc, Qc, Lc, pae, pado), is L3
c—

resulting in O(|P|CL3) where L is the maximum number of reads over cell and site. When we

perform pairwise distance calculation for each site, we incur the cost of |P|C2 times the look

Fig 10. Illustration of C(4) = 6 possible 4-trees. The labeled nodes indicate the order of the amplification events. The

dashed line represents an incoming edge to the root to account for subsampling during the sequencing of the

fragments. The red edges are all possible 3-edges in 4-trees, C(4, 3).

https://doi.org/10.1371/journal.pcbi.1012094.g010
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up of of the dynamic programming table across possible mutations m = 0, . . ., C, yielding |P|

C3. This results in the total run time of O(|P|(C3 + CL3)).

Lineage tree reconstruction

The standard NJ algorithm [42] and its variants, such as FastNJ [44], are commonly used for

distance-based methods. In the final step of Scuphr, the standard NJ algorithm is applied to

the distance matrix to reconstruct the cell lineage tree using the implementation in the Den-

dropy library [45]. The tree is re-rooted, so the bulk node becomes the root and indicates the

non-mutated state.

Site selection

We use several heuristics to identify candidate loci for analysis. Even though Scuphr can run

on the sites with no observed alternate nucleotides, these sites would not contribute informa-

tion about the topology of the lineage tree and waste computational resources. Instead, we

select a subset of the genome that could provide information regarding the topology.

Paired site selection. The main goal for the paired site selection is to find pairs of loci

with a sufficient amount of alternative nucleotides and a heterozygous site nearby that can be

used for read-phasing.

First, we identify the gSNVs using the unamplified bulk reads taken from another tissue.

We run FreeBayes [46] software and set the read depth threshold to 10 and alternative nucleo-

tide frequency to 0.2. The sites with heterozygous genotypes are considered the gSNV sites.

Second, we check single-cell reads that cover the gSNV site and ensure at least two single-cells

display the gSNV; that is, both nucleotides must be present in at least 20% of the reads from

both cells. After this verification, we look for the candidate mutation sites around the gSNV.

Both gSNV and the candidate sites must be covered with the same read to facilitate read-phas-

ing. All nucleotides covered by a read come from the same allele. The reference nucleotide of

the candidate site is determined from bulk reads; the site must have at least 10 reads in bulk

data, and at least 80% of the reads are one nucleotide, which is referred to as the reference. For

a site to be picked, at least 2 and at most C − 1 cells must agree on an alternative nucleotide (at

least 20% of the reads should be different from the reference). The signal from a single-cell or

all single-cells does not contribute to the information for lineage tree reconstruction. If multi-

ple gSNVs are near the candidate site, the closest gSNV is used to form the pair. Finally, one

last gSNV check is done to ensure the single-cell reads (that cover both the candidate and

gSNV sites) meet the gSNV requirement described above. The further the candidate site is

from the gSNV site, the fewer reads cover both sites.

Singleton site selection. During the singleton site selection, the gSNV heuristics are omit-

ted. The candidate mutation site identification is performed using the same heuristics as the

paired site selection.

Hybrid site selection. In the hybrid case, the algorithm works with both paired and sin-

gleton sites. A candidate mutation site is paired with a gSNV if the paired site criteria are met;

otherwise, the site is picked as a singleton site.

Parameter estimation and hyperparameter settings

We run the Metropolis-Hastings algorithm for 5, 000 iterations with three different initial val-

ues to infer the parameters pado and pae. We discard the first 20% samples as burn-in. The
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acceptance ratio of our Metropolis-Hastings algorithm is

AðY∗
;YÞ ¼ min 1;

qðpado; paejp∗ado; p
∗
aeÞ

qðp∗ado; p∗aejpado; paeÞ
Pðp∗ado; p

∗
aeÞ

Pðpado; paeÞ
L

� �

¼ min 1;
Pðp∗adoÞPðp

∗
aeÞ

PðpadoÞPðpaeÞ
L

� �

;

where

L ¼

Q
p
PðRp

1:Cjp
∗
ado; p

∗
ae;B

p;Q
p

1:C; L
p
1:C; a; a; bÞQ

p
PðRp

1:Cjpado; pae;Bp;Q
p

1:C; Lp1:C; a; a; bÞ
:

The likelihood is calculated similarly to the earlier derivations in Methods;

PðRp

1:Cjpado; pae;B
p;Qp

1:C; L
p
1:C; a; a; bÞ

¼
X

z

PðZpjBp; aÞ

X

Gp
1:C

PðGp

1:Cja; bÞ PðR
p

1:CjG
p

1:C;Z
p; pado; pae;B

p;Q
p

1:C; L
p

1:CÞ:

We use a Gaussian random walk proposal in which each parameter is treated indepen-

dently, and samples are proposed using a Gaussian distribution with a 0.01 standard deviation.

We set uniform prior probabilities for the parameters, calculate the likelihood of the observed

reads R1:P
1:C based on our model, and accept or reject the samples. The means of the samples are

used as pado and pae parameters during the analysis.

Scuphr has three hyperparameters; α, a, and b. α is the concentration parameter of the

Dirichlet-Categorical distribution used for the mutation type probabilities. We set α to all-

ones vector. The a and b hyperparameters are for the Beta prior to mutation probability pm.

We assigned uniform prior to the mutation probability by setting a = 1 and b = 1. However,

the user can set these parameters and, thereby, modify the algorithm’s tendency towards

mutations.

For our experiments, we randomly picked 20 sites that are used to estimate the parameters.

We sampled the initial value of pado from U[0, 1] and pae from U[0, 0.1]. We set the initial

range of pae to [0, 0.1] because the AE probabilities are reported to be small [19, 30].

Simulation of synthetic datasets

We generated the synthetic dataset as follows. First, we generated random binary cell lineage

trees with C leaves. We assigned 2 × (C − 1) × μmutations, μ 2 {10, 20}, to the tree’s edges and

ensured each edge had at least one mutation. For each dataset, we generated a 1 million base

pairs long diploid genome that was used for the bulk and the single cells. We randomly picked

mutation loci from odd-numbered bases in the genome. For each of the phasing frequencies ρ
2 {0.001, 0.01, 0.1, 1}, we picked ρ × 500, 000 base pairs as gSNV sites and placed them ran-

domly in even indexed locations in the genome. So for ρ = 1, every second position in the

genome is a gSNV site, and each read containing a mutation has an accompanying gSNV site.

This construction is sufficient since the distance between sites does not affect the site selection

or the subsequent analysis. The gSNV sites are shared by the single-cell genomes, and the

mutation sites are shared according to their placement in the cell lineage tree. Further, we

masked the single-cell genomes to account for cell-specific ADO events. For each pair of sites
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(which consists of consecutive positions, one even and one odd), we dropped the maternal and

paternal alleles independently with pado 2 {0, 0.1, 0.2}.

The fragments were generated using the Pólya urn process for each site. The masked single-

cell genome determined the initial state of the urn. If both alleles are dropped out, no frag-

ments were generated. In the case of a single ADO, all the fragments are generated from the

non-dropped allele. If there is no dropout, the fragments are simulated from both alleles, i.e.,

the urn was initialized with two balls of different colors. The number of fragments per pair of

sites was sampled from a Poisson distribution with rate parameter λ 2 {10, 20}, i.e., an interval

that contains the read depth found in our biological data. Whenever a fragment is copied, an

AE occurs with pae independently. So, even though we base our inference on assuming that

there is at most one AE per site, we allowed multiple errors during the data simulation. We use

pae = 10−5 or pae = 10−3 for all cells of a dataset; throughout the paper, we refer to these datasets

as a dataset with low and high AEs, respectively.

We simulated how the fragments are sequenced so that reads are obtained, as follows.

Phred quality scores were sampled from a discrete Uniform distribution in the range [30, 42].

A sequencing error was introduced based on the corresponding base-calling error probability.

We used a straightforward approach for the bulk reads and replicated the bulk genome 15

times. One can view this step as the bulk data is generated using 15 single-cell genomes with-

out any mutations. This replication does not contain a DNA amplification step since the bulk

data consists of reads sequenced from unamplified fragments.

Accuracy metrics

This section describes the two accuracy metrics used for the analysis.

The similarity score. The Robinson-Foulds (RF) distance [47] is a symmetric difference

metric commonly used for phylogenetic tree comparisons [36, 48]. The metric calculates the

total number of bipartitions in either of the trees but not in both. We normalized the RF scores

(nRF) by the total number of non-trivial bipartitions in both tree topologies (a leaf’s edge is

considered trivial. If two tree topologies have the same leaf set, there will be edges that define

the same bipartition. There will be C identical bipartitions, regardless of the internal structure

of the trees) nRF = RF/IB, where IB is the total number of internal edges in the two tree topolo-

gies. Notice that the number of non-trivial edges of a tree depends on its topology, e.g.,

whether the tree is binary or not. We used a similarity score,

similarity score ¼ 1 � nRF;

in [0, 1]. If the trees have the same topology, the similarity score is 1. If the trees do not have

any common non-trivial bipartition, the similarity score is 0.

Transfer bootstrap expectation. The TBE is introduced as an alternative metric to com-

pute the support of bootstrap trees on a reference tree topology [43]. Compared to Felsen-

stein’s bootstrap proportions [49], which checks how frequently an edge appears in the

bootstrap trees, the TBE metric penalizes the slight topological differences less. TBE metric

computes the number of operations (e.g., taxa removal) required to match an edge in the boot-

strap tree to the reference tree.

TBE score of an edge is in [0, 1], where 1 means the edge exists in all bootstrap trees and 0

means the edge appears at random. The higher the TBE score of an edge, the better.

Discussion

We evaluated the performance of Scuphr on a biological dataset with SCIF and Phylovar, and

on several simulated datasets with SCIF. Our investigation focused on the algorithm’s
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robustness for varying numbers of single-cells, read coverages, and technological artifacts such

as AEs, ADOs, and sequencing errors. We observed that for the low amplification error data-

sets, Scuphr performs on par or better than SCIF in most cases. For the high amplification

error datasets, Scuphr consistently outperforms SCIF. When provided by the candidate muta-

tion sites selected by our method, SCIF’s performance becomes similar to Scuphr in most low

amplification error datasets; however, Scuphr continues to outperform SCIF in the high

amplification error datasets.

In addition, we showed that the algorithm scales with the number of single cells and sites.

Moreover, it scales inversely with the number of cores. For instance, using a single core, the

main part of Scuphr takes approximately 1.6 hours for 20 cells and 1024 singleton sites. The

time required for 100, 000 sites would be approximately 166.7 hours; however, with a modest

infrastructure of five compute nodes with 32 CPU cores each, Scuphr’s runtime can be

reduced to approximately 1 hour. This advantage makes it possible to analyze millions of sites

in the genome, whereas most state-of-the-art methods can handle only a few thousand sites.

Finally, we evaluated the performance of Scuphr using a biological dataset of 18 single cells

acquired from [30]. We selected approximately 3.4 million candidate sites for analysis and

used bootstrapping to obtain edge supports on the reference tree topology. Although the bio-

logical dataset was challenging, Scuphr assigned high support values to the edges that separate

the two main clones and some closely related cells. Scuphr outperformed both SCIF and Phy-

lovar by obtaining higher edge supports for a subclone, but was unable to support a sibling

relation that was successfully identified by Phylovar.

The graphical model of Scuphr that is tailored for the healthy, diploid scDNA-seq data,

combined with the NJ algorithm yields higher or as good accuracy as the state-of-the-art meth-

ods. Scuphr’s computational complexity is affected quadratically by the number of single cells.

However, this issue can be redeemed with the embarrassingly parallel nature of the method. In

addition, the dynamic programming technique is leveraged to calculate the read likelihoods

efficiently. In the experiments, we showed how the runtimes of singleton and paired sites dif-

fer. The computations of the paired sites are considerably slower due to the more common

mutation types and amplification error types to marginalize over. Since there are far fewer

paired sites selected from the biological dataset for analysis, this wouldn’t cause an issue. In

addition, as a design choice, we used bulk data taken from another tissue to represent the

unamplified, non-mutated state. Even though there are publicly available datasets (such as the

fibroblast data used in this study) that contain both single-cell and bulk data, this might not

always be the case. In the absence of the bulk data, publicly available known single nucleotide

polymorphism datasets could be used for read-phasing. Alternatively, the analysis could be

limited to singleton sites and the site selection could be done by comparing the reads of single-

cells to a reference genome.

As our goal is to reconstruct the cell lineage tree topology, we have not placed emphasis on

estimating the the branch lengths. With our experimental studies, we have shown that Scuphr

has high accuracy in terms of tree topology reconstruction; however, we caution that the

branch lengths estimates obtained in the tree reconstruction step needs further validation.

Conclusion

Single-cell DNA sequencing technologies enable detailed analyses of development and cell dif-

ferentiation [1–3]. We presented Scuphr, a probabilistic framework that reconstructs cell line-

age trees from healthy, diploid single-cells using whole-genome amplified DNA sequencing

data. Scuphr is designed with the challenges of the scDNA-seq data in mind, it fits well with
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the biological findings, and in particular, it obtains better accuracy with leveraging read-

phasing.

In addition to the distance-based and MCMC-based methods, various variational inference

based methods have recently been developed for tree reconstruction tasks [50–53]. These

methods typically operate in the standard phylogeny setting and require a good set of initial

trees for their analysis. In the potential future development of such methods where the domain

moves toward the single-cell setting, Scuphr could provide a good set of bootstrap trees as

input quickly.

Scuphr is designed for healthy, diploid scDNA-seq data. However, it can be enhanced to

handle cancer data by incorporating copy number variations into its model. We will investi-

gate how the extended model handles the challenges of single-cell tumor data and compare its

performance with state-of-the-art methods in our future work.

Supporting information

S1 Appendix. Supplementary information. The file includes additional formulations, biolog-

ical dataset, and benchmarking details.

(PDF)

Acknowledgments

The computations and data handling were enabled by resources provided by the Swedish

National Infrastructure for Computing (SNIC).

Author Contributions

Conceptualization: Hazal Koptagel, Seong-Hwan Jun, Jens Lagergren.

Formal analysis: Hazal Koptagel, Jens Lagergren.

Funding acquisition: Jens Lagergren.

Investigation: Hazal Koptagel, Joanna Hård, Jens Lagergren.

Methodology: Hazal Koptagel, Seong-Hwan Jun, Jens Lagergren.

Project administration: Jens Lagergren.

Software: Hazal Koptagel, Seong-Hwan Jun.

Supervision: Jens Lagergren.

Validation: Hazal Koptagel.

Visualization: Hazal Koptagel.

Writing – original draft: Hazal Koptagel, Jens Lagergren.

Writing – review & editing: Hazal Koptagel.

References
1. Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A, et al. Somatic mutation in single

human neurons tracks developmental and transcriptional history. Science. 2015; 350(6256):94–98.

https://doi.org/10.1126/science.aab1785 PMID: 26430121

2. Marioni JC, Arendt D. How single-cell genomics is changing evolutionary and developmental biology.

Annu Rev Cell Dev Biol. 2017; 33:537–553. https://doi.org/10.1146/annurev-cellbio-100616-060818

PMID: 28813177

PLOS COMPUTATIONAL BIOLOGY Scuphr: A probabilistic framework for cell lineage tree reconstruction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012094 May 9, 2024 22 / 25

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012094.s001
https://doi.org/10.1126/science.aab1785
http://www.ncbi.nlm.nih.gov/pubmed/26430121
https://doi.org/10.1146/annurev-cellbio-100616-060818
http://www.ncbi.nlm.nih.gov/pubmed/28813177
https://doi.org/10.1371/journal.pcbi.1012094


3. Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, Kwon M, et al. Aging and neurodegenera-

tion are associated with increased mutations in single human neurons. Science. 2018; 359(6375):555–

559. https://doi.org/10.1126/science.aao4426 PMID: 29217584

4. Lee-Six H,Øbro NF, Shepherd MS, Grossmann S, Dawson K, Belmonte M, et al. Population dynamics

of normal human blood inferred from somatic mutations. Nature. 2018; 561(7724):473–478. https://doi.

org/10.1038/s41586-018-0497-0 PMID: 30185910

5. Bae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T, Franjic D, et al. Different mutational rates and

mechanisms in human cells at pregastrulation and neurogenesis. Science. 2018; 359(6375):550–555.

https://doi.org/10.1126/science.aan8690 PMID: 29217587

6. Coorens THH, Moore L, Robinson PS, Sanghvi R, Christopher J, Hewinson J, et al. Extensive phyloge-

nies of human development inferred from somatic mutations. Nature. 2021; 597(7876):387–392.

https://doi.org/10.1038/s41586-021-03790-y PMID: 34433963

7. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by sin-

gle-cell sequencing. Nature. 2011; 472(7341):90–94. https://doi.org/10.1038/nature09807 PMID:

21399628

8. Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference of clonal popula-

tion structure in cancer. Nat Methods. 2014; 11(4):396–398. https://doi.org/10.1038/nmeth.2883 PMID:

24633410

9. Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, Morris Q. PhyloWGS: reconstructing subclonal

composition and evolution from whole-genome sequencing of tumors. Genome Biol. 2015; 16:35.

https://doi.org/10.1186/s13059-015-0602-8 PMID: 25786235

10. Safinianaini N, de Souza CPE, Lagergren J. CopyMix: mixture model based single-cell Clustering and

Copy Number Profiling using Variational Inference. bioRxiv. 2021;.

11. Jun SH, Toosi H, Mold J, Engblom C, Chen X, O’Flanagan C, et al. Reconstructing clonal tree for phylo-

phenotypic characterization of cancer using single-cell transcriptomics. Nat Commun. 2023; 14(1):982.

https://doi.org/10.1038/s41467-023-36202-y PMID: 36813776

12. Lynch M. Evolution of the mutation rate. Trends Genet. 2010; 26(8):345–352. https://doi.org/10.1016/j.

tig.2010.05.003 PMID: 20594608

13. Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, et al. Whole-genome sequencing is more

powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A. 2015;

112(17):5473–5478. https://doi.org/10.1073/pnas.1418631112 PMID: 25827230

14. Navin NE. Cancer genomics: one cell at a time. Genome Biol. 2014; 15(8):452. https://doi.org/10.1186/

s13059-014-0452-9 PMID: 25222669

15. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev

Genet. 2016; 17(3):175. https://doi.org/10.1038/nrg.2015.16 PMID: 26806412

16. Dong X, Zhang L, Milholland B, Lee M, Maslov AY, Wang T, et al. Accurate identification of single-nucle-

otide variants in whole-genome-amplified single cells. Nat Methods. 2017; 14(5):491–493. https://doi.

org/10.1038/nmeth.4227 PMID: 28319112

17. Zafar H, Navin N, Nakhleh L, Chen K. Computational approaches for inferring tumor evolution from sin-

gle-cell genomic data. Curr Opin Syst Biol. 2018; 7:16–25. https://doi.org/10.1016/j.coisb.2017.11.008
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