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Abstract Rich data from large biobanks, coupled with increasingly accessible association 
statistics from genome-wide association studies (GWAS), provide great opportunities to dissect 
the complex relationships among human traits and diseases. We introduce BADGERS, a powerful 
method to perform polygenic score-based biobank-wide association scans. Compared to tradi-
tional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple 
traits to be measured in the same cohort. We applied BADGERS to two independent datasets for 
late-onset Alzheimer’s disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 
48 significant associations for AD. Family history, high cholesterol, and numerous traits related to 
intelligence and education showed strong and independent associations with AD. Furthermore, we 
identified 41 significant associations for a variety of AD endophenotypes. While family history and 
high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and 
education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel 
insights into the distinct biological processes underlying various risk factors for AD.

eLife assessment
In the last 15 years, large-scale association studies (GWAS) have served to estimate the associa-
tion between genome-wide common variants and a large number of disparate traits and diseases 
in humans. This valuable method provides a new way to find correlations between the genetic 

Research Article

*For correspondence: 
qlu@biostat.wisc.edu
†These authors contributed 
equally to this work

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 19

Sent for Review
05 August 2023
Preprint posted
07 August 2023
Reviewed preprint posted
12 December 2023
Version of Record published
24 May 2024

Reviewing Editor: Nicholas 
Mancuso, University of Southern 
California, United States

‍ ‍ Copyright Yan, Hu et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.91360
mailto:qlu@biostat.wisc.edu
https://doi.org/10.1101/468306
https://doi.org/10.7554/eLife.91360.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Neuroscience

Yan, Hu et al. eLife 2023;12:RP91360. DOI: https://​doi.​org/​10.​7554/​eLife.​91360 � 2 of 24

component of a phenotype of interest, and all this wealth of genetic information. This software adds 
as a new tool to investigate genetic correlation between traits, and to generate new mechanistic 
hypotheses and dissect the role of the observed associations in disease heterogeneity. The results 
of the application of their method are solid and generally agree with what others have seen using 
similar AD and UKB data.

Introduction
Late-onset AD is a prevalent, complex, and devastating neurodegenerative disease without a current 
cure. Millions of people are currently living with AD worldwide, and the number is expected to grow 
rapidly as the population continues to age (Prince et al., 2013; Reitz and Mayeux, 2014). With the 
failure of numerous drug trials, it is of great interest to identify modifiable risk factors that can be 
potential targets in the therapeutics development for AD (Østergaard et al., 2015; Larsson et al., 
2017; Norton et al., 2014). Epidemiological studies that directly test associations between measured 
risk factors and AD are difficult to conduct and interpret because identified associations are, in many 
cases, affected by confounding and reverse causality. Despite being ubiquitous challenges in risk 
factor studies for complex diseases, these issues are particularly critical for AD due to its extended 
pre-clinical stage – irreversible pathologic changes have already occurred in the decade or two prior to 
clinical symptoms (Jack et al., 2013). On the other hand, Mendelian randomization methods (Sleiman 
and Grant, 2010; Davey Smith and Hemani, 2014; Zhu et al., 2018) have been developed to iden-
tify causal risk factors for disease using data from GWAS. Despite the favorable theoretical properties 
in identifying causal relationships, these methods have limited statistical power, thereby not suitable 
for hypothesis-free screening of risk factors.

Motivated by transcriptome-wide association study – an analysis strategy that identifies genes 
whose genetically regulated expression values are associated with disease (Gamazon et al., 2015; 
Gusev et al., 2016; Hu et al., 2018), we seek a systematic and statistically powerful approach to 
identify risk factors using summary association statistics from large-scale GWAS. GWAS for late-onset 
AD has been successful, and dozens of associated loci have been identified to date (Lambert et al., 
2013; Harold et al., 2009; Hollingworth et al., 2011; Naj et al., 2011; Seshadri et al., 2010; Jun 
et al., 2017). Although direct information on risk factors is limited in these studies, dense genotype 
data on a large number of samples, in conjunction with independent reference datasets for thousands 
of complex human traits such as the UK biobank (Bycroft et al., 2017), make it possible to genetically 
impute potential risk factors and test their associations with AD. This strategy allows researchers to 
study risk factors that are not directly measured in AD studies. Furthermore, it reduces the reverse 
causality because the imputation models are trained on independent, younger, and mostly dementia-
free reference cohorts, thereby improving the interpretability of findings.

Here, we introduce BADGERS (Biobank-wide Association Discovery using GEnetic Risk Scores), a 
statistically powerful and computationally efficient method to identify associations between a disease 
of interest and a large number of genetically imputed complex traits using GWAS summary statistics. 
We applied BADGERS to identify associated risk factors for AD from 1738 heritable traits in the UK 
biobank and replicated our findings in independent samples. Furthermore, we performed multivariate 
conditional analysis, Mendelian randomization, and follow-up association analysis with a variety of AD 
biomarkers, pathologies, and pre-clinical cognitive phenotypes to provide mechanistic insights into 
our findings.

Results
Method overview
Here, we briefly introduce the BADGERS model. The workflow of BADGERS is shown in Figure 1. A 
brief flowchart including all the analyses we contained in the manuscript was shown in the supple-
mentary material (Figure 1—figure supplement 1). Complete statistical details are discussed in the 
Methods section. BADGERS is a two-stage method to test associations between traits. First, poly-
genic risk scores (PRS) are trained to impute complex traits using genetic data. Next, we test the 
association between a disease or trait of interest and various genetically-imputed traits. Given a PRS 
model, the imputed trait can be denoted as

https://doi.org/10.7554/eLife.91360
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	﻿‍ T̂ = XW ‍�

where ‍XN×M‍ is the genotype matrix for ‍N ‍ individuals in a GWAS, and ‍WM×1‍ is the Mx1 matrix denotes 
pre-calculated weight values on SNPs in the PRS model. Then, we test the association between 
measured trait ‍Y ‍ and imputed trait ‍T ‍ via a univariate linear model.

	﻿‍ Y = α + T̂γ + δ‍�

The test statistic for ‍γ‍ can be expressed as:

	﻿‍
Z = γ̂

se
(
γ̂
) ≈ WTΓ

∼
Z

‍�

where ‍
∼
Z ‍ is the vector of SNP-level association z-scores for trait ‍Y ‍, and ‍Γ‍ is a diagonal matrix with the 

jth diagonal element being the ratio between the standard deviation of the jth SNP and that of ‍̂T ‍ .
This model can be further generalized to perform multivariate analysis. If ‍K ‍ imputed traits are 

included in the analysis, we use a similar notation as in univariate analysis:

Figure 1. Biobank-wide Association Discovery using GEnetic Risk Scores (BADGERS) Workflow. BADGERS takes 
(a) Alzheimer’s disease genome-wide association studies (GWAS), (b) linkage disequilibrium (LD) reference panel, 
and (c) Human traits GWAS from the UK biobank as input. The generated result will be the (d) Association between 
Alzheimer’s disease and human traits. In graph (d), each triangle represents one human trait, and different colors 
represent different trait categories.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. A flowchart for analyses of Alzheimer’s genetic data.

https://doi.org/10.7554/eLife.91360
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	﻿‍ T̂∗ = XW∗‍�

Here, ‍W
∗
M×K ‍ is a matrix and each column of ‍W∗‍ is the pre-calculated weight values on SNPs for each 

imputed trait. Then, the associations between ‍Y ‍ and ‍K ‍ imputed traits ‍T̂i
(
1 ≤ i ≤ K

)
‍ are tested via a 

multivariate linear model.

	﻿‍ Y = α∗ + T̂∗γ∗ + δ∗‍�

where ‍γ
∗ =

(
γ1, . . . , γK

)T
‍ is the vector of regression coefficients. The z-score for ‍γi

(
1 ≤ i ≤ K

)
‍ can be 

denoted as:

	﻿‍
Zi = γ̂i

se
(
γ̂i
) ≈ 1√

Uii
IT
i U

(
W∗)T

Θ
∼
Z

‍�

where ‍U ‍ is the inverse variance-covariance matrix of ‍̂T∗‍ ; ‍Ii‍ is the ‍K × 1‍ vector with the ith element 
being 1 and all other elements equal to 0; is a ‍M × M ‍ diagonal matrix with the ith diagonal element 

being 
‍

√
var

(
Xi
)
‍
 ; and ‍

∼
Z ‍ is defined the same as the univariate case as the vector of SNP-level associ-

ation z-scores for trait ‍Y ‍.

Simulations
We used real genotype data from the Genetic Epidemiology Research on Adult Health and Aging 
(GERA) to conduct simulation analyses (Methods). First, we evaluated the performance of our method 

Figure 2. Simulation results. Biobank-wide Association Discovery using GEnetic Risk Scores (BADGERS) and regression analysis based on individual-
level data showed (A) highly consistent effect size estimates for 1738 polygenic risk scores (PRS) in simulation and (B) comparable statistical power 
(setting 3).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of effect size estimates from Biobank-wide Association Discovery using GEnetic Risk Scores (BADGERS) and 
regression analysis based on individual-level data.

Figure supplement 2. Comparison of p-values from Biobank-wide Association Discovery using GEnetic Risk Scores (BADGERS) and regression analysis 
based on individual-level data.

Figure supplement 3. Comparison of effect size estimates from Biobank-wide Association Discovery using GEnetic Risk Scores (BADGERS) and 
regression analysis based on individual-level data when p-values are smaller than 0.05.

Figure supplement 4. Biobank-wide Association Discovery using GEnetic Risk Scores (BADGERS) estimates using marginal polygenic risk scores (PRS) 
and joint PRS.

https://doi.org/10.7554/eLife.91360
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on data simulated under the null hypothesis. We tested the associations between randomly simulated 
traits and 1738 PRS from the UK biobank and did not observe inflation in type-I error (Supplementary 
file 1). Similar results were also observed when we simulated traits that are heritable but not directly 
associated with any PRS. Since BADGERS only uses summary association statistics and externally 
estimated linkage disequilibrium (LD) as input, we also compared effect estimates in BADGERS with 
those of traditional regression analysis based on individual-level data. Regression coefficient estimates 
and association p-values from these two methods were highly consistent in both simulation settings 
(Figure 2A and Figure 2—figure supplements 1–3), showing minimal information loss in summary 
statistics compared to individual-level data indicating highly consistent performance compared to 
methods based on individual-level data. To evaluate the statistical power of BADGERS, we simulated 
traits by combining effects from randomly selected PRS and a polygenic background (Methods). We 
set the effect size of PRS to be 0.02, 0.015, 0.01, 0.008, and 0.005. BADGERS showed comparable 
statistical power to the regression analysis based on individual-level genotype and phenotype data 
(Figure 2B, Supplementary file 1). Overall, our results suggest that using summary association statis-
tics and externally estimated LD as a proxy for individual-level genotype and phenotype data does not 
inflate type-I error rate or decrease power. The performance of BADGERS is comparable to regression 
analysis based on individual-level data. We also studied if more sophisticated polygenic risk predic-
tion methods could potentially lead to higher statistical power in downstream association tests. We 
compared the performance of PRS based on marginal effect sizes with that of LDpred, a more sophis-
ticated PRS model that jointly estimates SNP effects via a Bayesian framework (Vilhjálmsson et al., 
2015). Imputation models based on multivariate analysis indeed improved the results. When using 
marginal PRS to impute traits, the correlation between ‍̂γi‍ and ‍γi‍ was 0.79. This correlation improved 
to 0.91 when using LDpred PRS (Figure 2—figure supplement 4). However, such improvement did 
not substantially affect the statistical power in association testing. Using marginal PRS, our analysis 
achieved a statistical power of 86% to identify associations at a type-I error rate of 0.05, and the power 
was 88% when using multivariate effect estimates to calculate PRS. These results suggest that while 
more sophisticated PRS methods can improve the results in BADGERS, simple PRS based on marginal 
effects also shows reasonably good performance.

Figure 3. polygenic risk score (PR)S-based biobank-wide association scan (BWAS) identifies risk factors for 
Alzheimer’s disease (AD). Meta-analysis p-values for 1738 heritable traits in the UK biobank are shown in the figure. 
p-values are truncated at 1e-15 for visualization purposes. The horizontal line marks the Bonferroni-corrected 
significance threshold (i.e. p=0.05/1738). Positive associations point upward, and negative associations point 
downward.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Workflow of the two-stage biobank-wide association scan (BWAS) for late-onset Alzheimer’s 
disease (AD).

Figure supplement 2. Associations between Alzheimer’s disease (AD) and education attainment in two 
independent analyses.

https://doi.org/10.7554/eLife.91360
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Identify risk factors for late-onset AD among 1738 heritable traits in 
the UK biobank
We applied BADGERS to conduct a biobank-wide association scan (BWAS) for AD risk factors from 1738 
heritable traits (p<0.05; Methods) in the UK biobank. We repeated the analysis on two independent 
GWAS datasets for AD and further combined the statistical evidence via meta-analysis (Figure 3—
figure supplement 1). We used stage-I association statistics from the International Genomics of 
Alzheimer’s Project (IGAP; n=54,162) as the discovery phase, then replicated the findings using 7050 
independent samples from the Alzheimer’s Disease Genetics Consortium (ADGC). We identified 50 
significant trait-AD associations in the discovery phase after correcting for multiple testing, among 
which 14 had p<0.05 in the replication analysis. Despite the considerably smaller sample size in the 
replication phase, top traits identified in the discovery stage showed strong enrichment for p<0.05 
in the replication analysis (enrichment = 2.5, p=2.2e-5; hypergeometric test). In the meta-analysis, a 
total of 48 traits reached Bonferroni-corrected statistical significance and showed consistent effect 
directions in the discovery and replication analyses (Figure 3 and Supplementary file 2).

Unsurprisingly, many identified associations were related to dementia and cognition. Family history 
of AD and dementia showed the most significant associations with AD (p=3.7e-77 and 5.2e-28 for 
illnesses of mother and father, respectively). Having any dementia diagnosis is also strongly and posi-
tively associated (p=8.5e-11). In addition, we observed consistent and negative associations between 
better performance in cognition test and AD risk. These traits include fluid intelligence score (p=2.4e-
14), time to complete round in cognition test (p=2.8e-9), correct final attempt (p=9.1e-11), and many 
others. Consistently, education attainment showed strong associations with AD. Age completed full 
time education (p=2.5e-7) was associated with lower AD risk. Four out of seven traits based on a 
survey about education and qualifications were significantly associated with AD (Figure 3—figure 
supplement 2). Higher education such as having a university degree (p=4.4e-12), A levels/AS levels or 
equivalent (p=6.9e-9), and professional qualifications (p=7.1e-6) were associated with lower AD risk. 
In contrast, choosing ‘none of the above’ in this survey was associated with a higher risk (p=1.6e-11). 
Other notable strong associations include high cholesterol (p=2.5e-15; positive), lifestyle traits such 
as cheese intake (p=2.5e-10; negative), occupation traits such as job involving heavy physical work 
(p=2.7e-10; positive), anthropometric traits including height (p=5.3e-7; negative), and traits related to 
pulmonary function, e.g., forced expiratory volume in 1 s (FEV1; p=1.9e-6; negative). Detailed infor-
mation on all associations is summarized in Supplementary file 2.

Multivariate conditional analysis identifies independently associated 
risk factors
Of note, associations identified in the marginal analysis are not guaranteed to be independent. 
We observed clear correlational structures among the identified traits (Figure 4). For example, 
PRS of various intelligence and cognition-related traits are strongly correlated, and consumption 
of cholesterol-lowering medication is correlated with self-reported high cholesterol. To account for 
the correlations among traits and identify risk factors that are independently associated with AD, 
we performed multivariate conditional analysis using GWAS summary statistics (Methods). First, 
we applied hierarchical clustering to the 48 traits we identified in marginal association analysis 
and divided these traits into 15 representative clusters. The traits showing the most significant 
marginal association in each cluster were included in the multivariate analysis (Figure 4—figure 
supplement 1). Similar to the marginal analysis, we analyzed IGAP and ADGC data separately 
and combined the results using meta-analysis (Supplementary file 2). All 15 representative traits 
remained nominally significant (p<0.05) and showed consistent effect directions between marginal 
and conditional analyses (Supplementary file 1). However, several traits showed substantially 
reduced effect estimates and inflated p-values in multivariate analysis, including fluid intelligence 
score, mother still alive, unable to work because of sickness or disability, duration of moderate 
activity, and intake of cholesterol-lowering spread. Interestingly, major trait categories that showed 
the strongest marginal associations with AD (i.e. family history, high cholesterol, and education/
cognition) were independent from each other. Paternal and maternal family history also showed 
independent associations with AD, consistent with the low correlation between their genetic risk 
scores (correlation = 0.052).

https://doi.org/10.7554/eLife.91360
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Influence of the APOE region on identified associations
Furthermore, we evaluated the impact of APOE on identified associations. We removed the extended 
APOE region (chr19: 45,147,340–45,594,595; hg19) from summary statistics of the 48 traits showing 
significant marginal associations with AD and repeated the analysis. We observed a substantial drop 
in the significance level of many traits, especially family history of AD, dementia diagnosis, and high 
cholesterol (Figure  5, Figure  5—figure supplement 1, and Supplementary file 2). 38 out of 48 
traits remained significant under stringent Bonferroni correction after APOE removal. Interestingly, 

Figure 4. Polygenic risk score (PRS) correlation matrix for the 48 traits identified in marginal association analysis. Trait categories and association 
directions with Alzheimer’s disease (AD) are annotated. The dendrogram indicates the results of hierarchical clustering. We used 1000 genome samples 
with European ancestry to calculate PRS and evaluate their correlations. Label ‘irnt’ means that trait values were standardized using rank-based inverse 
normal transformation in the genome-wide association study (GWAS) analysis.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Correlation heatmap for the 15 representative traits selected based on hierarchical clustering.

https://doi.org/10.7554/eLife.91360
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the associations between AD and almost all cognition/intelligence traits were virtually unchanged, 
suggesting a limited role of APOE in these associations.

Causal inference via Mendelian randomization
Next, we investigated the evidence for causality among identified associations. We performed 
Mendelian randomization (MR-IVW; Methods) in IGAP and ADGC datasets separately and meta-
analyzed the results on the complete set of 1738 heritable traits from the UK biobank. A total of 48 
traits reached Bonferroni-corrected statistical significance and showed consistent effect directions in 
the discovery and replication analyses using BADGERS. In contrast, MR-IVW only identified nine traits 
with Bonferroni-corrected statistical significance. Among these nine traits, seven were also identified 
by BADGERS (Supplementary file 1). The signs of all significant causal effects identified by MR-IVW 
were consistent with results from BADGERS. The most significant effect was family history (p=1.1e-
233 and 1.7e-69 for maternal and paternal history, respectively). Dementia diagnosis (p=9.1e-7), high 
cholesterol (p=4.1e-6), A levels/AS levels education (p=1.7e-4), and time spent watching television 
(p=2.4e-4) were also among the top significant effects. Of note, the fluid intelligence score, one of 
the most significant associations identified by BADGERS, did not reach statistical significance in MR 
(p=0.06), which may be explained by its polygenic genetic architecture. It is also worth noting that 
if we scan all 1738 traits using BADGERS and then apply MR-IVW on the 48 Bonferroni-corrected 

Figure 5. Influence of the APOE region on trait-Alzheimer’s disease (AD) associations. The horizontal and vertical 
axes denote association p-values before and after removal of the APOE region, respectively. Original p-values (i.e. 
the x-axis) were truncated at 1e-20 for visualization purposes.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Influence of a wider APOE region on polygenic risk score (PRS)-Alzheimer’s disease (AD) 
associations.

https://doi.org/10.7554/eLife.91360
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significant traits, 23 could reach nominal significance (p<0.05) in MR, and seven could reach signifi-
cance under Bonferroni correction (p<0.05/48; Supplementary file 1).

We also compared BADGERS with another more recent method GSMR (Zhu et al., 2018). Due to 
the smaller sample size in the ADGC dataset, we only applied GSMR to the IGAP summary statistics. 
In total, 18 traits reached statistical significance under Bonferroni correction (Supplementary file 1). 
However, these results showed only moderate consistency with MR-IVW and BADGERS. Among the 
18 significant traits, only 1 trait, maternal family history of Alzheimer’s disease and dementia, over-
lapped with significant traits identified by MR-IVW. Six out of 18 traits overlapped with significant 
traits identified by BADGERS. Among the 18 significant traits, eight are related to body fat mass and 
two are related to educational attainment. The most significant effect was illnesses of mother (p=2.4e-
294). College or University degree (p=4.84e-6), education; none of the above (p=3.6e-4), A levels/
AS levels education (p=3.8e-6), and time spent watching television (p=4.0e-3) were also among top 
significant effects. Notably, GSMR failed to identify paternal family history or high cholesterol as risk 
factors for Alzheimer’s disease. If we only consider the 48 significant traits identified by BADGERS, 
11 were nominally significant (p<0.05). However, 23 traits did not have enough significant SNPs to 
perform the GSMR analysis (at least 10 SNPs are required). The signs of all significant causal effects 
identified by GSMR were consistent between association effects in BADGERS.

Additionally, we included GSMR analysis results after removing APOE region from the 48 identi-
fied traits. Only maternal family history reached Bonferroni-corrected statistical significance, further 
demonstrating the lack of statistical power in MR when performing biobank-wide scans (Supplemen-
tary file 1).

Associations with AD subgroups, biomarkers, and pathologies
To further investigate the mechanistic pathways for the identified risk factors, we applied BADGERS to 
a variety of AD subgroups, biomarkers, and neuropathologic features (Supplementary file 1). Overall, 
29 significant associations were identified under a false discovery rate (FDR) cutoff of 0.05, and these 
endophenotypes showed distinct association patterns with AD risk factors (Figure  6; Figure  6—
figure supplement 1). First, we tested the associations between the 48 AD-associated traits and five 
AD subgroups defined in the Executive Prominent Alzheimer’s Disease (EPAD) study, i.e., memory, 
language, visuospatial, none, and mix (Methods) (Mukherjee et  al., 2018; Crane et  al., 2017). 
Maternal family history of AD and dementia was strongly and consistently associated with all five 
EPAD subgroups (Supplementary file 2), with memory subgroup showing the strongest association 
(p=3.3e-16), which is consistent with the higher frequency of APOE ε4 in this subgroup (Mukherjee 
et al., 2018). Paternal family history was not strongly associated with any subgroups, but the effect 
directions were consistent. Interestingly, intelligence and cognition-related traits such as correct final 
attempt in cognitive test (p=2.7e-5) and fluid intelligence score (p=6.8e-5) were specifically associ-
ated with the ‘none’ subgroup – AD samples without relative impairment in any of the four cognitive 
domains. High cholesterol and related traits were associated with language, memory, and mix (i.e. AD 
samples with relative impairment in two or more domains) subgroups but showed weaker associations 
with the visuospatial and none subgroups.

Next, we extended our analysis to three biomarkers of AD in cerebrospinal fluid (CSF): amyloid 
beta (Aβ42), tau, and phosphorylated tau (ptau181) (Deming et al., 2017). Somewhat surprisingly, AD 
risk factors did not show strong associations with Aβ42 and tau (Supplementary file 2). Maternal family 
history of AD and dementia was associated with ptau181 (p=4.2e-4), but associations were absent for 
Aβ42 and tau. It has been recently suggested that CSF biomarkers have a sex-specific genetic architec-
ture (Deming et al., 2018). However, no association passed an FDR cutoff of 0.05 in our sex-stratified 
analyses (Supplementary file 2).

Furthermore, we applied BADGERS to a variety of neuropathologic features of AD and related 
dementias (Methods), including neuritic plaques (NPs), neurofibrillary tangles (NFTs), cerebral amyloid 
angiopathy (CAA), lewy body disease (LBD), hippocampal sclerosis (HS), and vascular brain injury (VBI) 
(Beecham et al., 2014). Family history of AD/dementia (p=3.8e-8, maternal; p=1.4e-5, paternal) and 
high cholesterol (p=2.1e-5) were strongly associated with NFT Braak stages (Supplementary file 2). 
NP also showed very similar association patterns with these traits (p=2.7e-19, maternal family history; 
p=2.6e-7, paternal family history; p=0.001, high cholesterol). The other neuropathologic features did 
not show strong associations. Of note, despite not being statistically significant, family history of AD/

https://doi.org/10.7554/eLife.91360
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dementia was negatively associated with VBI, and multiple intelligence traits were positively associ-
ated with LBD, showing distinct patterns with other pathologies (Figure 6—figure supplement 2). We 
also note that various versions of the same pathologies all showed consistent associations in our anal-
yses (Figure 6—figure supplement 2). The complete association results for all the endophenotypes 

Figure 6. Associations between identified Alzheimer’s disease (AD) risk factors and various AD subgroups, 
cerebrospinal fluid (CSF) biomarkers, and neuropathologic features. Asterisks denote significant associations 
based on an false discovery rate (FDR) cutoff of 0.05. p-values are truncated at 1e-5 for visualization purposes.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Association directions between identified Alzheimer’s disease (AD) risk factors and AD 
endophenotypes.

Figure supplement 2. Association results for the complete set of 13 neuropathologic features for Alzheimer’s 
disease (AD) and other dementias.

https://doi.org/10.7554/eLife.91360
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and all the traits are summarized in Supplementary file 2. We further identified the influence of the 
APOE region in these results. The association results for all the endophenotypes with APOE Region 
being removed are summarized in Supplementary file 2.

Associations with cognitive traits in a pre-clinical cohort
Finally, we studied the associations between AD risk factors and pre-clinical cognitive phenotypes 
using 1198 samples from the Wisconsin Registry for Alzheimer’s Prevention (WRAP), a longitudinal 
study of initially dementia-free middle-aged adults (Johnson et  al., 2018). Assessed phenotypes 
include mild cognitive impairment (MCI) status and three cognitive composite scores for executive 
function, delayed recall, and learning (Methods). A total of 12 significant associations reached an FDR 
cutoff of 0.05 (Supplementary file 2). Somewhat surprisingly, parental history and high cholesterol, 
the risk factors that showed the strongest associations with various AD endophenotypes, were not 
associated with MCI or cognitive composite scores in WRAP. Instead, education and intelligence-
related traits strongly predicted pre-clinical cognition (Figure 7). A-levels education and no education 
both showed highly significant associations with delayed recall (p=4.0e-5 and 7.7e-7) and learning 
(p=7.6e-6 and 5.0e-8). No education was also associated with higher risk of MCI (p=2.5e-4). Addition-
ally, fluid intelligence score was positively associated with the learning composite score (p=7.5e-4), 
and time to complete round in cognition test was negatively associated with the executive function 
(p=1.1e-5).

Discussion
In this work, we introduced BADGERS, a new method to perform association scans at the biobank 
scale using genetic risk scores and GWAS association statistics. Through simulations, we demon-
strated that our method provides consistent effect estimates and similar statistical power compared 
to regression analysis based on individual-level data. Additionally, we applied BADGERS to two 
large and independent GWAS datasets for late-onset AD. In our analyses, we used GWAS summary 
statistics from the UK biobank, one of the largest genetic cohort in the world, to generate PRS for 
complex traits. We estimated heritability for all available traits in the UK biobank and only included 
traits with nominally significant heritability (p<0.05) in our analyses. The GWAS summary statistics for 
Alzheimer’s disease were also obtained from the largest available study – International Genomics of 
Alzheimer’s Project (IGAP) and we further sought replication using a large, independent dataset from 
the Alzheimer’s Disease Genetics Consortium (ADGC). Overall, we are confident that these quality 

Figure 7. Associations between six traits and pre-clinical cognitive phenotypes in Wisconsin Registry for Alzheimer's Prevention (WRAP). Error bars 
denote the standard error of effect estimates. N=1,198.

https://doi.org/10.7554/eLife.91360
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control procedures largely controlled the false findings in our study. Among 1738 heritable traits in 
the UK biobank, we identified 48 traits showing statistically significant associations with AD. These 
traits covered a variety of categories, including family history, cholesterol, intelligence, education, 
occupation, and lifestyle. Although many of the identified traits are genetically correlated, multivariate 
conditional analysis confirmed multiple strong and independent associations for AD. Family history 
showing strong associations with AD is not a surprise, and many other associations are supported by 
the literature as well. The protective effect of higher educational and occupational attainment on the 
risk and onset of dementia is well studied (Valenzuela and Sachdev, 2006; Stern, 2012). Cholesterol 
buildup is also known to associate with β-amyloid plaques in the brain and higher AD risk (Reed et al., 
2014; Djelti et al., 2015; Simons et al., 2001).

More interestingly, these identified traits had distinct association patterns with various AD 
subgroups, biomarkers, pathologies, and pre-clinical cognitive traits. Five cognitively-defined AD 
subgroups were consistently associated with maternal family history, but only the group without 
substantial relative impairment in any domain (i.e. EPAD_none) was associated with intelligence 
and education. In addition, family history and high cholesterol were strongly associated with 
classic AD neuropathologies, including NP and NFT, while intelligence and educational attainment 
predicted pre-clinical cognitive scores and MCI. These results suggest that various AD risk factors 
may affect the disease course at different time points and via distinct biological processes, and 
genetically predicted risk factors for clinical AD include at least two separate components. While 
some risk factors (e.g. high cholesterol and APOE) may directly contribute to the accumulation 
of pathologies, other factors (e.g. intelligence and education) may buffer the adverse effect of 
brain pathology on cognition (Stern, 2012). One possible scenario is that family history and high 
cholesterol are the fundamental causes of AD while education level and intelligence are the param-
eters of such factors. While if one didn’t have such a factor in the first stage, they are protected 
from getting AD, if someone with such factor and also has high score in education attainment or 
intelligence, they can also get rid of the possibility of getting AD. We also investigated the influ-
ence of APOE on the identified associations. Effects of family history and high cholesterol were 
substantially reduced after APOE removal. In contrast, associations with cognition and education 
were virtually unchanged. These results suggest that various AD risk factors may affect the disease 
course at different time points and via distinct biological processes. While some risk factors (e.g. 
high cholesterol and APOE) may directly contribute to the accumulation of pathologies, other 
factors (e.g. intelligence and education) reduce the adverse effect of brain pathology on cognition 
(Stern, 2012).

Furthermore, we note that the association results in BADGERS need to be interpreted with caution. 
Although PRS-based association analysis is sometimes treated as causal inference in the literature 
(Paternoster et al., 2017), we do not see BADGERS as a tool to identify causal factors. Key assump-
tions in causal inference are in many cases, violated when analyzing complex, highly polygenic traits, 
which may lead to complications when interpreting results. In our analysis, BADGERS showed superior 
statistical power than MR-IVW – among 1738 heritable traits, 48 reached Bonferroni significance in 
BADGERS, 9 and 18 traits reached Bonferroni significance in MR-IVW and GSMR, respectively. Among 
the 48 traits identified by BADGERS, 23 reached nominal statistical significance in MR-IVW and 11 
were nominally significant in GSMR. BADGERS is a statistically powerful and computationally efficient 
method for identifying associations between a disease of interest and genetically imputed complex 
traits. Due to the capability of utilizing PRS with a large number of SNPs to impute complex traits, 
BADGERS has substantially improved statistical power compared to MR methods. And because of 
this, it can serve as a hypothesis-free method to screen for candidate risk factors from biobank-scale 
datasets with an overwhelming number of traits. After a list of candidate risk factors is identified using 
BADGERS, MR methods can be applied to carefully demonstrate causality. We envision BADGERS as 
a tool to prioritize associations among a large number of candidate risk factors so that robust causal 
inference methods can be applied to carefully assess causal effects. In addition, BADGERS requires a 
reference panel to provide LD estimates as a summary statistics-based method. If the population in 
the reference panel does not match that of the GWAS, it may create bias in the analysis. Our simu-
lation results suggest that 1000 Genomes European samples is sufficient for our analysis when the 
GWAS was also conducted on European samples. Our implemented BADGERS software is flexible on 
the choice of LD reference panel. It allows users to change the reference dataset when they see fit.

https://doi.org/10.7554/eLife.91360
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What’s more, environmental factors may play a big role in the identified associations. There is little 
doubt that the environment could influence many complex traits, including the ones highlighted by the 
reviewer. However, this does not necessarily mean that these traits cannot also have a genetic compo-
nent (or be genetically heritable). we summarized the heritability estimates for the 48 traits identified 
in our BADGERS meta-analysis of two independent datasets for Alzheimer’s disease (Supplementary 
file 1), and all of them have nominally significant heritability estimates (p<0.05) based on our selection 
criteria. Nevertheless, we do acknowledge that the high heritability of these traits is influenced by 
correlations with other traits. For example, job involving heavy manual or physical work is genetically 
correlated with educational attainment (Figure 3), which indicates that the association between this 
trait and Alzheimer’s disease may not be direct. Therefore, it is important to note that association 
results from BADGERS analysis need to be interpreted with caution.

Limited sample size in AD endophenotypes is another limitation in our study. We have used data 
from the largest available GWAS for CSF biomarkers and neuropathologies. Still, the small sample 
size made it challenging to assess the effects of traits that were weakly associated with AD. When an 
independent validation dataset is available, it would be of interest to assess the prediction accuracy of 
PRS on each trait. However, external validation datasets rarely exist in real applications. In that case, 
the users may choose to use heritability estimates to filter traits with a substantial genetic component. 
Furthermore, in the BADGERS framework, PRS are independent variables in the regression analysis. If 
the PRS has limited predictive power, such noise is similar to measurement errors in standard regres-
sion analysis. This may decrease the statistical power in association tests but does not inflate the 
type-I error rate. Finally, emerging evidence has highlighted the sex-specific genetic architecture of 
AD (Deming et al., 2018; Hohman et al., 2018). In our analysis, maternal family history of AD showed 
stronger associations with various phenotypes than paternal family history. However, we note that 
this may be explained by the sample size difference in the UK biobank (Ncase = 28,507 and 15,022 
for samples with maternal and paternal family history, respectively). We also performed sex-stratified 
analyses for CSF biomarkers but identified limited associations, possibly due to the small sample size. 
Overall, sex-specific effects of risk factors remain to be investigated in the future using larger data-
sets. In total, BADGERS requires the training data for genetic prediction models and the downstream 
disease GWAS to be independent but of similar genetic ancestry. Development of methods that are 
more robust to sample overlap and diverse genetic ancestry remains an open problem for future 
research.

In conclusion, BADGERS is a statistically powerful method to identify associated risk factors for 
complex diseases. Large-scale biobanks continue to provide rich data on various human traits that 
may be of interest in disease research. Our method uses GWAS to bridge large biobanks with studies 
on specific diseases, lessens the limitation of insufficient disease cases in biobanks and lack of risk 
factor measurements in disease studies, and provides a statistically justified approach to identifying 
risk factors for disease. We have demonstrated the effectiveness of BADGERS through extensive 
simulations, a two-stage BWAS for late-onset AD, and various follow-up analyses on identified risk 
factors. Our results provided new insights into the genetic basis of AD, and revealed distinct mecha-
nisms for the involvement of risk factors in AD etiologies. The ever-growing sample size in GWAS and 
biobanks, in conjunction with increasingly accessible summary association statistics, makes BADGERS 
a powerful and valuable tool in human genetics research.

Methods
BADGERS framework
The goal of this method is to study the association between ‍Y ‍, a measured trait in the study, and ‍̂T ‍ , 
a trait imputed from genetic data via a linear prediction model:

	﻿‍ T̂ = XW ‍�

Here, ‍XN×M‍ is the genotype matrix for ‍N ‍ individuals in a study of trait ‍Y ‍. ‍WM×1‍ is the pre-calculated 
weight values on SNPs in the imputation model. ‍M ‍ denotes the number of SNPs. We use ‍Y ‍, a ‍N × 1‍ 
vector, to denote the trait values measured on the same group of individuals. We test the association 
between ‍Y ‍ and ‍̂T ‍ via a linear model.

https://doi.org/10.7554/eLife.91360
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	﻿‍ Y = α + T̂γ + δ‍�

where ‍α‍ is the intercept, ‍δ‍ is the term for random noise, and regression coefficient ‍γ‍ is the parameter 
of interest. The ordinary least squares (OLS) estimator for ‍γ‍ can be denoted as,

	﻿‍
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)

var
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Here, ‍Xj‍ is the jth column of ‍X ‍. Additionally, we derive the formula for the standard error of ‍̂γ‍ :

	﻿‍
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The approximation in this formula is based on the assumption that trait ‍Y ‍ has complex etiology and 
imputed trait ‍̂T ‍ only explains a small proportion of its phenotypic variance. When an accurate estimate 
of ‍var

(
δ
)
‍ is difficult to obtain, this approximation approach provides conservative results and controls 

type-I error in the analysis.
In practice, individual-level genotype (i.e. ‍X ‍) and phenotype data (i.e. ‍Y ‍) may not be accessible due 

to policy and privacy concerns. Therefore, it is of practical interest to perform the aforementioned 
association analysis using summary association statistics. Standard genetic association analysis tests 
the association between trait ‍Y ‍ and each SNP via the following linear model:

	﻿‍ Y = µj + Xjβj + εj
(
1 ≤ j ≤ M

)
‍�

The OLS estimator for ‍βj‍ and its standard error have the following forms.
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Again, the approximation is based on the empirical observation in complex trait genetics – each 
SNP explains little variability of ‍Y ‍ (Manolio et al., 2009).

Next, we derive the test statistic (i.e. z-score) for ‍γ‍:

	﻿‍
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where ‍Γ‍ is a diagonal matrix with the jth diagonal element being
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and ‍
∼
Z ‍ is the vector of SNP-level z-scores obtained from the GWAS of trait ‍Y ‍, i.e.,

	﻿‍

∼
Zj =

β̂j

se
(
β̂j

)
‍�

Without access to individual-level genotype data, ‍var
(
Xj
)
‍ and ‍var(T̂)‍ need to be estimated using 

an external panel with a similar ancestry background. We use ‍
∼
X ‍ to denote the genotype matrix from 

an external cohort, then ‍var
(
Xj
)
‍ can be approximated using the sample variance of ‍

∼
Xj‍ . Variance of ‍̂T ‍ 

can be approximated as follows

	﻿‍
var

(
T̂
)
≈ WT∼DW

‍�

where ‍
∼
D‍ is the variance-covariance matrix of all SNPs estimated using ‍

∼
X ‍ . However, when the number 

of SNPs is large in the imputation model for trait ‍T ‍, calculation of ‍
∼
D‍ is computationally intractable. 

Instead, we use an equivalent but computationally more efficient approach. We first impute trait ‍T ‍ in 
the external panel using the same imputation model

	﻿‍
∼
T =

∼
XW ‍�

Then, ‍var(T̂)‍ can be approximated by sample variance ‍var(
∼
T)‍ .

Thus, we can test the association between ‍Y ‍ and ‍̂T ‍ without having access to individual-level geno-
type and phenotype data from the GWAS. The required input variables for BADGERS include a linear 
imputation model for trait ‍T ‍, SNP-level summary statistics from a GWAS of trait ‍Y ‍, and an external 
panel of genotype data. With these, the association test can be performed.

Multivariate analysis in BADGERS
To adjust for potential confounding effects, it may be of interest to include multiple imputed traits 
in the same BADGERS model. We still use ‍Y ‍ to denote the measured trait of interest. The goal is to 
perform a multiple regression analysis using ‍K ‍ imputed traits (i.e. ‍̂T1‍ ,..., ‍̂TK ‍) as predictor variables:

	﻿‍ Y = T̂∗γ∗ + δ∗‍�

Here, we use ‍̂T∗ = (T̂1, . . . , T̂K)‍ to denote a ‍N × K ‍ matrix for ‍K ‍ imputed traits. Regression coeffi-
cients ‍γ

∗ =
(
γ1, . . . , γK

)T
‍ are the parameters of interest. To simplify algebra, we also assume trait ‍Y ‍ 

and all SNPs in the genotype matrix ‍X ‍ are centered so there is no intercept term in the model, but the 
conclusions apply to the general setting. Similar to univariate analysis, traits ‍̂T1, . . . , T̂K ‍ are imputed 
from genetic data via linear prediction models:

	﻿‍ T̂∗ = XW∗‍�

where ‍W
∗
M×K ‍ are imputation weights assigned to SNPs. The ith column of ‍W ‍ denotes the imputation 

model for trait ‍Ti‍ . Then, the OLS estimator ‍̂γ
∗
‍ and its variance-covariance matrix can be denoted as 

follows:

	﻿‍
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The approximation is based on the assumption that imputed traits ‍̂T1, . . . , T̂K ‍ collectively explain 
little variance in ‍Y ‍, which is reasonable in complex trait genetics if ‍K ‍ is not too large. We further 
denote:
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All elements in matrix ‍U ‍ can be approximated using a reference panel ‍
∼
X ‍ (Dudbridge, 2013):
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where ‍Ik‍ is the ‍K × 1‍ vector with the kth element being 1 and all other elements equal to 0, is a ‍M × M ‍ 

diagonal matrix with the ith diagonal element being 
‍

√
var

(
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‍
 , and similar to the notation in univar-

iate analysis, ‍
∼
Z ‍ is the vector of SNP-level z-scores from the GWAS of trait ‍Y ‍. Given imputation models 

for ‍K ‍ traits (i.e. ‍W∗‍), GWAS summary statistics for trait ‍Y ‍ (i.e. ‍
∼
Z ‍), and an external genetic dataset to 

estimate ‍U ‍ and , multivariate association analysis can be performed without genotype and phenotype 
data from the GWAS.

Genetic prediction
Any linear prediction model can be used in the BADGERS framework. With access to individual-level 
genotype and phenotype data, the users can train their preferred statistical learning models, e.g., 
penalized regression or linear mixed model. When only GWAS summary statistics are available for risk 
factors (i.e. ‍T ‍), PRS can be used for imputation. We used PRS to impute complex traits in all analyses 
throughout the paper. Of note, more advanced PRS methods that explicitly model LD (Vilhjálmsson 
et al., 2015) and functional annotations (Hu et al., 2017) to improve prediction accuracy have been 
developed. However, additional independent datasets may be needed if there are tuning parameters 
in PRS. In general, higher imputation accuracy will improve statistical power in association testing (Hu 
et al., 2018). The BADGERS software allows users to choose their preferred imputation model.

Simulation settings
We simulated quantitative traits using genotype data of 62,313 individuals from the GERA cohort 
(dbGap accession: phs000674). Summary association statistics were generated using PLINK (Purcell 
et al., 2007). We ran BADGERS on summary statistics based on the simulated traits and PRS of 1738 
traits in the UK biobank. To compare BADGERS with the traditional approach that uses individual-level 
data as input, we also directly regressed simulated traits on the PRS of UK biobank traits to estimate 
association effects.

Setting 1
We simulated quantitative trait values as i.i.d. samples from normal distribution with mean 0 and vari-
ance 1. In this setting, simulated trait values were independent from genotype data.

Setting 2
We simulated quantitative trait values based on an additive random effect model commonly used in 
heritability estimation (Yang et al., 2015). We fixed heritability to be 0.1. In this setting, the simulated 
trait is associated with SNPs, but is not directly related to PRS of UK biobank traits.

https://doi.org/10.7554/eLife.91360
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Setting 3
We selected 100 traits from 1738 UK-Biobank traits to calculate PRS on GERA data. For each of these 
100 PRS, we simulated a quantitative trait by summing up the effect of PRS, a polygenic genetic back-
ground, and a noise term.

	﻿‍ Y = Xβ + ρP + ε‍�

Here, ‍X ‍ denotes the genotype of samples; ‍β‍ is the effect size of each variant; ‍P‍ is the PRS of one 
of the selected traits; ‍ρ‍ is the effect size of PRS; and ‍ε‍ is the error term following a standard normal 
distribution. The polygenic background and random noise (i.e. ‍Xβ + ε‍) were simulated using the same 
model described in setting 2. This term and the PRS were normalized separately. The standardized 
effect size (i.e. ‍ρ‍) was set as 0.02, 0.015, 0.01, 0.008, and 0.005 in our simulations. In this setting, 
simulated traits are directly associated with SNPs and PRS. For each value of ‍ρ‍, statistical power was 
calculated as the proportion of significant results (p<0.05) out of 100 traits.

Setting 4
We simulated 100 quantitative traits ‍T1, . . . , T100‍ based on an additive random effect model commonly 
used with heritability fixed as 0.1. And the response traits ‍Y1, . . . , Y100‍ were simulated by adding a 
noise term to ‍T.‍

	﻿‍ Yi = γiTi + εi‍�

Where ‍γi ∼ N
(
0, 2

)
‍ , and ‍εi ∼ N

(
0, Var

(
Ti
))

.‍ The dataset was split into two subsets, one with 
31,162 (subset 1) and another with 31,163 samples (subset 2). Marginal summary statistics correspond 
to ‍Ti‍ ’s and ‍Yi‍ ’s were derived using subset 1 and subset 2, respectively. We applied LDpred to jointly 
estimate all SNPs’ effects using marginal summary statistics from subset 1. Then, we ran BADGERS to 
identify associations between 100 pairs of ‍Yi‍ and ‍Ti‍ using two methods to impute ‍Ti‍ ’s (i.e. marginal 
PRS and LDpred).

GWAS datasets
Summary statistics for 4357 UK biobank traits were generated by Dr. Benjamin Neale’s group and 
were downloaded from (http://www.nealelab.is/uk-biobank). AD summary statistics from the IGAP 
stage-I analysis were downloaded from the IGAP website (http://web.pasteur-lille.fr/en/recherche/​
u744/igap/igap_download.php). ADGC phase 2 summary statistics were generated by first analyzing 
individual datasets using logistic regression adjusting for age, sex, and the first three principal compo-
nents in the program SNPTest v2 (Marchini et  al., 2007). Meta-analysis of the individual dataset 
results was then performed using the inverse-variance weighted approach (Willer et al., 2010).

GWAS summary statistics for neuropathologic features of AD and related dementias were 
obtained from the ADGC. Details on these data have been previously reported (Beecham et  al., 
2014). We analyzed a total of 13 neuropathologic features, including four NP traits, two traits for 
NFT Braak stages, three traits for LBD, CAA, HS, and two VBI traits. Among different versions of the 
same pathology, we picked one dataset for each pathologic feature to show in our primary analyses. 
Six AD subgroups were defined in the recent EPAD paper (Mukherjee et al., 2018) on the basis of 
relative performance in memory, executive functioning, visuospatial functioning, and language at the 
time of Alzheimer’s diagnosis. Four subgroups include AD samples with an isolated substantial relative 
impairment in one of four domains; the ‘none’ subgroup includes samples without substantial relative 
impairment; the ‘mix’ subgroup includes samples with relative impairment in multiple domains. Each 
domain was compared with healthy controls in case-control association analyses. We did not include 
the executive functioning subgroup in our analysis due to its small sample size in cases. Detailed 
information about the design of CSF biomarker GWAS and the recent sex-stratified analysis has been 
described previously (Deming et al., 2017; Deming et al., 2018). Details on the association statistics 
for AD subgroups, CSF biomarkers, and neuropathological features are summarized in Supplemen-
tary file 2.

https://doi.org/10.7554/eLife.91360
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Analysis of GWAS summary statistics
We applied LD score regression implemented in the LDSC software (Bulik-Sullivan et al., 2015) to 
estimate the heritability of each trait. Among 4357 traits, we selected 1738 with nominally significant 
heritability (p<0.05) to include in our analyses. We removed SNPs with association p-values greater 
than 0.01 from each of the 1738 summary statistics files, clumped the remaining SNPs using a LD 
cutoff of 0.1 and a radius of 1 Mb in PLINK (Purcell et al., 2007), and built PRS for each trait using the 
effect size estimates of remaining SNPs.

Throughout the paper, we used samples of European ancestry in the 1000 Genomes Project as 
a reference panel to estimate LD (Abecasis et al., 2012). In univariate analyses, we tested marginal 
associations between each PRS and AD using the IGAP stage-I dataset and replicated the findings 
using the ADGC summary statistics. Association results in two stages were combined using an inverse 
variance-weighted meta-analysis (Willer et al., 2010). A stringent Bonferroni-corrected significance 
threshold was used to identify AD-associated risk factors. For associations between identified risk 
factors and AD endophenotypes, we used an FDR cutoff of 0.05 to claim statistical significance. We 
applied hierarchical clustering to the covariance of 48 traits we identified from marginal association 
analysis, then divided the result into 15 clusters and selected one most significant trait from each 
cluster and used them to perform multivariate conditional analysis. We analyzed IGAP and ADGC 
datasets separately, and combined the results using meta-analysis.

We used MR-IVW approach (Burgess et al., 2013) implemented in the Mendelian Randomization 
R package (Yavorska and Burgess, 2017) to study the causal effects of 48 risk factors identified by 
BADGERS. For each trait, we selected instrumental SNP variables as the top 30 most significant SNPs 
after clumping all SNPs using a LD cutoff of 0.1.

Analysis of WRAP data
WRAP is a longitudinal study of initially dementia-free middle-aged adults that allows for the enroll-
ment of siblings and is enriched for a parental history of AD. Details of the study design and methods 
used have been previously described (Johnson et al., 2018; Sager et al., 2005). After quality control, 
a total of 1198 participants whose genetic ancestry was primarily of European descent were included 
in our analysis. On average, participants were 53.7 years of age (SD = 6.6) at baseline and had a bach-
elor’s degree, and 69.8% (n=836) were female. Participants had two to six longitudinal study visits, 
with an average of 4.3 visits, leading to a total of 5184 observations available for analysis.

DNA samples were genotyped using the Illumina Multi-Ethnic Genotyping Array at the Univer-
sity of Wisconsin Biotechnology Center. Thirty-six blinded duplicate samples were used to calcu-
late a concordance rate of 99.99%, and discordant genotypes were set to missing. Imputation was 
performed with the Michigan Imputation Server v1.0.3 (Das et al., 2016), using the Haplotype Refer-
ence Consortium (HRC) v. r1.1 2016 (McCarthy et al., 2016) as the reference panel and Eagle2 v2.3 
(Loh et al., 2016) for phasing. Variants with a quality score R2 <0.80, MAF <0.001, or that were out 
of HWE were excluded, leading to 10,499,994 imputed and genotyped variants for analyses. Data 
cleaning and file preparation were completed using PLINK v1.9 (Chang et al., 2015) and VCFtools 
v0.1.14 (Danecek et al., 2011). Coordinates are based on the hg19 genome build. Due to the sibling 
relationships present in the WRAP cohort, genetic ancestry was assessed and confirmed using Prin-
cipal Components Analysis in Related Samples (PC-AiR), a method that makes robust inferences about 
population structure in the presence of relatedness (Conomos et al., 2015).

Composite scores were calculated for executive function, delayed recall, and learning based on a 
previous analysis (Clark et al., 2016). Each composite score was calculated from three neuropsycho-
logical tests, which were each converted to z-scores using baseline means and standard deviations. 
These z-scores were then averaged to derive executive function and delayed recall composite scores 
at each visit for each individual. Cognitive impairment status was determined based on a consensus 
review by a panel of dementia experts. Resulting cognitive statuses included cognitively normal, early 
MCI, clinical MCI, impairment that was not MCI, or dementia, as previously defined (Koscik et al., 
2016). Participants were considered cognitively impaired if their worst consensus conference diag-
nosis was early MCI, clinical MCI, or dementia (n=387). Participants were considered cognitively stable 
if their consensus conference diagnosis was cognitively normal across all visits (n=803).

The 48 PRSs were developed within the WRAP cohort using PLINK v1.9 (Chang et al., 2015) and 
tested for associations with the three composite scores (i.e. executive function, delayed recall, and 

https://doi.org/10.7554/eLife.91360
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learning) and cognitive impairment statuses. MCI status was tested using logistic regression models 
in R, while all other associations, which utilized multiple study visits, were tested using linear mixed 
regression models implemented in the lme4 package in R (Bates et al., 2015). All models included 
fixed effects for age and sex, and cognitive composite scores additionally included a fixed effect 
for practice effect (using visit number). Mixed models included random intercepts for within-subject 
correlations due to repeated measures and within-family correlations due to the enrollment of siblings.

Software availability
The BADGERS software is freely available at https://github.com/qlu-lab/BADGERS, copy archived at 
qlu-lab, 2024.
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