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Dyssegmental dysplasia Rolland–Desbuquois type is caused by
pathogenic variants in HSPG2 - a founder haplotype shared in
five patients
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Dyssegmental dysplasia (DD) is a severe skeletal dysplasia comprised of two subtypes: lethal Silverman–Handmaker type (DDSH)
and nonlethal Rolland–Desbuquois type (DDRD). DDSH is caused by biallelic pathogenic variants in HSPG2 encoding perlecan,
whereas the genetic cause of DDRD remains undetermined. Schwartz–Jampel syndrome (SJS) is also caused by biallelic pathogenic
variants in HSPG2 and is an allelic disorder of DDSH. In SJS and DDSH, 44 and 8 pathogenic variants have been reported in HSPG2,
respectively. Here, we report that five patients with DDRD carried four pathogenic variants in HSPG2: c.9970 G > A (p.G3324R),
c.559 C > T (p.R187X), c7006+ 1 G > A, and c.11562+ 2 T > G. Two patients were homozygous for p.G3324R, and three patients
were heterozygous for p.G3324R. Haplotype analysis revealed a founder haplotype spanning 85,973 bp shared in the five patients.
SJS, DDRD, and DDSH are allelic disorders with pathogenic variants in HSPG2.
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INTRODUCTION
Dyssegmental dysplasia (DD) is a severe skeletal dysplasia
characterized by dumbbell-shaped tubular bones, bent long
bones of the legs, and irregular size and shape in single or
multiple vertebral ossification centers (anisospondyly). DD is
comprised of two subtypes [1]: lethal Silverman–Handmaker type
(DDSH) [2] and nonlethal Rolland–Desbuquois type (DDRD) [3].
DDSH and DDRD are spectrum disorders, and the differences of
skeletal phenotypes are not crystal clear. In general, anisospondyly
is much more severe in DDSH than in DDRD. Some vertebral
bodies are rudimentary or even absent in DDSH, while all vertebral
bodies are better ossified in DDRD. The mildest end of DDRD is
associated with only large coronal clefts at the thoracolumbar
spine, as is Kniest dysplasia (a rare variant of COL2A1-linked
skeletal dysplasias) [4]. DDSH is sometimes accompanied by
hydrocephalus and occipital encephalocele that may manifest
with defective calvarial ossification, while DDRD is not. However,
calvarial ossification defects are not the norm for DDSH. DDSH is
inherited in an autosomal recessive manner and is caused by
pathogenic variants in HSPG2 encoding perlecan [5, 6], whereas
pathogenic variants have not been reported in DDRD.
Schwartz–Jampel syndrome (SJS) is also caused by pathogenic
variants in HSPG2 and is inherited in an autosomal recessive

manner. Thus, SJS is an allelic disorder of DDSH. In SJS and DDSH,
44 and 8 pathogenic variants have been reported in HSPG2,
respectively (Table 1). Partial lack of perlecan is likely to cause SJS,
whereas complete or almost complete lack of perlecan is likely to
cause DDSH [7].
In five patients with DDRD, we identified pathogenic variants in

HSPG2. Haplotype analysis revealed that p.G3324R in HSPG2 had a
founder haplotype shared in all the five patients.

PATIENTS AND METHODS
Patients
All the human studies were approved by the institutional review board of
Nagoya University Graduate School of Medicine (Approval #2007-0598).
Appropriate written informed consents were obtained from all the
participated patients/guardians and parents.

Whole exome resequencing analysis
Genomic DNA was isolated from the blood with QIAamp Blood Mini Kit
(Qiagen) according to the manufacturer’s instruction. Next-generation
sequencing (NGS) was performed on the Illumina HiSeq platform. In a
patient labeled as DDRD_P02, pathogenic variants were searched for by
whole-genome sequencing. The Illumina adapter-ligated gDNA fragments
were sequenced using paired-end (PE) flow cells and 2 × 151 bp raw fastq
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data were obtained. In the other four patients, pathogenic variants were
looked for by whole exome sequencing. gDNA was enriched by using the
Agilent SureSelect Human All Exon Kit version 6. The captured exonic
fragments were sequenced on PE flow cells and 2 × 151 bp raw fastq data
were obtained. The fastq data were analyzed by our standard NGS pipelines
[8]. Briefly, low-quality reads and sequencing adapters were removed by
fastp version 0.23.4 [9]. The reads were then aligned to the human reference
genome (GRCh37) using the Burrows–Wheeler Aligner (bwa) version 0.7.12-
r1039 (https://arxiv.org/abs/1303.3997). PCR duplicates were removed by
bammarkduplicate2 version 2.0.72 [10]. The mapped reads were then locally
realigned and base quality scores were recalibrated using Genome Analysis
Toolkit (GATK 3.5, IndelRealigner, and BaseRecalibrator) [11]. Single-
nucleotide variants (SNVs) were identified by the GATK HaplotypeCaller.
The identified variants were annotated by ANNOVAR [12]. All the identified
pathogenic variants were confirmed by Sanger sequencing in patients and
their available parents using PCR primers (Supplementary Table S1). PCR
products were purified using the Wizard SV Gel and PCR Clean-Up System
(Promega) according to the manufacturer’s protocols. Sanger sequencing
was performed on 3730xl DNA Analyzer (Thermo Fisher Scientific).

Haplotype analysis
SNVs and small indels spanning 5,000,000 bp on both sides of p.G3324R
were collated from the whole-genome-seq of DDRD_P02 and the exome-
seq of DDRD_P03, P04, P06, P07, and P08. An uninterrupted segment of
homozygous SNVs/indels were first searched for from p.G3324R in
DDRD_P02 and then in DDRD_P03. The SNVs/indels in the putative shared
haplotypes were then searched for in DDRD_P06, P07, and P08.
DDRD_P06, P07, and P08 were heterozygous for p.G3324R, and exome-
seq data were not available in their parents. Thus, we could not determine
whether an SNV/indel was on the same allele as p.G3324R or not. When an
SNV/indel was present in DDRD_P06, P07, and P08 in a heterozygous
manner, we assumed that the SNV/indel was on the same allele as
p.G3324R. The putative shared haplotype was thus narrowed down using
exome-seq data of DDRD_P06, P07, and P08.

RESULTS
Clinical features of five patients
DDRD_P02 (male) was noted of a cross-legged position at 19
weeks of gestation, but the femur length was not shortened then
(−0.84 SD). Thereafter, the femur lengths were −1.6 SD at
22 weeks, −1.9 SD at 26 weeks, −2.3 SD at 28 weeks, and
−2.9 SD at 31 weeks. As the femur lengths exceeded −2.5 SD at
31 weeks, skeletal dysplasia was extensively evaluated. At
31 weeks, irregular ossification of the vertebral bodies was also
identified (Fig. 1). Both 3D-US and 3D-CT delineated the diagnostic
features of DD, including dumbbell deformity of the tubular
bones, bowing of the long bones, and anisospondyly. However,
dumbbell deformity was not conspicuous, and bowing was very
mild. The patient showed extensive anisospondyly, but the
constellation of the overall imaging findings was consistent with
DDRD not DDSH. The birth weight was 2744 g at 37 weeks. He had
respiratory failure that required respiratory support for 49 days
after birth. The parents were not consanguineous, and no similar
patients were reported in the family.
DDRD_P03 (male) presented with proximal dominant shortening

of long bones, fracture-like deformities of the femurs, bilateral
clubfoot, narrowing of the thorax, and abnormal curvature of the
spine at 19 weeks of gestation (Fig. 1). Defective thoracic vertebral
segmentation was also noted by fetal US examination then. The
biparietal diameter was +3.7 SD, the femur length was −4.0 SD, and
the humerus length was −1.6 SD. Pregnancy was terminated at
20 weeks and 6 days of gestation due to the diagnosis of severe
skeletal dysplasia. The body weight was 440 g. The termination of
pregnancy made it difficult to discern by X-ray whether the patient
fitted better to either DDSH or DDRD. The parents were not
consanguineous, and no similar patients were reported in the family.
DDRD_P04 (female) presented with moderate shortening of the

long bones: femur length of −4.2 SD and humerus length of
−4.3 SD at 30 weeks of gestation (Fig. 1). Both 3D-US and 3D-CT

supported the diagnosis of DD with findings of dumbbell
deformity of the tubular bones, bowing of the long bones, and
anisospondyly. The mild to moderate degrees of skeletal dysplasia
supported the diagnosis of DDRD rather than DDSH. The patient
was born at 35 weeks with birth weight of 2374 g. She had
respiratory insufficiency that required respiratory support for
44 days after birth. She also had hypoplastic thorax, cleft palate,
restricted limb joint movements. She had mild bilateral blephar-
ophimosis, mild pursed lips, and mild limb myotonia, which are
commonly observed in SJS. She is currently 11 years and
11 months old. The parents were not consanguineous, and no
similar patients were reported in the family.
DDRD_P06 (male) was diagnosed of short long bones in all four

limbs (−4 to −5 SD) at 28 weeks of gestation. The lower limbs
were in a cross-legged position. CT scan showed marked
anisospondyly and mild dumbbell-shaped tubular bones (Fig. 1).
In contrast to severe spinal deformities, shortening and bowing of
long bones were mild, which supported the diagnosis of DDRD. At
38 weeks of gestation, the patient was delivered in breech
position with the body weight of 2299 g. The patient died several
hours after birth due to respiratory failure. Respiratory support was
not applied. The parents were not consanguineous, and no similar
patients were reported in the family.
DDRD_P07 (male) was noted to have short limbs and inguinal

herniation in fetal US examination. Prenatal diagnosis of DD was
not made. The birth weight at 38 weeks of gestation was 2626 g
(−0.6 SD) with a height of 45 cm (−1.78 SD). The Apgar scores
were 3 and 7 points at 5 and 10min, respectively. He required
respiratory support after birth. At 6 months of age, he became
independent on a respirator during the day. At 10 months of age,
he had flat nasal root, marked micrognathia, U-shaped cleft palate,
low-set ears, short neck, small thorax, short limbs especially in
humeri and femurs, curved lower legs, clubfeet, inguinal hernia-
tion, and cryptorchidism. Anisospondyly consistent with DDRD
was noted on X-ray (Fig. 1). He was deceased at age 3 years and
8 months because of accidental extubation of the tracheostomy
cannula at night at home. The parents were not consanguineous,
and no similar patients were reported in the family.

Identification of pathogenic variants
A total of 62 genes including HSPG2 were annotated with skeletal
dysplasia in HGMD Pro 2020 (Supplementary Table S2), and
pathogenic variants that could account for the patients’ phenotypes
were observed only in HSPG2 in all the five patients. Whole-genome
and exome sequencing revealed four biallelic pathogenic variants in
HSPG2 in five patients with DDRD (Table 2). Two patients (DDRD_P02
and P03) carried homozygous variants, whereas the other three
patients (DDRD_P04, P06, and P07) carried compound heterozygous
variants. All the five patients carried c.9970G > A (NM_005529.7) at
position 21,839,005 (GRCh38/hg38) on chromosome 1, which
predicted p.G3324R (NP_005520.4) in perlecan domain IV (Fig. 2A).
p.G3324R was highly conserved across species (Fig. 2B). p.G3324R
was predicted to be pathogenic by InMeRF with a probability score
of 0.752, where 1.000 is most pathogenic and 0.000 is least
pathogenic (Fig. 2B, Table 2) [13]. p.G3324R has an accession
number of rs1294413650 in dbSNP with global minor allelic
frequency (GMAF)= 5.7 × 10−5 (17/298,038) and Japanese minor
allelic frequency (JMAF)= 3.5 × 10−4 (10/28,258). p.G3324R was
previously reported in a patient in a large cohort comprised of 411
patients with skeletal dysplasia, and was labeled as DDSH (Table 1)
[14]. In five available parent samples, the mother of DDRD_P02, the
mother and the father of DDRD_P03, and the father but not the
mother of DDRD_P06 were heterozygous for p.G3324R (Supple-
mentary Fig. S1).
DDRD_P04 also had a heterozygous c.7006+ 1 G > A

(NM_005529.7) at position 21,851,790 (GRCh38/hg38) on chromo-
some 1 in HSPG2 intron 54, predicting aberrant splicing by
disrupting invariant GT dinucleotides (Table 2, Fig. 2A, and
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Supplementary Fig. S1). GT dinucleotides at 6 nucleotide down-
stream to the authentic GT dinucleotides have a low MaxEntS-
can:5ss score [15] of −6.23, which was much lower than that of
9.40 at the authentic site. Thus c.7006+ 1 G > A is unlikely to
activate a cryptic 5′ splice site but is likely to result in frameshifting
skipping of the upstream exon (136 bp). c.7006+ 1 G > A has an
accession number of rs778653296 in dbSNP with GMAF= 7.4 ×
10−6 (1/135,190) and JMAF= 0. c.7006+ 1 G > A was previously

reported in an SJS patient without functional characterization
(Table 1) [7]. The parent’s samples were not available.
DDRD_P06 also had a heterozygous c.559 C > T (NM_005529.7)

at position 21,889,996 (GRCh38/hg38) on chromosome 1 in HSPG2
exon 6, predicting p.R187X (NP_005520.4) in perlecan domain I
(Table 2, Fig. 2A, and Supplementary Fig. S1). p.R187X has an
accession number of rs1332584154 in dbSNP with GMAF= 6.4 ×
10−6 (1/156,244) and JMAF= 0. The father was heterozygous for

Fig. 1 Representative X-ray images and reconstructed CT images of DDRD_P02, P03, P04, P06, and P07
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p.G3324R as stated above, and the mother was heterozygous for
p.R187X (Supplementary Fig. S1).
DDRD_P07 also had a heterozygous c.11562+ 2 T > G

(NM_005529.7) at position 21,831,213 (GRCh38/hg38) on chromo-
some 1 in HSPG2 intron 84, predicting aberrant splicing by
disrupting invariant GT dinucleotides (Table 2, Fig. 2A, and
Supplementary Fig. S1). GT dinucleotides at 20 bp upstream and
33 bp downstream to the authentic GT dinucleotides have low
MaxEntScan:5ss scores [15] of −11.07 and −11.54, respectively,
which were much lower than that of 6.54 at the authentic 5′ splice
site. Thus, c.11562+ 2 T > G is unlikely to activate a cryptic 5′
splice site, but is likely to cause frameshifting skipping of the
upstream exon (110 bp). c.11562+ 2 T > G has no accession
number in dbSNP, and there is no previous report on this SNV.
However, a substitution of T-to-A at the same position
(c.11562+ 2 T > A) was previously reported in a patient with
cerebral palsy without functional characterization [16]. The
parent’s samples were not available.

Founder haplotype of p.G3324R
As all the five patients carried p.G3324R, we looked for a shared
haplotype spanning p.G3324R. The shared haplotype was defined
as a stretch of SNVs or small indels that were homozygous in
DDRD_P02 and P03, and either homozygous or heterozygous in
DDRD_P04, P06, and P07. The analysis revealed that an 85,973-bp
segment from positions 21,775,527 to 21,861,499 on chromo-
some 1 (GRCh38/hg38) were shared in the five patients. The
margin at the p-terminal side was determined by the presence of
a heterozygous SNV in DDRD_P02, and that at the q-terminal side
was determined by the absence of an SNV in DDRD_P06, which
was present in the other four patients (arrows in Fig. 3). All SNVs
and small indels in 5,000,000 bp up- and downstream of p.G3324R
are collated in Supplementary Table S3. Representative SNVs and
small indels in the shared haplotype and flanking SNVs are
schematically shown in Fig. 3.

DISCUSSION
Perlecan is a huge extracellular matrix (ECM) proteoglycan (~500
KDa) with five domains and three heparan sulfate chains at the
N-terminal (Fig. 2A) [17]. Domain I contains three Ser-Gly-Asp
attachment sites for heparan sulfate chains, and one sperm,
enterokinase, and agrin homology (SEA) module [18, 19]. Domain
II has four cysteine-rich modules [low-density lipoprotein (LDL)
receptor type A] [20]. Domain III has three laminin type B modules
and eight laminin epidermal growth factor (EGF)-like modules
[21]. Domain IV is the largest domain with twenty-one
immunoglobulin-like repeats [22]. Domain V is comprised of
three laminin type G modules and four EGF-like modules [22].
Perlecan binds to the other ECM and transmembrane proteins like
collagen IV, laminin-1, β1 integrin, α dystroglycan, and acetylcho-
linesterase [5, 23]. Perlecan plays critical roles in the development
and remodeling of cartilage, bone, and heart; angiogenesis; and
blood brain barrier, as well as wound healing [24–27].
We reported five patients with DDRD carrying p.G3324R in

perlecan encoded by HSPG2 either in a homozygous (DDRD_P02
and P03) or heterozygous (DDRD_P04, P06, and P07) manner.
Pathogenic variants on another allele in heterozygous patients
were either a nonsense variant (DDRD_P06) or splicing variants
(DDRD_P04 and P07), both of which predicted truncated proteins.
The five patients had a shared haplotype spanning an 85,973-bp
segment (Fig. 3). The p-terminal end of the shared haplotype was
determined by a heterozygous SNV in DDRD_P02 who was
homozygous for p.G3324R. As whole-genome sequencing was
performed only in DDRD_P02, this SNV was not sequenced in the
other patients. Thus, the other four patients may share an
extended haplotype. Similarly, the q-terminal end of the shared
haplotype was determined by lack of an SNV in DDRD_P06, whichTa
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Fig. 2 A Domain structure of perlecan. Previously reported pathogenic SNVs identified in HSPG2 in SJS and DDSH (Table 1) are indicated by
open and closed stars, respectively. Previously reported splicing variants and indels are not indicated. Pathogenic SNVs identified in this
communication (Table 2) are indicated by circles above the domain structure. B InMeRF scores of the 11 missense variants in SJS (Table 1) and
p.G3324R in the current report. C Alignment of G3324 of perlecan orthologs. D Overlaid structures of the wild-type and mutant
immunoglobulin I-set domains of perlecan at codons 3300 to 3383 (NP_00127878.1) that were predicted by AlphaFold2. The wild-type
domain with G3324 (red) is indicated in brown ribbons. The mutant domain with R3324 (magenta) is indicated in light blue ribbons
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was present in the other four patients. Thus, the other four
patients may share an extended haplotype. In addition, as the
allelic allocations of SNVs and small indels could not be
determined in heterozygous DDRD_P04, P06, and P07, the shared
haplotype might be shorter than predicted in Fig. 3. DDRD_P02
and P03 were homozygous for p.G3324R, but the skeletal
dysplasia other than short long bones became apparent at 31
and 19 weeks of gestation, respectively. Presence of an
unidentified modifier gene or an unidentified environmental
factor might have accounted for the different disease severities. In
any of the five patients, no consanguinity was documented.
Similarly, no shared ancestor was noted in any pair of patients.
However, the presence of a shared haplotype in five patients is
likely to represent identity-by-descent that arose from a single
ancestor.
p.G3324R in HSPG2 was previously reported homozygously in a

patient with DDSH [14]. The patient was a 7-year-old girl who was
born at full term via normal spontaneous vaginal delivery. The
parents were cousins. The patient had cervical kyphosis since birth
that progressed over time and resulted in severe cervical canal
stenosis and quadriplegic paralysis. The patient also had
respiratory complications that led to tracheostomy, and she
became respirator dependent. The patient underwent posterior
cervical vertebrae repair with no improvement. Milestones other
than the motor delay were appropriate for age. Her dysmorphic
features included a small mouth, long eyelashes, brachycephaly,
micrognathia, cervical kyphosis, and short lower limbs. Her weight
and height were below the 3rd percentile. Skeletal examinations
showed kyphosis of the cervical spine, platyspondyly, biphasic
scoliosis, irregular margins of multiple vertebrae, decreased disc
spaces, shorted long bones of the lower limbs, bilateral broad-
ening of the metaphyses and epiphysis of the long bones of the
upper and lower limbs, bilateral broadening of the metacarpals

and the phalanges, bilateral broadening of the metaphyses of
metatarsals and right foot metatarsus adductus. Although the
label of DDSH was given to this patient, the nonlethal clinical
course and the mild to moderate skeletal dysplasia were
consistent with the diagnosis of DDRD.
DDSH and DDRD share similar skeletal phenotypes, while

patients with DDSH and DDRD are lethal and nonlethal,
respectively. No definite threshold has been proposed to delineate
lethal and nonlethal phenotypes. Eight pathogenic variants in
HSPG2 in DDSH have been reported in ten patients in six articles
(Table 1) [6, 14, 28–31]. In the ten patients, pregnancy was
terminated in five fetuses [6, 28, 29]; a patient was stillborn [29];
and two patients died immediately [6] and two weeks [30] after
birth. Details were not documented in the ninth patient [31]. The
last patient was the 7-year-old girl stated above [14]. Except for
the 7-year-old girl, no patients survived more than two weeks after
birth. The prevalence of DDSH and DDRD remains undetermined.
As genetic diagnosis of surviving DDRD patients is likely to have a
higher clinical significance than that of deceased DDSH patients,
DDRD patients are predicted to be subjected to genetic diagnosis.
Nevertheless, no pathogenic variants have been reported in
DDRD. Thus, the prevalence of DDRD may be less than that of
DDSH, which might have prevented us from identifying the
genetic cause of DDRD.
Eleven missense variants have been reported in HSPG2 in SJS

(Table 1). We recently developed InMeRF, a tool to predict the
pathogenicity of missense variants [13]. InMeRF is comprised of
150 random forest models, where each model is dedicated to
predicting the pathogenicity of each amino acid substitution.
InMeRF outperformed 25 previously reported prediction tools. We
indicated CADD scores [32] and DANN scores [33] in Table 1, but
only InMeRF scores will be used in the following discussion. The
mean and SD of InMeRF scores of the eleven missense variants in
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SJS were 0.598 ± 0.227, whereas the InMeRF score of p.G3324R
was 0.752 (Fig. 2B, Table 1). Thus, p.G3324R may be more
deleterious than most of the pathogenic missense variants in SJS.
In addition, two (p.E2930K and p.R3452Q) of the eleven missense
variants in SJS, as well as p.G3324R in DDRD, were located in a
stretch of 21 immunoglobulin-like regions from codons 1695 to
3655 (domain IV), whereas the other nine missense variants were
at different perlecan domains (Fig. 2A ad Table 1). Although the
two SJS missense variants still exist in domain IV, a specific site or
a specific amino acid substitution in domain IV may be more
vulnerable to amino acid substitution than those in the other
domains. In contrast to SJS, no missense variant was reported in
DDSH except for the 7-year-old girl stated above (Table 1). It was
previously proposed that differences in the amount of functional
perlecan in the extracellular matrix, as well as the affected
domains, account for the differences in SJS and DDSH [7, 34]. An
intermediate amount of functional perlecan that is lower than that
in SJS but is higher than that in DDSH, as well as domain-specific
derangement, may cause DDRD. However, most of the 18 splicing
variants in SJS and one of the two splicing variants in DDSH were
not functionally characterized, and the ratios of normally spliced
transcript remain undetermined. Similarly, the two inframe
variants in SJS were not functionally characterized. In addition,
the phenotypes are determined by two alleles of HSPG2, and the
estimation of a clinical phenotype only by a hemiallelic missense
variant is not appropriate and is misleading. Nevertheless, the
pathogenicity of variants in HSPG2 may determine which of SJS,
DDRD, or DDSH a patient will develop. In addition, we observed
mild facial and limb myotonia in DDRD_P04, which are typical
features of SJS. Although we did not examine muscle hyperexcit-
ability in the other four patients, DDRD and SJS may share
overlapping muscle phenotypes. However, in DDRD, compared to
skeletal dysplasia, abnormal muscle hyperexcitability is unlikely to
cause disability and is underestimated.
Lack of genetic variants of DDRD in OMIM and ClinVar was

unexpected for us. HSPG2 is a huge gene spanning 115,067 bp on
chromosome 1, and is comprised of 97 exons with the maximum
mRNA length of 14,341 bp. The size of HSPG2 and the rarity of
DDRD patients are likely to have prevented us from identifying the
genetic cause of DDRD. Alternatively, as DDSH and DDRD are
expected to be allelic disorders [35], the identification of individual
HSPG2 variant(s) in DDRD may not have been reported due to
publication bias. Rapid development of massive parallel sequen-
cing techniques along with lowering the sequencing cost, as well
as the development of dependable evaluation tools of SNVs, will
enable us to identify more variants in DDRD. In addition, the
identification of pathogenic variants in SJS, DDRD, and DDSH will
also disclose the molecular organization of perlecan.
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