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BACKGROUND: There are no early, accurate, scalable methods for identifying infants at high risk of poor cognitive outcomes in
childhood. We aim to develop an explainable predictive model, using machine learning and population-based cohort data, for this
purpose.

METHODS: Data were from 8858 participants in the Growing Up in Ireland cohort, a nationally representative study of infants and
their primary caregivers (PCGs). Maternal, infant, and socioeconomic characteristics were collected at 9-months and cognitive ability
measured at age 5 years. Data preprocessing, synthetic minority oversampling, and feature selection were performed prior to
training a variety of machine learning models using ten-fold cross validated grid search to tune hyperparameters. Final models
were tested on an unseen test set.

RESULTS: A random forest (RF) model containing 15 participant-reported features in the first year of infant life, achieved an area
under the receiver operating characteristic curve (AUROC) of 0.77 for predicting low cognitive ability at age 5. This model could

detect 72% of infants with low cognitive ability, with a specificity of 66%.
CONCLUSIONS: Model performance would need to be improved before consideration as a population-level screening tool.
However, this is a first step towards early, individual, risk stratification to allow targeted childhood screening.

Pediatric Research (2024) 95:1634-1643; https://doi.org/10.1038/541390-023-02914-6

IMPACT:

® This study is among the first to investigate whether machine learning methods can be used at a population-level to predict
which infants are at high risk of low cognitive ability in childhood.
® A random forest model using 15 features which could be easily collected in the perinatal period achieved an AUROC of 0.77 for

predicting low cognitive ability.

® Improved predictive performance would be required to implement this model at a population level but this may be a first step

towards early, individual, risk stratification.

INTRODUCTION

Early life is a unique period where the developing brain has great
plasticity and huge potential for adaptability.' There is consensus
agreement that individual interventions to improve cognitive
development should be initiated early.>* A failure to achieve early
foundational cognitive skills may result in a permanent loss of
opportunity to reach full academic potential.* This, in turn, may
adversely affect outcomes throughout the life course including
educational attainment,® mental health,® social mobility,” financial
well-being,® and physical health.?

Internationally, many countries rely on universal screening
programmes to identify children who may benefit from early
intervention. The majority of developmental screening assess-
ments are based on the presence of a delay in developmental
milestones.'® A limitation of this approach is that opportunities for
intervention in the period of optimal neuroplasticity are lost, and
intervention begins when an infant is already substantially behind

their typically developing peers. There is increasing evidence that
early pre-emptive interventions, initiated prior to overt signs of
delay or difficulty, can alter neurodevelopmental outcomes.'' '3
The challenge we face is predicting at an individual level, using
accurate and scalable methods, who the highest risk infants are.

In the United States, the population-based early intervention
programmes Head Start and Early Head Start, base eligibility
primarily on a family income at or below the poverty level.'
Adverse socioeconomic conditions are among the strongest
predictors of poor cognitive outcomes in childhood, but there are
other important psychosocial, biological, genetic, and environmen-
tal influences, which often have complex and interactive relation-
ships both with each other and with cognitive outcomes.'>"® There
is now increasing potential to statistically model complex
interactive relationships using machine learning techniques.'”'®
This has not been sufficiently explored for prediction of poor
cognitive outcomes in childhood at a population level.'
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In this study we aim to develop an explainable predictive
algorithm, using population-based cohort data, for identifying
infants at risk of low cognitive ability (LCA) at school-age. The
objectives of the study are to train a variety of machine learning
models to predict LCA at age 5; to test these models on an
independent unseen test-set; to compare model performance
using a range of measures; and to identify the most important
features for prediction.

METHODS

Data

Data are from the Growing Up in Ireland (GUI) Infant Cohort, a nationally
representative survey of infants and their primary caregivers (PCG). Wave 1
of data collection commenced in 2008 at infant age 9-months, Wave 2
occurred at age 3 years, and Wave 3 at 5 years. The sample was drawn
from the National Child Benefits Register, a universal welfare entitlement in
the Republic of Ireland. It was selected on a systematic basis with a random
start and constant sampling fraction, and was pre-stratified by marital
status, county of residence, nationality, and number of children in the
family. There were 11,134 families who participated at Wave 1, of whom
9001 completed Wave 3, representing 80.8% of the original sample. Full
details of the sample design, response, and survey instruments are
available.*° Eligible for inclusion in this study were the 8858 infants who
completed cognitive assessments at age 5 and their PCGs, who in 99.7% of
cases were the infant’s mother. A flow chart of the study population is
contained in Supplementary Material Fig. S1.

Outcome

Cognitive ability at age 5 years was directly assessed using two core
subtests of the British Ability Scales (BAS) Early Years Battery Second
Edition, administered in the child’s home by a trained interviewer. The BAS
consists of a battery of individually administered subtests (detailed in
Supplementary Material Table S1) and has demonstrated construct validity
as a measure of cognitive ability and high test-retest reliability.>' To
minimise participant burden in the GUI study, there was an upper limit of
90 min contact time in the home. Therefore, it was not feasible to
administer the full battery of tests, and two core subtests which most
closely align with measures of crystallised and fluid cognitive ability were
chosen.?

The Naming Vocabulary test measures verbal ability in the English
language and consists of the child naming everyday items displayed from
a picture book. The Picture Similarities test measures non-verbal ability and
consists of the child being shown four pictures and requested to match a
fifth picture, based on a shared characteristic or construct. A standardised
score for each scale is provided in the dataset and is adjusted for both item
difficulty and age (within a 3 month age band).

Multiple BAS subtest scores can be combined with summation to
produce a General Conceptual Ability Score. To produce composite scores
using fewer subtests principal components analysis (PCA) was used, as in
previous research.”> PCA of the two BAS subtests confirmed the presence
of a general underlying cognitive ability factor. Principal component 1
(PC1) accounted for 64% of the total variance among the subtests. The
Pearson correlation between this factor and the observed variable was 0.80
for Picture Similarities and 0.80 for Naming Vocabulary subtests. PC1 was
then standardised to produce a general cognitive ability (GCA) score with a
mean of 100 and a standard deviation (sd) of 15.

There is no consensus agreement on a cut-off that defines LCA in
childhood. The International Classification of Disease 11th Revision (ICD-
11) use a standardised test score that is >2 standard deviations (SD) below
the mean to define a disorder of intellectual development, while other
research in this area has used cut-offs of =1 or 1.5 SDs below the
mean.'®2*?> As this study was exploratory in nature, we examined both a 1
and 1.5 SD cut-off. For clarity of presentation the 1.5 SD cut off is used in
the main study and children scoring below this cut-off are referred to as
having low cognitive ability (LCA). The results using a 1 SD cut off are
included in online-only material and this is referred to as below average
cognitive ability (BACA).

Data preparation

No feature had more than 12% missing values. Missing values were
imputed using the ‘missForest’ package, a random forest imputation
method.?® The post-imputation dataset was stratified by the outcome and
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then randomly split into a training set, containing 70% (n=6202) of
participants, and a testing set, containing 30% (n = 2656).

Feature selection

The GUI dataset contains more than 600 variables measured at wave 1 (9-
months) across domains of health, education, cognitive development,
social class, and neighbourhood characteristics. The framework used in
the selection of relevant features is shown in Fig. S2. These features
capture pregnancy and birth, maternal and infant characteristics, the
socioeconomic circumstances of family, and the infant's early environ-
ment. Only features based on information that could be easily obtained
at a population level without the need for invasive testing were eligible
for inclusion. Features which could be collected in the perinatal period
were preferable to enable prediction soon after birth. It is well
established that the early learning environment is very important in
cognitive development, and a set of features intended to measure this
were included.?” Previous published work by our group has focussed on
feature selection to predict low IQ in a separate cohort and this was also
considered.”® All features considered are described in Supplementary
Material Table S2.

To remove redundant features, Pearson correlation coefficients were
calculated and plotted. Features with a correlation greater than 0.6
were examined for redundancy. In choosing which features to remove, the
potential timing of collection, objectivity, and clinical opinion were
considered. Three feature sets were then created (Table S3). Set 1
contained the features identified as most important in our previous work.?®
Set 2 contained only features that could potentially be collected in the
perinatal period. Set 3 included those representing the child's early
environment that would require later measurement. Recursive feature
elimination (RFE), with five-fold cross validation repeated five times, was
performed for each feature set to determine the optimal combination for
the final models. The features included in the final models are indicated by
an asterisk in Table S3.

Modelling

The dataset was imbalanced with regard to the outcome of interest.
Training a model on class imbalanced data risks producing a model bias in
favour of the majority class, with poor predictive performance for the
minority class.’® To address this Synthetic Minority Oversampling
Technique (SMOTE) was applied to the training set only.>° Unlike other
oversampling techniques which simply duplicate minority class cases,
SMOTE utilises an over-sampling approach where the minority class is
over-sampled by creating synthetic examples.?**° Random forest (RF),
logistic regression (LR), and support vector machine (SVM) algorithms were
trained and optimal hyperparameters selected using the rebalanced
training dataset and ten-fold cross validated grid search.

Evaluation

To select the most appropriate machine learning algorithm, accuracy
across ten-fold cross-validation was compared. After selection of the
algorithm, the final models were tested on an independent unseen test
set. Area under the receiver operating curve (AUROC) was used to evaluate
overall model performance. Explanation of performance metrics is
provided in online-only material. A summary of the modelling process is
contained in Fig. 1.

Explainability

Feature importance plots were created using the permutation method in
the vip’ package.®' First, baseline model performance is measured using a
measure set by the user (in this study—AUROC). The feature of interest is
then randomly shuffled and model performance is measured again. The
difference between the two measures is used as a measure of feature
importance. For each feature shuffling was simulated ten times and
importance was averaged across the simulations. It would be expected
that randomly shuffling the values of an important feature would degrade
model performance.®’

The relationships between the most important features and the
outcome were examined using partial dependence plots (PDPs), which
provide a visualisation of the relationship between a feature and the
response while accounting for the average effect of the other features in
the model3? A lower value on the y-axis of the PDP suggests that the
positive class (low cognitive ability) is less likely at that value of the feature
on x-axis according to the model.
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Study population
n=28858

Data preprocessing and imputation of missing
data

Training dataset (70% of data)
Low cognitive ability (LCA) n =402 (6.5%)
Other n = 5800 (93.5%)

SMOTE? applied
LCA n = 1206 (42.9%)
Other n=1608 (57.1%)

Recursive feature elimination to select optimal
feature sets

Model training and selection of hyperparameters

l

Testing dataset (30% of data)

Final model evaluation

LCA n =171 (6.4%)
Other n = 2485 (93.6%)

Fig. 1

RESULTS

Characteristics of study population

There were 8858 infants included, of whom n =573 (6.5%) had
LCA. A summary of characteristics are described in Table 1, with a
complete description provided in Table S4. The LCA group, which
was comprised of 60.6% boys, had a lower mean maternal age
(30.6 vs. 32.1 years, p < 0.001), a higher proportion of mothers who
smoked (30.4% vs. 22.4%, p <0.001), and a lower proportion of
mothers reporting English as their native language (53.9% vs.
86.9%, p <0.001). In the LCA group, 43.8% of mothers reported
their highest education level as being secondary or primary only,
compared with 27.5% of those without LCA. There were significant
differences between the groups with regard to all socioeconomic
characteristics. The LCA group had a lower median family income
(€31,200 vs. €48,000, p <0.001), a lower proportion of families
living in owner occupied accommodation (38.9% vs. 73.5%,
p <0.001), and a higher proportion in the lower social classes.

Rebalanced training dataset

In the study dataset, n =1573/8858 (6.5%) children had LCA. As
detailed in Fig. 1, in the training dataset, which contained 70% of
participants, n =402/6202 had LCA. After application of SMOTE,
the rebalanced training dataset consisted of n=1206 (42.9%)
children with LCA and n= 1608 (57.1%) without. This rebalanced
dataset was used to train the models. The testing dataset was not
rebalanced and contained the original 30% of participants, of
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Overview of modelling process. Synthetic minority oversampling technique.

whom n=171/2656 (6.5%) had LCA. This was the dataset used to
evaluate the models.

Feature and algorithm selection

Following RFE 8 features were retained for Model 1, 15 for Model 2
and 23 features for Model 3. As shown in Table S5, the random
forest algorithm was the best performing algorithm for all three
models, in repeated ten-fold cross validation, and was selected for
the final models.

Final model evaluation

The independent test set contained n=2656 participants, of
whom n =171 had LCA. Models 2 and 3 achieved the highest
AUROC of 0.77 and 0.78 respectively (Fig. S3). At a decision
threshold of 0.5 the models correctly predicted the cognitive
outcome of 87% of participants at age 5 (Table 2). The odds of
having low cognitive ability were 5.9 times higher in the group
with a ‘low’ prediction. Model 2 was deemed to be the best
performing model overall, achieving similar performance to Model
3 but using only 15 features, all of which had potential to be
collected in the perinatal period. To further explore its perfor-
mance, the decision threshold was altered in increments of 0.5
and the corresponding sensitivities, specificities, positive and
negative predictive values were examined using the independent
test set. The optimal threshold of 0.28, using Youden’s index,
yielded a sensitivity of 72% with a specificity of 66% (Table S6).
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Table 1. Pregnancy, maternal, infant, socioeconomic and early environmental characteristics of study population.
Characteristics Total Low n =573 (6.5%) Other n = 8285 (93.5%) p value
Pregnancy and birth
Mode of delivery

Normal vaginal 5239 (59.1) 367 (64.0) 4875 (58.8)

Forceps/suction assisted 1299 (14.7) 60 (10.5) 1238 (14.9)

Planned c-section 1151 (13.0) 61 (10.6) 1090 (13.2)

Emergency c-section 1169 (13.2) 85 (14.8) 1082 (13.1) 0.003°

Admission to NICU/SCBU 1217 (13.7) 88 (15.4) 1129 (13.6) 0.271°

Gestational age—mean (sd) 39.5 (2.1) 39.3 (2.4) 39.5 (2.0) 0.035°¢

Singleton pregnancy 8546 (96.5) 290 (92.9) 7995 (96.5) 0.075°
Birthweight

<15009g 67 (0.8) 6 (1.0) 61 (0.7)

1500 g-2500 g 401 (4.5) 38 (6.6) 362 (4.4)

2500 g-4500 g 8178 (92.3) 509 (88.8) 7670 (92.6)

>4500 9 212 (2.4) 20 (3.5) 192 (2.3) 0.0138°

Breastfed on discharge—yes 4131 (46.6) 300 (52.4) 4427 (53.4) 0.648°

Smoker in hsd® during pregnancy—yes 2801 (31.6) 225 (39.3) 2576 (31.1) <0.001°
Maternal

Age—mean (sd) 32.0 (5.2) 30.6 (5.7) 32.1 (5.1) <0.001°¢

BMI—mean (sd) 25.5 (4.7) 25.9 (5.0) 25.5 (4.7) 0.072°
Self-rated health

Excellent 2798 (31.6) 159 (27.7) 2639 (31.9)

Very good 3505 (39.6) 223 (38.9) 3282 (39.6)

Good 2020 (22.8) 150 (26.2) 1870 (22.6)

Fair 475 (5.4) 35 (6.1) 440 (5.3)

Poor 60 (0.6) 6 (1.0) 54 (0.7) 0.097°

Current smoker—yes 2028 (22.9) 174 (30.4) 1854 (22.4) <0.001°
Alcohol intake

Never 1457 (16.4) 192 (33.5) 1265 (15.3)

<1/month 2409 (27.2) 178 (31.1) 2231 (26.9)

1-2/month 2398 (27.1) 119 (20.8) 2279 (27.5)

1-2/week 2176 (24.6) 73 (12.7) 2103 (25.4)

3-4/week 353 (4.0) 10 (1.7) 343 (4.1)

5-6/week 49 (0.6) <5 48 (0.6)

Daily 16 (0.2) <5 16 (0.2) <0.001¢

Maternal depression—median (IQR) 1(3) 1(3) 1(3) 0.0384¢

Chronic illness—yes 1019 (11.5) 55 (9.6) 964 (11.6) 0.159°
Highest level of education

Primary or less 186 (2.1) 43 (7.5) 143 (1.7)

Lower secondary 739 (8.3) 77 (13.4) 662 (8.0)

Upper secondary 1608 (18.2) 131 (22.9) 1477 (17.8)

Technical/vocational 1194 (13.5) 114 (19.9) 1080 (13.0)

Non degree 1787 (20.2) 74 (12.9) 1713 (20.7)

Degree or equivalent 1617 (18.3) 68 (11.9) 1549 (18.7)

Post degree cert/diploma 1047 (11.8) 36 (6.3) 1011 (12.2)

Post degree masters or PhD 680 (7.7) 30 (5.2) 650 (7.8) <0.001°
Infant

Infant gender—male 4479 (50.6) 347 (60.6) 4132 (49.9) <0.001°
Socioeconomic

Household income—median (IQR) 48,000 (33,600) 31,200 (24,963) 48,000 (33,330) <0.001¢
Household social class

Professional workers 1711 (19.3) 52 (9.1) 1659 (20.0)
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Table 1. continued
Characteristics Total
Managerial and technical 2863 (32.3)
Non-manual 1472 (16.6)
Skilled manual 1168 (13.2)
Semi-skilled 638 (7.2)
Unskilled 119 (1.3)
All others gainfully occupied 37 (0.4)
Never worked 850 (9.6)
Accommodation occupancy
Owner occupied 6315 (71.3)
Local authority housing 623 (7.0)
Private rental 1622 (18.3)
Living with parents 146 (1.6)
Occupied rent free 152 (1.7)
Number of bedrooms—mean (sd) 3.5 (0.9)
Connectedness in community
Strongly agree 3777 (42.6)
Agree 4292 (48.5)
Disagree 618 (7.0)
Strongly disagree 171 (1.9)
Early environment
Siblings—yes 5410 (61.1)
Books in home
None 29 (0.3)
<10 585 (6.6)
10-20 1626 (18.4)
21-30 1562 (17.6)
>30 5056 (57.1)
Hours on learning activities—mean (sd) 34.2 (8.5)
Level of support
Get enough 6446 (72.8)
Don't get enough 856 (9.7)
Don't get any 482 (5.4)
Don't need any 458 (5.2)
Family not in country 616 (7.0)
English maternal native language—yes 7512 (84.8)
Partner in household 7929 (89.5)

*Household.

PPearson’s chi-squared test.

“Welch two sample t-test.

dWilcoxon rank sum test.

®Fisher’s exact test (p value simulated where cell number too small).

A worked example of how the model, at a decision threshold
of 0.5, would function in the real world is provided in Table S7. In
2021 there were almost 60,000 births in Ireland. Assuming a
prevalence of 6.5%, 3900 infants will have LCA at age 5, of whom
1560 would be detected in infancy (sensitivity 0.40). Of the
56,100 infants with average or above cognitive ability at age 5,
50,490 would be correctly identified as not at risk (specificity
0.90). There would be 5610 false positives and 2340 false
negatives.

The modelling and results for predicting LCA using an
alternative cut off of a GCA score more than 1 SD below the
mean are shown in Supplementary Material Fig. S4 and Tables S8
and S9.

SPRINGER NATURE

Low n =573 (6.5%) Other n = 8285 (93.5%) p value
109 (19.0) 2754 (33.2)

85 (14.8) 1387 (16.7)

122 (21.3) 1046 (12.6)

72 (12.6) 566 (6.8)

15 (2.6) 104 (1.3)

8 (1.4) 29 (0.4)

110 (19.2) 740 (8.9) <0.001°
223 (38.9) 6091 (73.5)

85 (14.8) 538 (6.5)

249 (43.5) 1374 (16.6)

8 (1.4) 138 (1.7)

8 (1.4) 144 (1.7) <0.001°
3.1 (0.9) 3.5 (0.9) <0.001¢
186 (32.5) 3591 (43.3)

320 (55.8) 3972 (47.9)

54 (9.4) 564 (6.8)

13 (2.3) 158 (1.9) <0.001°
355 (62.0) 5055 (61.0) 0.687°
6 (1.0) 23 (0.3)

111 (19.4) 474 (5.7)

169 (29.5) 1457 (17.6)

105 (18.3) 1457 (17.6)

182 (31.8) 4874 (58.8) <0.001°
31.8 (9.9) 34.4 (8.3) <0.001¢
344 (60.0) 6102 (73.7)

49 (8.6) 807 (9.7)

36 (6.3) 446 (5.4)

51 (8.9) 407 (4.9)

93 (16.2) 523 (6.3) <0.001°
309 (53.9) 7203 (86.9) <0.001°
491 (85.7) 7438 (89.8) 0.003°
Explainability

The five most important features in Model 2 were PCG alcohol
intake (measured when infant was 9-months old), household
social class, PCG highest education, number of bedrooms in the
home, and household equivalised income (Fig. 2). PDPs are shown
in Fig. 3, alongside a histogram showing the distribution of each
feature in the dataset.

The five most important features were all markers of socio-
economic status (SES). To determine whether any of these markers
of SES could achieve similar predictive performance alone, five
separate random forest models were trained and tested using
each feature alone as a predictor. As shown in Supplementary
Table S10, none of the features alone achieved as high an AUROC
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Table 2. Performance metrics of final models tested on independent test set.
Model 1 (8 features)® Model 2 (15 features)? Model 3 (23 features)®

Accuracy? 0.86 (0.85-0.88) 0.87 (0.85-0.88) 0.87 (0.85-0.88)
Sensitivity® 0.25 0.40 0.43

Specificity® 0.91 0.90 0.89

Positive predictive value® 0.16 0.22 0.22

Negative predictive value® 0.95 0.96 0.96

AUROCP 0.69 (0.65-0.73) 0.77 (0.73-0.80) 0.78 (0.74-0.81)

(95% confidence interval)

Calculated at a decision threshold of 0.5.
PArea under receiver operating characteristic curve.

“Features—Household social class, household equivalised income, PCG age, gestational age, PCG BMI, PCG alcohol intake, maternal depression score, PCG

highest education.

9Features—Household social class, household equivalised income, PCG age, gestational age, PCG BMI, PCG alcohol intake, maternal depression score, PCG
highest education, number bedrooms in home, English native language of PCG, birthweight category, accommodation ownership, number in household

smoking during pregnancy, community connectedness, PCG self-rated health.

®Household social class, household equivalised income, PCG age, gestational age, PCG BMI, PCG alcohol intake, maternal depression score, PCG highest
education, number bedrooms in home, English native language of PCG, birthweight category, accommodation ownership, number in household smoking
during pregnancy, community connectedness, PCG stress score, hours spent on learning activities, books in the home, hours of sleep for PCG, quality of
attachment score, PCG employment status, verbal interaction between PCG and baby, level of support received by PCG, gestational diabetes diet.

Model 2
PCG alcohol intake -
Family social class -
Parental education -
Number of bedrooms -
Family income -
Gestational age -
Community connectedness -
English parental native langugae -
Birth weight category -

Maternal age -

0.000 0.003 0.006 0.009
Importance

Fig. 2 Ten most important features in random forest model 2.
This figure plots the ten most important features used in random
forest model 2 for predicting low cognitive ability at age 5.

as the final model. Family income achieved an AUROC of 0.64
(95% Cl 0.59-0.68). Each feature alone could achieve a high
accuracy, but this was driven by high specificity with relatively
poor sensitivity for detecting those with low cognitive ability.

DISCUSSION

We have shown by evaluating a variety of machine learning
algorithms in a large population-based cohort that a RF model
based on 15 features, all of which have potential to be collected in
the perinatal period, achieved an AUROC of 0.77 for predicting low
cognitive ability at age 5. At a decision threshold of 0.5, the model
could correctly predict the cognitive outcome of 87% of infants,
however this was largely driven by a high specificity and its ability
to detect the majority of children with normal cognitive ability.
When the alternative cut off of 1 SD was used, an AUROC of 0.70
was achieved using 31 features in a RF model. Model performance
was similar to that reported by Camargo et al.,, who developed a
LR model with an AUROC of 0.75, to predict low IQ (defined by a
z-score greater than 1 standard deviation below the mean) at age
6. Their model, however, included predictors that could not be
measured until the infant was 12-months old.'® No other similar
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predictive models were identified in the literature for comparison,
and to our knowledge, this is the first study to examine of
potential of machine learning for the prediction of low cognitive
ability in childhood.

It is difficult to make direct comparisons of model performance
with other screening tools due to differences in cohort
characteristics, cognitive tests, and cut-off scores used to
determine LCA. The available literature examining the perfor-
mance of the Ages and Stages Questionnaire (ASQ) suggests very
similar performance. The ASQ is one of the most widely used
parent-reported screening tools and is currently recommended for
early screening of developmental delay at 2 years of age in many
countries, including by the American Academy of Pediatrics. The
ASQ at 24 and 36 months have reported AUROCs of 0.64 and 0.78
respectively, for predicting low IQ at age 5, defined as an 1Q < 1SD
below the cohort mean and an 1Q<85 in the respective
studies.>*** A study examining the performance of the ASQ
performed between 8-30 months for predicting low 1Q in the
early years of schooling reported similarly low sensitivities ranging
from 28-50%, with specificities ranging from 79-96% across a
range of cut-offs.>> Our data suggest that similar prediction can be
made at birth allowing early intervention in the most high
risk cases.

The statistical approach used in this study was designed to
optimise prediction, not investigate causal relationships. However,
it is notable that among the ten most important predictors, six
(alcohol intake, social class, education, income, bedrooms in the
home, and maternal age) are inherently associated with socio-
economic status.>®*” This is in keeping with a wealth of literature,
both interventional and observational, which has consistently
shown that the socioeconomic environment an infant is born into
is one of the strongest predictors of cognitive outcomes in
childhood.*®*? The findings of this study would suggest that
these features, while all representative of socioeconomic status,
may contribute to risk in different ways as their cumulative effects
better predicted the outcome than the effect of any single feature.

Previous research has shown that children exposed to multiple
early risk factors represent a more vulnerable subgroup for
adverse childhood outcomes. The more risk factors a child is
exposed to the worse these outcomes tend to be.** The most
commonly used statistical approach to combining risk factors for
the prediction of cognitive outcomes has been to combine them
in an additive fashion, with the main effect of each factor
accounted for.">'® However, we know that risk factor effects are
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Fig. 3 Partial dependence plots and histograms examining the relationship between the six most important features in Random Forest
Model 2 and low cognitive ability. Shown in this figure are partial dependence plots (PDPs) for the six most important features in Model 2.
Each PDP is accompanied by a histogram showing the distribution of the feature in the original unbalanced dataset. The PDP shows the
cumulative effect (y-axis), according to our model, of each predictor’s individual values (x-axis) on classification of the outcome. The absolute
values on the y-axis are affected by class imbalance. The overall shape and directionality are important for interpretation. The effect of features
of class factor are shown in dots (e.g. PCG alcohol intake) and the effect of features of class numeric are shown with a black line. The blue line
represents a locally estimated scatterplot smoothing line (LOESS) which attempts to capture the general relationship while reducing noise. For
example, in the PDP plot for household social class we can see that the highest social class categories predict low cognitive ability less
strongly than the lower social class categories. *Primary caregiver alcohol intake categories: 1—Never, 2—Less than once per month, 3—1-2
times per month, 4—1-2 times per week, 5—3-4 times per week, 6—5-6 times per week, 7—Everyday. "Household social class categories: 1—
Professional workers, 2—Managerial and technical, 3—Non-manual, 4—Skilled manual, 5—Semi-skilled, 6—Unskilled, 7—All others gainfully
employed, 8—Never worked at all—no class. “Primary caregiver highest education categories: 1—Primary or less, 2—Lower secondary, 3—
Upper secondary, 4—Technical or vocational qualification, 5—Non-Degree, 6—Degree or equivalent, 7—Post degree professional
qualification or certificate or diploma, 8—Postgraduate masters or PhD.

not necessarily the same for all children and effect modification
and interaction does exist.** The effect of one risk factor may be
accentuated or diminished by another exposure. For example, the
co-occurrence of brain injury due to preterm birth, a biological risk
factor, and socioeconomic disadvantage, a social risk factor, have
synergistic adverse effects on neurodevelopmental outcomes.*
An advantage of the ML approach used in this study is that the
algorithms can combine features in interactive relationships
without the need for prior specification.

Our study has many limitations to consider. There is much
debate about the merits and limitations of standardised cognitive
assessments. Both the ICD-11 and the Diagnostic and Statistical
Manual of Mental Disorders 5th Edition (DSM-V) now include the
impact on adaptive functioning as a diagnostic criteria for IDDs,
reflecting a move away from using standardised testing alone.?**¢
The purpose of this study was not to develop a diagnostic model,
but a prognostic model that could identify high-risk children
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whose cognitive outcome could adversely impact other aspects of
life, such as educational attainment and mental health.*”*® In this
regard, the use of a binary cut-off is justified, although there is no
consensus on the most appropriate one. In this study cut offs of 1
and 1.5 SD were examined.

Cognitive ability was directly measured using standardised
assessments, however children taking the naming vocabulary test,
for whom English is not their native language, may be
disadvantaged, with apparent poor performance. A more appro-
priate measure of cognitive ability in children from multilingual
backgrounds may include total vocabulary across their languages,
or novel language-independent cognitive assessments.*>>° Chil-
dren in GUI did not complete all BAS subtests and PCA was
therefore used to calculate a GCA score. This may not be
acceptable for a formal diagnosis of an IDD, however, a cited
advantage of the BAS is that not all tests in the battery are
required to assess performance and tests are individually
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interpretable.?’ While there is overlap in the mental processes
used in different subtests, the two subtests chosen in the GUI
study largely measure verbal and non-verbal ability, and are not
primarily intended to measure numerical ability, spatial ability,
perceptual speed, or memory. Performing the full battery of BAS
subtests would provide a more robust assessment of cognitive
ability, but for large population-based cohort studies may not be
feasible. 2"

There is now a substantial body of evidence to suggest that
early interventions are most effective when started in the first year
of life."™"® For this reason, our study focussed on features which
could be collected in the perinatal period at a population level.
However, this approach may come at the cost of reduced
predictive performance as detailed information on the child’s
early home and school environment were not included in the
model. Information on the number of books in the home and the
time spent on learning activities at age 3 were included in feature
set C but predictive performance was not significantly better than
with perinatal features alone. This likely reflects the fact that the
early learning environment is intimately intertwined with the
socioeconomic background of the family.

While all 15 features in the final model could be collected in the
perinatal period, in the GUI study they were collected at infant age
9-months. Validation of the model in a cohort with data collection
in the perinatal period is required, but this is challenging. There
are more than 110 birth cohorts in Europe, however, there are no
consensus guidelines on measurements, scales, data sources, or
timing.>® This leads to significant challenges with merging and
harmonising datasets which could provide large pools of data for
validation. Work in this area is ongoing.”®

This study included a large sample size, and a careful sampling
strategy was employed in recruitment of the cohort.?° Attrition in
the GUI study was relatively low and the sample included in this
study who completed cognitive assessments at age 5 represented
79.6% of the original cohort recruited at 9-months. However,
attrition was higher among those from disadvantaged back-
grounds, who are also more likely to have poor cognitive
outcomes.®® Ideally, the model should be validated using
population-based registry data which is not currently collected
in Ireland.

Extensive validation is required to ensure wider generalisability
of predictive models. If the relationship between predictor and
outcome changes, model performance will be affected. For
example, in Ireland only 35% of babies receive any breastmilk at
3 months, and this is significantly associated with socioeconomic
status (SES).>> In our model breastfeeding may be a surrogate
marker of SES, a relationship which may not exist in other
countries where there are very high rates of breastfeeding.

An important challenge with ML models is explainability, the
concept that the prediction a model makes can be explained in an
acceptable way on a human level. In this study PDP plots were
used to help understand how the model was making predictions.
However, these must be interpreted with caution. For example,
the PDP plot examining the relationship between PCG alcohol
intake and risk of low cognitive ability in the child would suggest
that those with moderate alcohol consumption have the lowest
risk, while those with no alcohol or very high alcohol consumption
have the highest risk. This U-shaped relationship curve between
alcohol consumption and health outcomes has been described
previously in the literature.®® In our study, among those who
reported English was not their native language 41.4% reported no
alcohol intake, compared to only 12% of those for whom English
was the native language. Therefore, it is plausible that the
increased risk seen for those who reported no alcohol consump-
tion is due to confounding, and the relationship is actually being
driven by immigration, cultural, religious, language, or socio-
economic factors.
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Finally the individual, health-system, and resource implications
of a risk-based approach must be considered. In its current
iteration this model may not be suitable for use at a population
level. The sensitivity is too low and the resource implications of
the high false positive rate, when the decision threshold is
lowered, is too great. However, it is a first step towards enabling
an early personalised, prediction, which could assist decisions on
further intervention. This is not without consequence. Labelling a
child so early in life could have detrimental effects on both child
and family. In addition to adverse impacts on the child’s self-
concept, it can perpetuate a self-fulfilling prophecy due to effects
on parent and teacher expectations.>’”® Using a label based
largely on social factors, often rooted in inequities generated by
social and political policy, may shift the blame of societal failures
onto the individual child and family. Any risk stratification must
come from a position of support, environmental enrichment, and
education.

In conclusion, the current practice of waiting for overt signs of
developmental delay before intervention goes against a large
body of developmental literature. In this study, it was possible to
develop a model, using 15 simple features available at birth and
readily incorporated into an electronic health record, that correctly
predicted the cognitive ability of 87% of children at age 5. Whilst
further improvements in predictive performance would be
required to use this as a population level screening tool, it
provides a strong basis for further research. New methods of
direct assessment of early cognitive function are lacking.
Neurophysiological measures such as electroencephalography
and eye-tracking show some promise.***® Combined with
targeted direct assessment, this model could, in the future, form
the foundation for an early targeted screening protocol similar to
that now being widely implemented for the early diagnosis of
cerebral palsy.®®" Improved capacity to collect large volumes of
rich data and to apply novel statistical methods, particularly suited
to prediction, provides an opportunity for researchers and
clinicians to investigate alternative approaches.
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