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Abstract 

Objectives  To investigate the potential and limitations of utilizing transformer-based report annotation for on-site 
development of image-based diagnostic decision support systems (DDSS).

Methods  The study included 88,353 chest X-rays from 19,581 intensive care unit (ICU) patients. To label the pres-
ence of six typical findings in 17,041 images, the corresponding free-text reports of the attending radiologists were 
assessed by medical research assistants (“gold labels”). Automatically generated “silver” labels were extracted for all 
reports by transformer models trained on gold labels. To investigate the benefit of such silver labels, the image-based 
models were trained using three approaches: with gold labels only (MG), with silver labels first, then with gold labels 
(MS/G), and with silver and gold labels together (MS+G). To investigate the influence of invested annotation effort, 
the experiments were repeated with different numbers (N) of gold-annotated reports for training the transformer 
and image-based models and tested on 2099 gold-annotated images. Significant differences in macro-averaged area 
under the receiver operating characteristic curve (AUC) were assessed by non-overlapping 95% confidence intervals.

Results  Utilizing transformer-based silver labels showed significantly higher macro-averaged AUC than training 
solely with gold labels (N = 1000: MG 67.8 [66.0–69.6], MS/G 77.9 [76.2–79.6]; N = 14,580: MG 74.5 [72.8–76.2], MS/G 80.9 
[79.4–82.4]). Training with silver and gold labels together was beneficial using only 500 gold labels (MS+G 76.4 [74.7–
78.0], MS/G 75.3 [73.5–77.0]).

Conclusions  Transformer-based annotation has potential for unlocking free-text report databases for the develop-
ment of image-based DDSS. However, on-site development of image-based DDSS could benefit from more sophisti-
cated annotation pipelines including further information than a single radiological report.

Clinical relevance statement  Leveraging clinical databases for on-site development of artificial intelligence (AI)–
based diagnostic decision support systems by text-based transformers could promote the application of AI in clinical 
practice by circumventing highly regulated data exchanges with third parties.
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Key Points  • The amount of data from a database that can be used to develop AI-assisted diagnostic decision systems is 
often limited by the need for time-consuming identification of pathologies by radiologists.

• The transformer-based structuring of free-text radiological reports shows potential to unlock corresponding image data-
bases for on-site development of image-based diagnostic decision support systems.

• However, the quality of image annotations generated solely on the content of a single radiology report may be limited by 
potential inaccuracies and incompleteness of this report.

Keywords  Radiology, Deep learning, Intensive care units, Thorax

Introduction
The application of AI-based DDSS has demonstrated 
the potential to increase efficiency and reading accuracy, 
thereby improving patient care [1–3]. The development 
of image-based DDSS requires a significant amount of 
training images for which it is known whether the dis-
ease of interest is present or not. If these annotations 
are not available for an image database, the number of 
images that can be used for DDSS development is lim-
ited by the need for time-consuming and costly image 
evaluation by annotators with considerable domain 
knowledge [1]. A further challenge is that medical data 
is subject to strict privacy regulations in most countries, 
making it difficult to share medical images for creating 
large international databases [4]. As a result, there is 
potential for local development of image-based DDSS 
in radiology clinics, as no data exchange in compliance 
with privacy regulations is required and diagnoses and 
findings are already made by radiology experts during 
clinical routine and documented in radiology reports.

These reports are commonly in free-text format, as 
many clinics have not integrated structured reporting 
into their daily routine [5]. To retrospectively identify a 
cohort of patients with a disease of interest from a report 
database, and thereby create labels for image-based DDSS 
development, it is necessary to assess the content of the 
reports in a fixed set of labels. Although the time-consum-
ing and expert knowledge requiring reporting of images 
does not have to be repeated, retrospective assessment of 
the content of thousands of radiological reports to identify 
patient cohorts continues to involve considerable effort. 
To overcome this burden, various labeling and model pre-
training strategies have been proposed to develop state-
of-the-art transformer-based natural language processing 
(NLP) methods to classify the content of single radiologi-
cal reports that can be used for retrospective structuring 
of chest X-ray report databases [6–8]. In a recent study, 
we investigated the potential of these different approaches 
for retrospective structuring of chest X-ray reports of ICU 
patients with respect to initial human annotation time 
required for subsequent NLP developments [9].

The results of a recent conference paper, in which the 
authors used X-ray images and English reports from the 
CheXpert dataset, indicate an advantage of transformers 
over rule-based systems in creating report content annota-
tions for training image-based DDSS [10]. In another study 
using in-house chest X-ray examinations from a German 
university hospital, transformer-based annotations were 
also successfully used to develop image-based models [2]. 
Although manual report content was captured in “gold 
labels” for performance evaluations in these studies, the 
image-based DDSS were primarily trained with automati-
cally generated “silver labels” from transformers. However, 
when a clinic develops a transformer to classify report 
content for on-site database structuring, manual annota-
tions are typically performed. These are then also available 
as gold labels for subsequent training of the image-based 
DDSS. Therefore, in a realistic scenario, the development 
of transformer models has to be considered together with 
the subsequent development of image models.

The aim of this exploratory study is to gain insight into 
the potential and limitations of using manually created 
gold labels and transformer-based silver annotations of 
the contents of radiological reports for subsequent on-
site development of image-based AI models for DDSS, 
also with respect to manual report annotation effort.

Material and methods
Overview
Radiological report content annotations generated in 
a previous study on transformer-based structuring of 
free-text radiology databases were used to label the cor-
responding ICU chest X-ray images for the development 
of DDSS systems [9]. Figure 1 illustrates the overall con-
cept of the study and provides an overview of the differ-
ent data sources and datasets used, as well as an overview 
of the different experiments conducted.

Dataset
With institutional review board approval (AZ 411/21), 
written informed consent was waived. Approved 
data processing took place based on the health data 
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protection act North Rhine-Westphalia (GDSG NW) 
§6 (2) state law NRW. The initial cohort includes 93,368 
chest X-ray examinations with reports in German lan-
guage of 20,913 ICU patients of the University Hospi-
tal Bonn from December 2015 to July 2021. The chest 
X-ray examinations were requested from various ICUs 
of our clinic (24% from anesthesiological, 24% from 
cardio-surgical, 20% from surgical, 11% from cardiologi-
cal, 8% from neurological, 7% from internal medicine, 
3% from oncological, and 3% from pediatric ICUs). In a 
previous study, two trained medical research assistants 
manually annotated the content of 18,000 chest X-ray 
reports under the supervision of a radiology resident 
with a mean annotation time of 39.4 s per report [9]. In 
these manually assessed reports, common indications 
were “position of medical devices” (45%) or presence of 

“pleural infiltrates” (39%), “pneumothorax” (38%), “pleu-
ral effusion” (30%), and “congestion” (22%). Additional 
500 reports were annotated by the radiology resident 
and independently by the trained medical research assis-
tants to assess inter-reader variability (mean accuracy of 
agreement: 97.4% and 97.3%, mean Cohen’s kappa: 0.92 
and 0.91) [9]. These manually generated annotations are 
referred to as “gold labels.” This gold-labeled data set was 
randomly split into 14,580 training (AReport), 1620 vali-
dation (BReport), and 2300 hold-out test reports (CReport). 
The test set includes the 500 annotations from the radi-
ology resident. For 200 reports of the test set that were 
annotated by the medical research assistants, the radiol-
ogy resident reinterpreted imaging to assess overall label 
quality and to serve as an additional image labeled test 
set (DReport). In addition to these gold-labeled reports, 

Fig. 1  Overview of the entire study. (1) Report contents of chest X-ray examinations from intensive care unit (ICU) patients were exported 
from the radiology information system (RIS). For a portion of the exported reports, the text content was manually annotated (“gold labels”) 
and divided into a training (AReport), validation (BReport), and test (CReport) subset. Text-based transformer models that automatically “silver 
label” the content of the remaining reports were developed using the gold-labeled reports (SReport). The report annotation and development 
of the transformers shown in (1) was conducted in a previous study. For the current study, the corresponding images of 200 reports of the CReport 
subset were re-evaluated to create image-based gold labels for testing and to assess the disagreement with the report content (DReport). (2) 
Images of patients older than 16 years with a clear one-to-one relationship to their associated report were exported from the Picture Archiving 
and Communication System (PACS). Consequently, the corresponding images to the different report datasets were available that have report 
content-based gold or silver labels (AImage, BImage, CImage, SImage) or image-based gold labels (DImage). (3) These datasets were used to explore different 
approaches for leveraging report content for the development of image-based DDSS
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automatically generated “silver labels” (SReport) were 
created by text-based transformer models (see Fig.  1). 
Detailed information about the annotation process can 
be found in supplement S5 and details on the develop-
ment of the employed NLP algorithms can be found in 
the previous open-access study [9].

In 91,461 out of 93,368 examinations, a DICOM 
query of the picture archiving and communication sys-
tem of the clinic returned only a single image object for 
the accession number associated with the report. Based 
on the unique one-to-one relationship between the 
report and the image, automatic export of the relevant 
image was performed while the remaining studies were 
excluded. Subsequently, patients younger than 16  years 
of age were excluded since the proportion and anatomy 
of not full-grown patients is different from that of full-
grown patients. This resulted in a dataset with 88,257 
images, 17,041 with gold labels and 71,216 with silver 
labels (SImage). No images were excluded due to qual-
ity aspects so that the data set reflects a realistic repre-
sentation of clinical routine images. Furthermore, it was 
ensured that no images from other examination days 
of a patient from the test and validation cohort were in 
the training set. If there were several images of a patient 
acquired on different examination days within the test 
or validation cohort, one image was randomly selected. 
This resulted in a total of 12,923 training (AImage), 1437 
validation (BImage), and 2099 test (CImage) images that 
had corresponding gold-labeled reports and 187 images 
from the test set with image-based gold labels (DImage). 
Based on these silver and gold annotated images, DDSS 
models were developed for the detection of pulmonary 
infiltrates, pleural effusion, pulmonary congestion, pneu-
mothorax, and misplaced position of the central venous 
catheter (CVC).

Pre‑processing
An algorithm was applied to perform a rectangular 
crop of image areas outside the radiation field that were 
caused by acquiring the image with portable X-ray equip-
ment in supine position. Details can be found in supple-
ment S1. The cropped images were resized to 512 × 512 
pixels. Then, a standard U-Net model segmented the lung 
to allow for computation of mean and variance within the 
lung mask for z-score normalization of the image val-
ues [11]. More information on the development of the 
lung segmentation U-Net used for pre-processing can 
be found in supplement S2. During training of the DDSS 
models, image augmentation methods were applied, 
which are described in detail in supplement S3. During 
training, all classes were up-sampled to at least 20% to 
avoid class imbalance in multi-label classification.

Experiments
A DenseNet-121 Convolutional Neural Network with 
ImageNet pre-trained weights from the PyTorch torch-
vision library was used as established model for process-
ing lung diseases in chest X-rays [12, 13]. To investigate 
the benefits of automatically transformer-generated sil-
ver labels, the model was trained with four approaches: 
(i) with gold labels only (MG), (ii) with silver labels only 
(MS), (iii) first with silver then with gold labels (MS/G), 
and (iv) with silver and gold labels together (MS+G).

To investigate these approaches with respect to dif-
ferent amounts of invested human annotation effort in 
an end-to-end manner, the development of transform-
ers for silver label generation and the development of 
image-based DDSS using approaches i, ii, iii, and iv were 
repeated using different amounts of gold-labeled reports 
(N: 500, 1000, 2000, 3500, 7000, 14,580).

Binary cross entropy loss, AdamW optimizer, a one 
cycle learning rate schedule with a maximum learning 
rate of 0.01, a weight decay of 0.01, and a batch size of 128 
was used for training [14]. While fine-tuning the MS/G 
model on gold labels after training with silver labels, the 
maximum learning rate was reduced by a factor of 10−1 
per dense block from the last to the first block, as com-
monly done when applying pre-trained weights [15, 16]. 
Detailed information on model architecture and training 
can be found in supplement S4. Model performance was 
assessed by single and macro-averaged AUC with 95% 
confidence intervals calculated by bootstrapping with 
1000 resamples using torchmetrics v0.10.3. Non-overlap-
ping CIs are interpreted as significant differences [17].

The report content classifying Bidirectional Encoder 
Representations from Transformers (BERT) models 
was developed in a previous study by pre-training the 
transformer with the unsupervised learning technique 
“masked language modeling” and subsequent fine tuning 
to gold-labeled reports [9]. Detailed information on the 
training and hyperparameters used can be found in the 
previous open-access study on on-site development of 
transformers in radiological clinics [9].

Results
The main findings of the results are the following:

•	 The use of transformer-based silver labels is ben-
eficial for the development of image-based DDSS of 
ICU chest X-ray examinations.

•	 Separated training with silver and then gold labels 
is advantageous if more than 2000 gold labels are 
available.

•	 There are differences between labels based on report 
content and labels based on image reinterpretation.
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Table 1 shows the number of positive cases for the dif-
ferent pathological findings for all datasets used. The 
three classes with the lowest number of positive cases 
in the gold label dataset were pneumothorax (429), mis-
placed CVC (1071), and infiltrates (2560), and the two 
classes with the highest number of positive cases were 
congestion (4423) and effusion (6063).

Table  2 and Fig.  2 show the diagnostic performance 
of the examined DDSS models evaluated on the test 
images with report-based labels for all classes and vari-
ous numbers of gold-labeled reports. For all subsets with 
1000 or more of gold-labeled reports employed, signifi-
cantly higher macro-averaged and misplaced CVC AUC 
scores were observed for the DDSS models employing 
transformer generated silver labels (MS, MS+G, and MS/G) 
compared to the DDSS model trained solely on gold-
labeled images (MG). For pleural effusion, MS, MS+G, and 
MS/G performed significantly better than MG when 3500 
or a lower number of gold-labeled reports were available. 
The same observation was made for pulmonary infiltrates 
when only 2000 or fewer gold-labeled reports were avail-
able. MS+G performed better than MS and MS/G when 
using only 500 gold-labeled reports for the three findings 
pneumothorax, misplaced CVC, and pulmonary infil-
trates, which had the lowest number of positive cases. 
Table 2 additionally lists the diagnostic performance on 
the test data set with image-based labels (DImage). It was 
observed that for macro-average, misplaced CVC AUC, 
MS+G had higher values than MS and MS/G when 2000 or 
fewer gold-labeled reports were available and MS/G had 
higher values than MS and MS+G when more than 2000 
gold-labeled reports were used.

Interestingly, the macro-averaged AUC of the models 
evaluated on the test set with image-based labels were 
higher than the macro-averaged AUC of the same mod-
els evaluated on the report-based labeled test set. For 
pulmonary congestion, AUC values of all MS+G and MS/G 

models evaluated on the dataset with image-based labels 
were significantly higher than the same models tested 
on the report-based labels. Detailed metrics for MS/G 
for which the highest macro-averaged AUC values were 
observed in both the report- and image-labeled test sets 
can be found in Table 3.

Table 4 shows the agreement between the labels based 
on report content and the labels based on image re-
assessment of the gold-labeled test set (DImage). When 
comparing report content annotation with image re-
evaluation, the lowest AUC (93.5%, 95.5%) and accuracy 
values (93.0%, 93.6%) were observed for pulmonary infil-
trates and congestion. For pulmonary infiltrates, sensitiv-
ity was 100% and specificity 91.0%, and for pulmonary 
congestion, sensitivity was 89.3% and specificity 97.6%.

Discussion
In this study, we investigated the potential and limita-
tions of extracting findings from radiology reports, also 
employing text-based transformers, to annotate the cor-
responding images for on-site development of image-
based DDSS. In many countries, such as Germany, data 
protection regulations strictly restrict the exchange of 
radiological reports and images that contain personal 
data closely linked to sensitive medical information with 
third parties (e.g., AI companies). The opportunity to 
develop these systems using unstructured, retrospec-
tively collected data on-site in radiology clinics could 
drive the development and ultimately the application of 
specialized AI models in routine clinical practice. These 
AI applications could, for example, provide an initial 
assessment immediately after image acquisition by the 
technical assistants and therefore could contribute to 
faster detection and treatment of emergencies.

For the following reasons, we considered ICU chest 
X-ray examinations suitable for investigating this sub-
ject. With ICU chest X-ray examinations, there is usually 

Table 1  Number of positive cases for all silver- and gold-labeled training images (SImage, AImage) and the gold-labeled validation (BImage) 
and test subsets (CImage, DImage) used in this study. To investigate the influence of human annotation effort, the experiments were 
repeated with subsets of the gold-labeled training set AImage with different numbers (N) of images

Datasets SImage AImage BImage CImage DImage

Label type Silver Gold

Purpose Training Training with various N of gold-labels Valid Test Test

Number of images 56,797 12,923 6206 3096 1773 877 450 1437 2099 187

Findings Number of positive cases in dataset splits

Misplaced CVC 3766 1071 504 253 154 70 37 108 180 44

Effusion 36,922 6063 2868 1428 798 396 200 680 1004 113

Infiltrates 22,291 2560 1226 619 369 192 111 301 729 103

Congestion 17,360 4423 2105 1090 625 292 151 500 424 54

Pneumothorax 2450 429 210 122 71 34 15 51 74 34

2899



Nowak et al. European Radiology (2024) 34:2895–2904

a clear one-to-one relationship between the report and 
the image, without the report describing multiple images 
of an imaging series. The image data is two-dimensional, 
which makes the development of DDSS less complex. The 
images of ICU patients frequently present severe patholo-
gies, which reduces class imbalance for training of DDSS. 
Lastly, rapid identification of pathologies is essential in 
these critically ill patients, which makes DDSS of high 
interest [18]. However, ICU chest X-ray examinations 
are in principle more demanding to analyze than regular 
chest X-rays. One reason for this is that ICU patients suf-
fer from a variety of serious conditions and may receive a 
variety of treatments. ICU patients may be mechanically 
ventilated; there may be tubes, catheters, and other medi-
cal devices that can alter, obscure, or distort the anatomy 
of the lungs. Another reason is a frequently limited image 
quality. ICU X-rays of critically ill patients are typically 
acquired with portable X-ray scanners in lying position, 
which can induce gravity related alterations in location 

and appearance of organs and tissues. Also, the condition 
of the patient and the medical equipment may not allow 
ICU patients to be positioned accurately perpendicular 
to the X-ray beam resulting in further image distortion.

Despite these particular challenges, the image-based 
model utilizing both manual and transformer-based 
report content labels showed a macro-average AUC of 
84.8% on the image-labeled test set. This indicates the 
potential of transformers for unlocking the content 
of free-text reports of radiological report databases 
to ultimately develop image-based DDSS without the 
need for image re-evaluations. The investigation of the 
performance of the models developed with different 
numbers of gold-labeled reports demonstrated that it is 
beneficial to train with silver and gold labels together 
when only 2000 or fewer reports have been annotated 
by humans. If more reports can be annotated, separated 
training with silver and then gold labels appeared pref-
erable in our study compared to training with a mixture 

Table 2  Area under the receiver operating characteristic curve (AUC) in % observed for the hold-out test set of 2099 images that were 
labeled by report content and for the hold-out test set of 187 images that were labeled by re-evaluating imaging. The image-based 
models were trained on report-based labels with four different approaches: solely on gold labels (MG), solely on silver labels (MS), first 
with silver, then with gold labels (MS/G) and with silver and gold labels together (MS+G). The transformer and image-based models were 
trained with various numbers (N) of gold-labeled reports and images to investigate the influence of annotation effort on DDSS model 
performance. For MS, solely silver-labeled images were used generated by the transformer trained with N gold labels. The highest 
performances of the models trained with the same number of gold labels are indicated by bold font for both test sets. Significant 
differences between the AUCs of MG and MS or MG and MS+G or MG and MS/G are indicated by * and between the AUCs of the same 
model (MG/MS/MS+G/MS/G) tested on report- or image-based labels with †

Number of gold labels 
used

Test-set labeled by report content (N = 2099) Test-set labeled by image content (N = 187)

MG MS MS+G MS/G MG MS MS+G MS/G MG MS MS+G MS/G MG MS MS+G MS/G

Reports Images AUC macro-averaged Misplaced CVC AUC macro-averaged Misplaced CVC

  14,580 12,935 74.5 79.7* 78.8* 80.9* 63.1 73.5* 77.3* 77.7* 75.8 84.6* 82.4 84.8* 61.3 81.8* 79.3* 83.4*
  7000 6206 73.4 78.1* 78.2* 79.2* 64.3 73.4* 70.5 74.1* 76.5 82.1* 82.0 82.8 68.8 76.4 73.6 76.7
  3500 3096 71.8 78.3* 79.2* 78.5* 63.1 71.9* 74.5* 72.6* 75.7 82.9* 81.8 83.0* 65.4 77.7 73.1 77.9
  2000 1773 71.5 77.4* 78.5* 78.5* 63.4 71.3* 73.2* 74.3* 73.5 79.9 81.5* 81.1* 67.4 71.7 75.9 75.6

  1000 877 67.8 77.5* 77.3* 77.9* 59.7 68.6* 69.8* 69.6* 69.5 80.3* 82.8*† 80.2* 57.5 69.9 76.0 69.5

  500 450 68.5 75.1* 76.4* 75.3* 57.7 65.7 69.2* 67.4* 68.9 78.9* 80.1* 76.9* 58.9 72.5 76.7 69.7

Reports Images Pleural effusion Pulmonary congestion Pleural Effusion Pulmonary congestion

  14,580 12,935 83.8 86.1 85.7 86.4 72.5 73.5 75.2 74.5 84.5 87.9 88.6 87.5 81.1 81.7 84.8† 83.9†

  7000 6206 83.6 84.5 85.9 85.8 72.9 74.2 74.3 74.4 84.1 85.5 87.7 86.6 81.9† 84.8† 84.3† 84.8†

  3500 3096 82.2 85.7* 86.1* 85.7* 69.3 74.4* 74.8* 74.4* 82.2 88.2 87.1 88.5 81.9† 83.4† 83.0† 83.9†

  2000 1773 81.1 85.8* 86.2* 85.6* 70.7 73.9 73.3 74.4 81.3 86.7 87.8 87.6 80.6† 82.3† 82.2† 83.5†

  1000 877 79.8 86.3* 85.9* 86.2* 69.2 74.3* 73.5 74.6* 79.1 87.2 86.8 86.8 81.6† 83.8† 84.3† 83.9†

  500 450 80.4 84.4* 84.4* 84.8* 68.1 72.7 71.4 72.9* 79.4 85.5 82.1 86.3 76.5 85.4† 81.8† 85.0†

Reports Images Pulmonary infiltrates Pneumothorax Pulmonary infiltrates Pneumothorax

  14,580 12,935 80.6 82.3 82.2 81.9 72.5 83.4 73.9 84.0 73.3 81.3 79.1 77.3 79.1 90.3 80.2 91.9
  7000 6206 78.5 81.4 82.6 81.7 67.6 77.2 77.5 79.8 76.3 79.4 79.2 77.8 71.2 84.7 85.2 88.0*
  3500 3096 78.7 81.2 82.0 81.1 65.8 78.6 78.8* 78.5 78.7 76.1 77.5 76.0 70.2 89.2* 88.0* 88.8*

  2000 1773 74.1 81.8* 82.4* 81.6* 68.1 74.0 77.4 76.7 68.2 79.4 77.5 77.8 69.9 79.1 83.8 81.1

  1000 877 70.3 80.9* 83.1* 81.6* 59.9 77.5* 74.2* 77.6* 63.6 74.5 81.3* 75.6 65.9 86.3* 85.5* 85.3*

  500 450 72.4 79.1* 80.7* 78.6* 63.9 73.6 76.3* 72.8 69.0 75.8 74.8 72.2 60.8 75.3 84.9* 71.4
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Fig. 2  Area under the receiver operating characteristic curve (AUC) of the image-based DenseNet models for various levels of human annotation 
effort, represented as different numbers of employed manually labeled reports on the x-axis. Note that the transformer models for report content 
classification (silver labels generation) were also employing the same varying amounts of manually gold-labeled reports so that the end-to-end 
effect of different amounts of human annotation effort can be assessed. CVC, central venous catheter; MG: model trained on solely report-based 
gold labels; MS+G: model trained on report-based silver and gold labels together; MS/G: model trained first on report-based silver labels, then on gold 
labels

Table 3  Detailed metrics for the receiver operating characteristic analysis of the best model MS/G trained with all available data on 
both test sets with report and image-based labels. The area under the receiver operating characteristic curve (AUC) in % is given per 
class. Also, sensitivity and specificity in % are given per class for binary classifications. Thresholds were calculated by the Youden-Index 
on the training set and applied to the test set

Test-set labeled by report content Test-set labeled by image content

Classes AUC​ Sensitivity Specificity AUC​ Sensitivity Specificity

Misplaced CVC 77.6 64.4 74.1 83.4 70.5 76.9

Pleural Effusion 86.4 71.9 83.3 87.5 73.5 83.8

Pulmonary Congestion 74.5 57.8 75.9 83.9 60.2 88.1

Pulmonary Infiltrates 81.9 78.3 70.7 77.3 77.8 66.9

Pneumothorax 84.0 87.8 60.6 91.8 97.1 60.1

Overall 80.9 72.0 72.9 84.8 75.8 75.2
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of gold- and silver-labeled images. This is in line with 
the observation on the two test datasets that the model 
trained with only silver-labeled images performed bet-
ter than the model trained with mixed label types when 
14,580 gold-labeled reports were available to train the 
silver label generating transformer.

In addition to the report-based labeled test set, we 
also generated an image-based labeled test to investi-
gate discrepancies between report content and image 
findings that potentially pose a limitation to the use of 
manual and transformer generated report-based labels 
for on-site DDSS development. Interestingly, it was 
observed that all models demonstrate higher macro-
averaged AUC values when evaluated on the test set 
with image-based labels compared to evaluation of the 
same models on the report-based labeled test set. A 
previous conference paper already discussed potential 
reasons that can lead to discrepancies between report-
content and image findings [19]:

i)	 Findings that are not of high relevance to the current 
clinical condition of the patient might not be men-
tioned in the report, although they may be present 
within imaging.

ii)	 Findings within a report may be based on informa-
tion that is not content of the report, e.g., informa-
tion from reports from previous examinations or 
clinical/laboratory parameters.

iii)	Borderline image findings could yet be remarked by 
the attending radiologist for assurance and conse-
quently be considered equally as definite findings for 
the DDSS training.

iv)	And lastly, the radiologist might have made an error 
during the reporting. Also, further errors may occur 
during the subsequent annotation of the report content 
by the human annotators and/or by the transformers.

To assess the overall label discrepancies potentially 
caused by the above-listed reasons, the results of the image 
reassessments were compared with the gold labels based 

on the report content. This revealed high specificity com-
bined with lower sensitivity for pulmonary congestion; 
i.e., congestions present within imaging were occasion-
ally not mentioned in the report. However, it was rare that 
the image reader disagreed after re-evaluation when the 
pathology was mentioned in the report. One could specu-
late that minor congestions that were not of major impor-
tance for the current clinical question were occasionally 
not reported, as also described in above-described scenario 
i. Interestingly, both models pre-trained with silver labels 
showed significantly higher AUC values for pulmonary 
congestions when evaluated on the test subset with image-
based labels compared to the test subset with report-based 
labels. This indicates that despite the observed limited sen-
sitivity of the report content for pulmonary congestion, the 
DDSS models learned to correctly detect the pathology 
also in some cases where it was not mentioned in the cor-
responding reports of the test subjects.

For pulmonary infiltrates, high sensitivity with lower 
specificity was observed when comparing report content 
with image re-evaluation. This implies that the reader 
who re-assessed infiltrates solely on imaging occasion-
ally disagreed with the occurrence of the pathology in the 
report. However, when the image reader identified infil-
trates, this consistently agreed with the report content.

The more frequent recognition of infiltrates in the 
report texts compared a to re-evaluation of the images 
may result from additional information available to the 
attending radiologist at the time of reporting, but which 
is not content of the report text, as described in scenario 
ii. For example, recent inflammatory laboratory values 
and results of previous clinical examinations or previous 
radiological reports may have encouraged the examiner 
to describe a lesion as an infiltrate. The more frequent 
inclusion of infiltrates in the report texts may also be 
caused by the difficulty identifying a lesion as pulmonary 
infiltrate on ICU images with patients in lying position. 
This may increase the number of borderline cases that 
could still be mentioned in the report by the attending 
radiologist, as described above in scenario iii.

Table 4  Accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), precision, and F1-Score between 
report-based generated labels from medical research assistants and image-based labels from a radiology resident. A total of 187 
images were considered during the evaluation

Class Accuracy Sensitivity Specificity AUC​ Precision F1-score

Misplaced CVC 97.9 100.0 97.2 98.6 91.7 95.7

Pleural effusion 95.7 95.6 95.9 95.8 97.3 96.4

Pulmonary Congestion 93.0 89.3 97.6 93.5 97.9 93.4

Pulmonary infiltrates 93.6 100.0 91.0 95.5 81.8 90.0

Pneumothorax 98.9 100.0 98.7 99.3 94.4 97.1

Overall 95.8 97.0 96.1 96.5 92.6 97.0
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Other work propose the following approaches to 
address this challenge of imprecise direct mapping of 
report and image content. Similar to the current study, 
one study proposes to first train an image-based deep 
learning model with labels that are derived from the con-
tent of the corresponding reports [19]. The authors claim 
that the class probabilities provided by this image-based 
model are more precise labels for the development of 
text-based transformers in comparison to the initial labels 
derived from the report content. A follow-up study shows 
that the labels of this improved transformer also lead 
to higher performance of the image-based DDSS [10]. 
Another paper proposes a more sophisticated approach 
for the annotation of chest X-ray images based on report 
content by also assessing a second report of a recent CT 
scan [2]. If the contents of both reports agree, the authors 
assume that the X-ray report text is accurate. To reduce 
noise in the dataset caused by imprecise report texts, the 
authors also propose to first train an image-based model 
on the noisy data. Then, some image-based labels are 
manually created by reviewing cases for which the pre-
diction of this model strongly disagrees with the report 
content label. This more sophisticated approach, involv-
ing annotation of two reports and reviewing of imaging, 
showed promising results in improving the quality of the 
labels. However, the scope of eligible patients is limited, as 
imaging and reporting must be available for both modali-
ties and the manual re-evaluation of images requires 
costly time of radiological experts. Other work presented 
algorithmic approaches to increase robustness to noisy 
labels during training of an image-based deep learning 
model. For example, one paper proposes to extend the 
loss function to allow the model to ignore cases during 
training that are strong outliers due to inaccurate labels 
[20]. This warrants further studies investigating the util-
ity of more time-consuming labeling approaches versus 
the use of algorithmic approaches to handle the noise of 
labels extracted directly from report contents for on-site 
DDSS development in radiology departments.

The use of transformer-based report content annotation 
for DDSS developments has a further limitation that is 
not apparent from the study results. Unlike the ICU chest 
X-ray examination used in this study, the report content 
of, e.g., MRI examinations are based on multiple imaging 
sequences. Therefore, further considerations are required 
when applying the concept to other imaging modalities.

Conclusion
The results show that report content extraction by trans-
formers could aid in unlocking unstructured retrospec-
tive routine data in radiological clinics for on-site DDSS 
development. However, noisy labels caused by imperfect 

report and image content mapping pose challenges to the 
presented approach. Therefore, on-site development of 
image-based DDSS could potentially benefit from more 
sophisticated annotation pipelines that include infor-
mation beyond the corresponding radiological report 
and from algorithmic approaches to handle noisy labels. 
Moreover, the application of the approach of employing 
report contents for training of image-based DDSS should 
be further investigated for imaging examinations where 
the report is based on multiple images.

Abbreviations
AUC​	� Area under the receiver operating characteristic curve
AI	� Artificial intelligence
CVC	� Central venous catheter
DDSS	� Diagnostic decision support systems
ICU	� Intensive care unit
NLP	� Natural language processing

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s00330-​023-​10373-0.

Below is the link to the electronic supplementary material.Supplementary 
file1 (PDF 299 KB)

Funding
Open Access funding enabled and organized by Projekt DEAL. R.S., B.W., D.B, 
and H.S. are affiliated with the Competence Center for Machine Learn-
ing Rhine-Ruhr, which is funded by the Federal Ministry of Education and 
Research of Germany (grant no. 01|S18038B). S.N. was funded by RACOON 
(NUM), which is supported by the Federal Ministry of Education and Research 
of Germany (grant no. 01KX2121). The authors gratefully acknowledge this 
support. The funders had no influence on the conceptualization and design 
of the study, data analysis and data collection, preparation of the manuscript, 
and the decision to publish.

Declarations

Guarantor
The scientific guarantor of this publication is PD Dr.-Ing. Alois Martin Sprinkart.

Conflict of interest
The authors of this manuscript declare no relationships with any companies, 
whose products or services may be related to the subject matter of the article.

Statistics and biometry
No complex statistical methods were necessary for this paper.

Informed consent
Written informed consent was waived by the Institutional Review Board 
(University of Bonn).

Ethical approval
Institutional Review Board approval was obtained by the local Ethics Commit-
tees at the Medical Faculty of the Rheinische Friedrich-Wilhelms-Universität 
Bonn (AZ 411/21).

Study subjects or cohorts overlap
The present study is a follow-up to a study published in European Radiology 
on the transformer-based structuring of free-text radiology databases (Nowak, 
S., Biesner, D., Layer, Y.C. et al Eur Radiol (2023). https://​doi.​org/​10.​1007/​
s00330-​023-​09526-y). The manual and transformer-based report annotations 

2903

https://doi.org/10.1007/s00330-023-10373-0
https://doi.org/10.1007/s00330-023-10373-0
https://doi.org/10.1007/s00330-023-09526-y
https://doi.org/10.1007/s00330-023-09526-y


Nowak et al. European Radiology (2024) 34:2895–2904

generated in the previous study were used in the current study to annotate 
the corresponding ICU radiographs to investigate the value of these report-
based annotations for the development of image-based DDSS systems.

Methodology

• retrospective
• experimental study
• performed at one institution
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