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Abstract
Wnt signaling plays a crucial role in embryonic development and homeostasis maintenance. Delicate and sensitive fine-
tuning of Wnt signaling based on the proper timings and positions is required to balance cell proliferation and differentiation 
and maintain individual health. Therefore, homeostasis is broken by tissue hypoplasia or tumor formation once Wnt signal 
dysregulation disturbs the balance of cell proliferation. The well-known regulatory mechanism of Wnt signaling is the 
molecular reaction associated with the cytoplasmic accumulation of effector β-catenin. In addition to β-catenin, most Wnt 
effector proteins are also regulated by ubiquitin-dependent modification, both qualitatively and quantitatively. This review 
will explain the regulation of the whole Wnt signal in four regulatory phases, as well as the different ubiquitin ligases and 
the function of deubiquitinating enzymes in each phase. Along with the recent results, the mechanism by which RNF43 
negatively regulates the surface expression of Wnt receptors, which has recently been well understood, will be detailed. Many 
RNF43 mutations have been identified in pancreatic and gastrointestinal cancers and examined for their functional alteration 
in Wnt signaling. Several mutations facilitate or activate the Wnt signal, reversing the RNF43 tumor suppressor function 
into an oncogene. RNF43 may simultaneously play different roles in classical multistep tumorigenesis, as both wild-type 
and mutant RNF43 suppress the p53 pathway. We hope that the knowledge obtained from further research in RNF43 will 
be applied to cancer treatment in the future despite the fully unclear function of RNF43.
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Introduction

Wnts are secreted lipid-modified glycoproteins, and they 
constitute a large family with 19 members in humans 
(Buechling and Boutros 2011; Dijksterhuis et al. 2014; Van 
Camp et al. 2014). Wnt proteins transduce several signals 
within a very short distance from Wnt-secreting cells due 
to their strong hydrophobicity (Farin et al. 2016). Ten Wnt 
receptors, Frizzleds (Fzds), are expressed on the Wnt-receiv-
ing cells and coupled with co-receptors, such as LRP5/6 or 
Ror1/2, to transduce signals into cells (Kikuchi et al. 2009). 
When Wnt ligands form ligand-receptor complexes with 
Ror1/2, the Wnt-Fzd-Ror complexes transduce noncanonical 

signals via Wnt/PCP or Wnt/Ca2+ pathways and control 
cell polarity and motility (Kikuchi et al. 2012). Alterna-
tively, ligand-receptor complexes with LRP5/6 activate the 
canonical Wnt signal and cause the expression of a series 
of Wnt target genes via the accumulation of a key effector, 
β-catenin. The canonical Wnt/β-catenin signal maintains cell 
stemness and proliferation in an undifferentiated state (Mac-
Donald and He 2012). The combination of Wnt ligands-
receptor-co-receptor intricately regulates cellular behaviors, 
such as how cells proliferate and move.

Wnts are assumed to function in both embryonic devel-
opment and tumorigenesis based on the history of Wnt 
signal discovery. In the 1970s, a fly mutant with no wings 
due to the segment polarity defect was identified (Sharma 
and Chopra 1976; Nusslein-Volhard and Wieschaus 1980). 
This was named wingless mutant. Independently of these 
reports in the developmental biology field in 1982, another 
group studying virus-induced tumorigenesis revealed that 
the virus is frequently inserted in the genomic region, Int-1, 
when mouse mammary gland tumor virus was used to infect 
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to mice for tumor formation (Nusse and Varmus 1982). In 
1987, these were identified with the same gene, and Int-1 
was reported as the mouse homolog of fly wingless gene 
(Baker 1987; Rijsewijk et al. 1987). Therefore, this locus 
was named Wnt-1 by taking letters from wingless and int-1, 
as well as wingless-related integration sites.

The study that explored the biological function of Wnt 
started with fly, but now, the roles of most Wnts have been 
dissected in detail using gene disrupted mice model. Indi-
vidual phenotypes of Wnt-deficient mice are listed on “the 
Wnt homepage” (https:// web. stanf ord. edu/ group/ nusse lab/ 
cgi- bin/ wnt/). Several studies revealed that Wnts play a cru-
cial role in determining body plan during early embryogen-
esis (Yamaguchi 2008; Schnirman et al. 2023).

Wnts play important roles even in adults who have com-
pleted their development and growth. It is generally thought 
that Wnt/β-catenin signaling activity is indispensable for 
stem cell maintenance, particularly in maintaining tissue 
homeostasis in the gastrointestinal (GI) tract, hematopoietic 
system, and skin, where cell turnover is high.

The perturbation of Wnt signaling is closely associated 
with human diseases (Logan and Nusse 2004; Clevers and 
Nusse 2012). Genetic mutations in Wnt ligands, Fzds, and 
co-receptors frequently cause congenital hypoplasia in hard 
tissues, such as the bones and tooth, or bone maintenance 
in adults (see the Wnt homepage). Furthermore, canonical 
Wnt/β-catenin signal dysregulation strongly induces tumo-
rigenesis especially in the GI tract (Zhan et al. 2017; Koush-
yar et al. 2020; Zhu and Li 2023). Genetic analyses with 
mutant flies, a tumorigenic adenomatous polyposis coli-min 
 (APCmin) mutant mice, and patients with familial adeno-
matous polyposis (FAP) allowed us to understand how the 
failure of β-catenin degradation by loss of function (LOF) 
of APC triggers colorectal cancer (CRC).

This review will explain the Wnt receptor degradation 
mechanism, which has been rapidly understood in the last 
10 yr, and explore the progression of carcinogenesis due to 
its failure, using the latest results.

Wnt/β‑catenin signaling regulation 
is categorized into four phases

First phase: From the Wnt protein synthesis 
to its secretion outside of Wnt‑producing cells 
via intracellular trafficking

This phase is essentially regulated by the amount of secreted 
Wnt ligand proteins. Wnt proteins are synthesized in the 
endoplasmic reticulum (ER), modified with lipids, and then 
secreted outside cells via trans-Golgi network (TGN) and 
secretory vesicles (SVs) or multivesicular bodies (MVBs) 

(Fig. 1, left) (Hosseini et al. 2019; Routledge and Scholpp 
2019). During this process, Wnt proteins are modified with 
palmitoleic acid (PAM) in a conserved serine by ER mem-
brane–expressing protein-serine O-palmitoyltransferase, 
porcupine (PORCN) (Kadowaki et al. 1996; Takada et al. 
2006). The PAM modification makes Wnt proteins hydro-
phobic and directs the binding to a cavity of Wntless (Wls/
Evi) located in transmembrane regions (Nygaard et al. 2021; 
Zhong et al. 2021). Wls-bound Wnts are transported via the 
intracellular membrane trafficking pathway for their extra-
cellular secretion (Banziger et al. 2006). Therefore, PAM 
modification of Wnt is a crucial essential process in Wnt 
signaling regulation. Wnts that lack PAM cannot bind to 
Wls; thus, they are not secreted extracellularly. Similar to 
gene mutations in PORCN, PORCN activity inhibition by 
small molecules (PORCNi) or Wls mutation also lacks Wnt 
secretion and the Wnt signaling activation (van den Heuvel 
et al. 1993; Barrott et al. 2011; Proffitt et al. 2013).

Second phase: Until secreted extracellular Wnts 
bind to their receptors on the Wnt‑receiving cell

This phase involves multiple regulation mechanisms, 
including Wnt activity, extracellular travels, and binding 
and level of receptors and co-receptors. Secreted Wnt pro-
teins are released from Wls and are highly hydrophobic. 
PAM-modified Wnts cannot travel even in short distances 
from Wnt-producing cells if they remain naked. Therefore, 
the stable migration of Wnts is believed to occur in vari-
ous mechanisms (Fig. 1, top) (Takada et al. 2017; Mehta 
et al. 2021). The secretion of exosomes containing Wnts 
via MVBs can protect Wnt proteins and keep them stable 
in extracellular space (Gross et al. 2012). The adhesion of 
Wnt protein to heparan sulfate proteoglycans (HSPGs) that 
are expressed on the cell surface enables Wnts to exist sta-
bly and migrate across the cell surface (Binari et al. 1997; 
Yan and Lin 2009). Extracellular proteins, such as Swim, 
lipoprotein particle (LPP), and secreted frizzled-related 
proteins (sFRPs), bind to Wnts to carry them (Panakova 
et al. 2005; Neumann et al. 2009; Mulligan et al. 2012). 
According to their Wnt binding ability, sFRPs were initially 
accepted as Wnt agonists (Finch et al. 1997). Additionally, 
sFRPs were thought to interact with Wnts via cysteine-rich 
domain (CRD) that is also conserved in Wnt receptor Fzds 
and competes with Wnt-Fzd binding (Kawano and Kypta 
2003). However, sFRPs have been recently found to have 
two sides in Wnt signal regulation. sFRPs directly bind to 
Wnts, help them to be soluble and stable in extracellular 
space, and carry Wnt proteins to distant Wnt-receiving cells 
by expanding the range of Wnt action (Mii and Taira 2009; 
Esteve et al. 2011). Conversely, several “pure” inhibitor 
proteins of the Wnt signal are also acting in extracellular 

https://web.stanford.edu/group/nusselab/cgi-bin/wnt/
https://web.stanford.edu/group/nusselab/cgi-bin/wnt/
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space. The addition of PAM modification was explained to 
be essential for Wls binding to and extracellular secretion 
of Wnt proteins. Further, PAM is essential for Wnt binding 
to Fzd to activate intracellular downstream signaling (Hirai 
et al. 2019; Janda et al. 2012). However, Notum impairs 
the activity of Wnt proteins by deacylating and removing 
PAM from extracellularly secreted Wnts (Kakugawa et al. 
2015). In addition to these Wnt-affecting proteins, some 
proteins also act inhibitory on the Wnt receptors and co-
receptors. Dickkopf-1 (Dkk-1) interacts with co-receptors 
and low-density lipoprotein receptor-related proteins 5 and 
6 (LRP5/6) and blocks Wnt-LRPs binding to avoid Wnt/β-
catenin signaling activation (Glinka et al. 1998; Mao et al. 
2001; MacDonald and He 2012). Membrane-bound ubiqui-
tin ligases, RNF43 and ZNRF3, degrade Wnt receptor Fzds 
in a ubiquitination-dependent manner, thereby downregu-
lating the surface expression of receptors and reducing the 
sensitivity to Wnt ligands (Hao et al. 2012; Koo et al. 2012; 
de Lau et al. 2014; Farnhammer et al. 2023).

Third phase: Wnt effector molecule activation 
in the cytoplasmic region

This phase is the best-known regulation in the Wnt signaling 
pathway and essentially regulates by the amount of β-catenin 
protein. The intracellular destruction complex, consisting of 
APC, Axin, GSK-3β, and CK1, constitutively phosphoryl-
ates β-catenin in the absence of Wnt ligands (Fig. 1, right) 
(Logan and Nusse 2004; Clevers and Nusse 2012; Nusse and 
Clevers 2017). Phospho-β-catenin is recognized and ubiqui-
tinated by a ubiquitin ligase complex  SCFβ−TrCP (including 
Cul-1, Skp1, and β-TrCP) and rapidly downregulated by pro-
teasomal degradation, resulting in the limited free β-catenin 
in the cytoplasm (Jiang and Struhl 1998; Kitagawa et al. 
1999; Latres et al. 1999). However, the intracellular serines 
of LRPs are phosphorylated by GSK-3β and/or CK1 once 
Wnt ligands bind to Fzds and LRPs, and they then interact 
with Axin (Fig. 1, middle). Fzd and Axin start to polymerize 
via the DIX domain of Dishevelled (Dvl) and DAX domain 

P

Wnt-secreting cells

Wnt

Wnt -PAM

Porc

Wnt
PAM-PAM-

Goigi

ER

Nucleus

Wls

W tn
PAM-

WntPAM-

P

Wnt

PA
M-

Wls

Nucleus

β-catenin

Fzd

LRP

MVB

Notum

Dkk

sFRP

Secretion

Dvl Axin

WIF

APC
CK1GSK-3β

β-catenin
Accumulation

β-catenin

Degradation

β-catenin -Ub
-Ub

-Ub
P

SCFβTrCP

AxinAPC
CK1GSK-3β

nagiltnWfoecneserpehtnI dnagiltnWfoecnesbaehtnId

Tcf/Lef

β-catenin

SCFβTrCP

Translocation

Wnt-recieving cells

1,
 W

nt
 p

ro
du

ct
io

n 
an

d 
se

cr
et

io
n 

in
 W

nt
 p

ro
du

ci
ng

 c
el

ls

2, Wnt binding to the receprots at the extracellular space and on the surface of Wnt-recieving cells

3, R
egulation of W

nt effectors
    in the cytoplasm

4, Transcriptional
    regulation
    in the N

ucleus

Cytoplasm

Cytoplasm

RNF43
ZNRF3

W tnPAM-

HSPG

Exosome

Signalosome Destruction complex

Target
genes
ON Tcf/Lef

Groucho
Target
genes
OFF

Fzd
LRP

Groucho

CBP
p300

BCL9
in
Mediator

No Wnts

W tn
PAM-
SV

Figure 1.  Four regulatory phases of Wnt signal transduction. Whole 
Wnt signal cascades consist of four identical regulatory events: (1) 
how much Wnt-producing cells secret Wnt ligand proteins to outside 
of the cells (left side); (2) how much Wnt-receiving cells are stimu-
lated by functional Wnt ligands at the extracellular and receptors 
on the cell surface (top); (3) how Wnt-received cells intracellularly 

transduce the signals to the downstream points of action (right side, 
upper); (4) how cells respond to the signal received via several bio-
logical reactions, including the expression of Wnt target genes (right 
side, bottom). ER, endoplasmic reticulum; PAM, palmitoleic acid; 
MVB, multivesicular body; SV, secretory vesicle; Ub, ubiquitin.
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of Axin and form a large signalosome that inhibits GSK-3β 
activity just under Fzd and LRP (Roberts et al. 2007; Fiedler 
et al. 2011; Kan et al. 2020; Beitia et al. 2021). GSK-3β 
inactivation disables to phosphorylate β-catenin and allows 
it to escape from  SCFβ−TrCP-mediated degradation, resulting 
in the raid and drastic β-catenin accumulation. These excess 
cytoplasmic unphospho-β-catenin proteins start to translo-
cate into the nucleus.

Forth phase: Transcriptional activation of Wnt 
target genes in the nucleus

This phase is essentially regulated by the interaction of Tcf/
Lef with Groucho or β-catenin on the Wnt-responsive ele-
ments (WREs). A transcriptional suppressor Groucho keeps 
the interaction with a family of HMG-box transcription fac-
tor Tcf/Lef proteins located on WREs when the Wnt ligands 
are absent and β-catenin proteins are not accumulated in the 
cytoplasm and the nucleus (Fig. 1, lower right) (Cavallo et 
al. 1998; Daniels and Weis 2005; Cadigan and Waterman 
2012). Therefore, Groucho strongly suppresses Wnt target 
genes whose expression is regulated via Tcf/Lef transcrip-
tion factors, when deubiquitinated by USP47 (Kassel et al. 
2023). However, Groucho dissociates with Tcf/Lef on WRE 
by X-linked inhibitor of apoptosis (XIAP)–dependent ubiq-
uitination once Wnt ligands activate Wnt/β-catenin signaling 
(Hanson et al. 2012). Abundant β-catenin binds to Tcf/Lef 
and replaces Groucho (Fig. 1, middle-bottom). The binding 
of β-catenin to Tcf/Lef on the WRE recruits several factors 
that initiate and activate the Wnt target gene transcription, 

including CBP/p300 for chromatin remodeling, BCL9 to 
cooperate with enhancers, and mediator complex to initiate 
the transcription (Anthony et al. 2020). A classical oncogene 
c-myc, which can induce cell stemness, plays a central role 
in tumorigenesis among the many Wnt target genes (Shachaf 
et al. 2004; Takahashi and Yamanaka 2006; Sansom et al. 
2007).

Here, we describe the essential roles of ubiquitin-
dependent modification in regulating various Wnt effector 
proteins’ qualitative and quantitative activity, especially in 
Wnt-receiving cells.

Ubiquitination rules Wnt signaling

The majority of Wnt effector proteins, particularly in Wnt-
receiving cells, are functionally and quantitatively regulated 
by ubiquitination-dependent modification to fine-tune the 
signal to keep it in the state of dynamic equilibrium. These 
effector ubiquitinations are sometimes cooperated with other 
modifications, including phosphorylation (Gao et al. 2014). 
Furthermore, each effector does not have a one-to-one cor-
respondence with its ubiquitinating or deubiquitinating 
enzymes but is regulated by multiple groups of these modi-
fying enzymes in a complex and context-specific manner 
(Fig. 2) (Tauriello and Maurice 2010; Deng et al. 2020).

Wnt receptors and co-receptors function as an entrance of 
the signal at the most upstream of this cascade. Co-receptor 
LRP6 is deubiquitinated by USP19 to regulate its protein 
maturation and expression on the cell surface, whereas its 

Figure 2.  Ubiquitin-dependent 
proteolysis governs Wnt signal-
ing. A large number of ubiquitin 
ligases (shown in red) and deu-
biquitinating enzymes (shown 
in blue) quantitatively and 
qualitatively regulate most of 
the effectors that are involved in 
Wnt signaling. Multiple ligases 
and deubiquitinating enzymes 
are assigned to each effector. 
Some other enzymes for ubiqui-
tin-dependent modification may 
also have been identified, but 
not all are shown here.
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ubiquitin ligases remained unidentified (Perrody et al. 2016). 
The Wnt receptor Fzd surface level is regulated by two mem-
brane-bound ubiquitin ligases, RNF43 and ZNRF3. ZNRF3 
deubiquitination by USP42 stabilizes its surface retention and 
functions to downregulate Fzds (Hao et al. 2012; Koo et al. 
2012; Colozza and Koo 2021; Giebel et al. 2021). Conversely, 
Fzd is deubiquitinated by USP6 and USP8 (Mukai et al. 2010; 
Jung et al. 2013; Madan et al. 2016). Dvl is ubiquitinated by 
NEDL1, KLHL12, NEDD4L, Huwe1, Inversin, and ITCH and 
deubiquitinated by CYLD, USP9X, and USP14 (Miyazaki et 
al. 2004; Angers et al. 2006; Tauriello et al. 2010; Wei et al. 
2012; Ding et al. 2013; Jung et al. 2013; de Groot et al. 2014; 
Nielsen et al. 2019). A component of the destruction complex, 
Axin, is ubiquitinated by RNF146, Smurf1/2, and Siah1 and 
deubiquitinated by USP7, USP34, and USP44 (Kim and Jho 
2010; Lui et al. 2011; Zhang et al. 2011; Fei et al. 2013;  Ji et 
al. 2017; Ji et al. 2019; Huang et al. 2020). APC is ubiquit-
inated by HectD1 and RNF61 and deubiquitinated by Trabid 
and USP15 (Tran et al. 2008; Huang et al. 2009; Tran et al. 
2013; Lee et al. 2018). A core effector, β-catenin, is also mod-
ified by multiple enzymes, including ligases  SCFβ−TrCP, Siah1, 
Jade-1, Ozz, EDD, Mule, and LUBAC, and deubiquitinated 
by USP4, USP7, USP9X, USP47, and OTULIN (Kitagawa 
et al. 1999; Liu et al. 2001; Nastasi et al. 2004; Chitalia et al. 
2008; Hay-Koren et al. 2011; Shi et al. 2015; Yun et al. 2015; 
Ouyang et al. 2016; Dominguez-Brauer et al. 2017; Novel-
lasdemunt et al. 2017; Wang et al. 2020; Zhang et al. 2021).

Tcf/Lef transcription factors, which function as scaf-
folds to recruit β-catenin to WRE on target genes, are regu-
lated by NARF, Pja2, and USP4 in the nucleus (Yamada 
et al. 2006; Zhao et al. 2009; Song et al. 2018). Addi-
tionally, the Groucho corepressor, which inhibits Wnt tar-
get activation while the Wnt signal is off, is regulated by 
XIAP, EDD, and USP47 (Hanson et al. 2012; Flack et al. 
2017; Kassel et al. 2023). Finally, a critical Wnt target 
in tumorigenesis, c-myc, is regulated by a more compli-
cated mechanism as reviewed in detail (Sun et al. 2021). 
C-myc is ubiquitinated by at least 18 ligases, including 
 SCFβ−TrCP,  SCFFbw7,  SCFSkp2, CHIP, Pirh2, TRIM32, and 
HectH9, and 6 deubiquitinases, including USP7, USP28, 
USP36, and USP37 (von der Lehr et al. 2003; Yada et al. 
2004; Adhikary et al. 2005; Popov et al. 2007; Popov et 
al. 2010; Hakem et al. 2011; Paul et al. 2013; Pan et al. 
2015; Sun et al. 2015; Nicklas et al. 2019).

Generally, modification with K48-linked polyubiquitin 
chains caused proteasomal degradation, but not in other 
chain types. Ubiquitin-dependent modification of the above-
mentioned Wnt effectors not only induces Wnt effector pro-
tein degradation, but also stabilizes them by blocking the 
proteasomal degradation via other ubiquitin chain types on 
the effectors or regulating protein–protein interaction with 
other effectors or factors. Additionally, these ubiquitin-
dependent modifications are sometimes coupled with other 

modifications including phosphorylation making signal 
regulation complex but highly elastic.

Ubiquitination‑dependent Wnt receptor 
regulation in co‑operation with a growth 
factor

As explained above, the surface expression of Wnt receptors 
is also regulated by ubiquitin-dependent modification. The 
deubiquitinating enzyme of Fzd has been known for some 
time, but the ubiquitinating enzyme remained unknown 
for a time. However, several independent groups reported 
from 2012 to 2015 that two ubiquitin ligases, RNF43 and 
ZNRF3, which are specifically expressed in stem cells, are 
enzymes that lead Fzd degradation (Hao et al. 2012; Koo et 
al. 2012; Tsukiyama et al. 2015). A Japanese research group 
in 2004 first reported RNF43 as an oncoprotein that is highly 
expressed in CRC, but its function remained unclear for a 
long time (Yagyu et al. 2004). RNF43 is a type I single trans-
membrane protein with a transmembrane (TM) region and 
two functional domains, namely a protease-associated (PA) 
domain in the extracellular region for interacting with other 
proteins and an intracellular ring-finger (RING) domain for 
modifying proteins with ubiquitin. Wnt receptor regulation 
by RNF43/ZNRF3 is carried by a complex and beautiful 
mechanism that cooperates with an intestinal growth factor 
R-spondin (Rspo) (Hao et al. 2012; de Lau et al. 2014).

RNF43 interacts with Fzds, in the absence of Rspo, to 
ubiquitinate them. Proteasomal degradation even with ubiq-
uitin modification does not downregulate Fzds, but ubiquit-
ination initiates the internalization of Fzds and co-receptor 
LRP5/6 and lysosomal degradation via endosome (Fig. 3, 
upper left). Therefore, the Fzd expression level on the cell 
surface is kept quite low, and the cellular sensitivity to Wnt 
ligands is also maintained in low (Fig. 3, lower left). How-
ever, once Rspo reaches the area, it forms a trimeric complex 
with RNF43/ZNRF3 and LGR4/5 which is well-known as a 
stem cell marker by bridging these two proteins (Fig. 3, upper 
right). Rspo switches RNF43 substrates, and LGR4/5/6 inter-
nalization occurs instead of Fzd. As a result, Fzd escapes the 
degradation by RNF43/ZNRF3 and accumulates on the cell 
surface. Elevated Fzd expression on the cell surface drastically 
enhances the sensitivity to equal amounts of Wnt ligands in 
the presence of Rspo (Fig. 3, lower right). Amplification of 
signal by the change of surface receptor level can fine-tune the 
signal with a high signal/noise ratio in addition to a regulatory 
layer on how much Wnt ligands stimulate Wnt-receiving cells.

Furthermore, recent reports proposed distinct models 
between LGR4 and LGR5 in facilitating Wnt signaling that 
LGR4 forms complex with bivalent Rspo and RNF43/ZNRF3 
as in the present model, whereas LGR5 and Rspo directly 
stimulate signalosome regardless of its valency regardless of 
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these ubiquitin ligases via IQGAP1 (Park et al. 2020; Toh et 
al. 2023).

The phospho‑switch of RNF43, a novel 
regulatory mechanism in Fzd expression 
and Wnt signaling

The intestinal tract can be histologically categorized into 
villi and crypts. Intestinal epithelial cells that are generated 
and matured in the crypt move to the villi, and they fall off 
once they function well and reach the end of their lifespan, 
thereby maintaining intestinal homeostasis (Gehart and Cle-
vers 2019). Intestinal stem cells (ISCs) live in the bottom 
of intestinal crypts with Paneth cells and form intestinal 
niches (Sato et al. 2011) (Fig. 4, left upper). Most ISCs do 
not proliferate in a quiescent state but a fraction of them 
proliferates slowly to maintain stem cells by self-renewal or 
to produce transient-amplifying (TA) cells. TA cells gradu-
ally differentiate while continuing proliferation, and various 
cells, including differentiated and growth-arrested epithelial 
cells, are pushed out of the crypt to the villi. Wnt signaling 
plays an essential role in ISC self-renewal and TA cell pro-
liferation (Merenda et al. 2020). RNF43 is expressed only 
in the ISCs (Fig. 4, left, lower) (Koo et al. 2012). However, 
distinguishing between quiescent or proliferative stem cells 

in the same intestinal niche may be difficult because Wnt 
proteins are secreted from adjacent Paneth cells and act only 
at very short distances. Unlike Wnts, Rspo is secreted from 
stromal cells that surround the intestinal niche, so they are 
thought to be more diffusible and widespread than Wnts 
(Farin et al. 2016). Therefore, the additional regulatory layer 
is speculated to be required to fine-tune the signal in stem 
cells in the niche.

The regulation of function by RNF43 phosphorylation 
answers this speculation. RNF43 is believed to be trans-
ported to the cell surface by intracellular membrane traf-
ficking pathway via ER, TGN, and MVBs/SVs after protein 
synthesis (Fig. 4, right). Nascent RNF43 proteins are not 
phospho-modified, but a serine cluster consisting of con-
served four serines in the cytoplasmic region is phospho-
rylated at some time/some place after Golgi. These serines 
are phosphorylated localization-dependently in multi-steps. 
Priming phosphorylation on S474 (by unidentified kinase 
X) causes sequential phosphorylation on the S476/477/478 
cluster by casein kinase I (CK1) to activate the function 
of RNF43 as a ubiquitin ligase and turning the “switch to 
ON” (Tsukiyama et al. 2020). After RNF43 activation by 
these serine phosphorylations, CK1 further phosphorylates 
RNF43, although the role of hyper-phosphorylation remains 
unknown.

Figure 3.  Mechanism by 
which Rspo accumulates Wnt 
receptors on the cell surface. 
RNF43 interacts with Wnt 
receptor Fzd in the absence of 
Rspo, to ubiquitinate and induce 
receptor internalization and 
lysosomal degradation (upper 
left), retaining Wnt-receiving 
cells in the hyposensitive state 
to Wnt ligands (lower left). 
Rspo deprives Fzds of RNF43 
once cells are exposed to Rspo, 
and it forms RNF43-Rspo-LGR 
complex (upper right) to switch 
its substrates. Fzds escape from 
RNF43-derived degradation and 
start to accumulate on the cell 
surface, thereby acquiring the 
hyper-sensitivity to the same 
amount of Wnt ligands (lower 
left vs. right).
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The phosphorylation of RNF43 bidirectionally regulates 
Wnt signaling via Fzd expression on the cell surface, so it 
was defined as the “phospho-switch.” RNF43 fully retained 
the function when the phospho-switch that is fixed in the ON 
by core serines was substituted with aspartic acids or glu-
tamic acids (3SD or 3SE) for mimicking serine phosphoryla-
tion. RNF43 (3SD/3SE) can ubiquitinate and downregulate 
Fzds to suppress Wnt signaling. Conversely, replacing these 
serines with arginines (3SA) to mimic unphosphorylated ser-
ines and fixing the switch to OFF cause the RNF43 to lose 
its function. RNF43 (3SA) facilitates Wnt signaling due to 
surface Fzd accumulation. Therefore, the phospho-switch is 
thought to maintain homeostasis by balancing differentiation 
and proliferation by fine-tuning Wnt signaling. Indeed, nor-
mal intestinal tissues cannot be maintained due to reduced 
Wnt signaling caused by excessive membrane clearance of 
Fzds when fixing in the switch to ON with 3SD (cannot be 
turned off). Meanwhile, tumors are induced by an excess of 
Fzd and Wnt signaling in the phospho-switch constitutively 
OFF state with 3SA (cannot be turned on). The phospho-
switch finding answers how stem cells in the same niche 
that are exposed to both Wnt ligands and Rspo similarly can 

make the difference between whether to proliferate or arrest 
(Fig. 4, left lower). Phosphorylation activates the function of 
RNF43, but the dephosphorylating enzyme that inactivates 
and turns the switch off remains unidentified. Further, the 
kinase responsible for initially and actively triggering the 
switch remains unknown despite identifying CK1 as a kinase 
activating RNF43 in the second step of the phospho-switch. 
Therefore, identifying phosphatases and kinases and their 
upstream signals is a significant step toward understanding 
bidirectional Wnt signal regulation by the phospho-switch. 
Furthermore, the phosphorylation status of four tyrosines on 
ZNRF3 (not conserved in RNF43) by protein tyrosine phos-
phatase receptor-type kappa and mesenchymal-epithelial 
transition factor reported recently to determine its localiza-
tion to the cell surface, thereby regulating Wnt signals via 
Fzd expression (Nanki et al. 2018; Chang et al. 2020). This 
regulatory mechanism also functions as another “phospho-
switch” in Fzd and Wnt signal regulation. Several mysteries 
remain regarding the relationship between the phosphoryla-
tion mechanism of RNF43/ZNRF3 and its subcellular locali-
zation. Further research is needed to understand fully the 
function of RNF43/ZNRF3.
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Figure  4.  Phosphorylation-dependent functional RNF43 activation. 
Intestinal niches (left, blue boxed) are located at the bottom of intes-
tinal crypts surrounded by mesenchymal and stromal cells. The niche 
consists of intestinal stem cells (ISCs) and Paneth cells. Paneth cells 
are derived from ISCs and secrete Wnt ligands toward adjacent ISCs 
to maintain stemness, whereas Rspo is secreted and diffuses from 
mesenchymal and/or stromal cells at the outside of intestinal niche 

(left, dashed gray boxed, and bottom). Post-translational RNF43 is 
activated by phosphorylations at some point (unidentified) during its 
trafficking from the Golgi to the cell surface and acquires the abil-
ity as a ubiquitin ligase (right). This activation occurs in at least two 
stages: unidentified kinase X firstly primes S474, and then, the fol-
lowing phosphorylation of three serines at 476–478 by CK1 activates 
RNF43.
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Mutations of RNF43 in tumorigenesis

RNF43 was first reported as an oncoprotein that is highly 
expressed in CRCs (Yagyu et al. 2004). It strongly sup-
presses Wnt signals in healthy conditions and various 
genetic mutations in RNF43 are identified in many cancers; 
thus, RNF43 mutations are thought to be deeply involved 
in carcinogenesis as a tumor suppressor gene. Indeed, com-
pound mutant mice lacking both RNF43 and ZNRF3 rap-
idly form tumorigenic expansion of ISCs (Koo et al. 2012). 
In particular, RNF43 mutations are frequently identified in 
colorectal, pancreatic, and bile duct cancer, but strangely, 
there are not many genetic mutations in the homolog ZNRF3 
(Wu et al. 2011; Ong et al. 2012; Giannakis et al. 2014; 
Bond et al. 2016). RNF43 mutations have been identified 
in 11.4% of total CRCs (COSMIC database, https:// cancer. 
sanger. ac. uk/ cosmic/). The nature of CRCs is known to be 
significantly different whether tumors develop on the right 
or left side of the colon (Fig. 5, left) (Tsukiyama et al. 2021). 
The famous APC mutations are common in left-sided micro-
satellite stable (MSS) CRCs that arise in tissues develop-
mentally originating from the hindgut, but this mutation is 
not frequently observed in right-sided microsatellite insta-
bility-high (MSI-Hi) CRCs. Conversely, right-sided MSI-Hi 
CRCs that arise in tissues derived from the midgut often 
have mutations in the RNF43 gene instead of APC (Yaeger 
et al. 2018; Salem et al. 2020). Rather, APC and RNF43 
mutations are reported to be mutually exclusive, and they 
rarely coexist simultaneously (Giannakis et al. 2014; Yaeger 
et al. 2018; Fennell et al. 2020). These facts indicate that 
both mutations in RNF43 and APC activate Wnt signals in 

the same direction, and either one alone can provide suffi-
cient conditions equally to initiate tumorigenesis. Mutations 
in RNF43 are diverse, including truncating mutations with 
missense and frameshift or substitution mutations with mis-
sense in both extracellular and intracellular regions. These 
numerous mutations are roughly classified into four groups 
depending on how mutations affect cells (Fig. 5, right).

Latent mutations, which do not affect Wnt signaling

Most of the missense mutations in the intracellular domain 
and small deletions in the C-terminal side, such as R659fs 
mutation that is frequently observed in MSI-Hi, belong to 
this group (Fig. 5, right, second from top). These mutations 
have at least little or no impact on the function of RNF43 
to ubiquitinate and degrade Fzds (Tu et al. 2019; Li et al. 
2020; Cho et al. 2022). Latent mutants behave similarly to 
wild-type normal RNF43, so they can upregulate surface 
Fzd level and facilitate the Wnt signal in the presence of 
Wnt ligands in a Rspo-dependent manner (Fig. 3). How-
ever, whether these mutants are completely normal and fully 
retain the original function as a tumor suppressor remains 
unclear because RNF43 may be involved in other signaling 
pathways that affect tumorigenesis. Several molecules that 
interact with RNF43, including HAP95 and PSF/p54nrb, 
have been reported but with unclear biological significance 
of the binding (Miyamoto et al. 2008; Sugiura et al. 2008). 
In the future, the functions of RNF43, other than regulating 
Wnt signaling, should be dissected with these latent mutants.
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Figure  5.  Classification of RNF43 mutations in cancers. The colon 
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based on the difference in their developmental origin (left). The 
nature of the cancer and the combination of their genetic mutations 
also differ greatly between these parts. Mutations that are found 
in cancers are firstly classified into two (right). One is the “latent 
mutations” without impact in Wnt signal suppression and functions 
similar to wild-type. The other is the “oncogenic mutations” (pink 

boxed). This class is categorized into three subgroups, DN, LOF, 
or GOF mutations. However, all mutations belonging to these sub-
groups facilitate Wnt signaling and convert RNF43 tumor suppressor 
into oncogene in distinct mechanisms. CRC, colorectal cancer; MSS, 
microsatellite stable; MSI-Hi, microsatellite instability-high; DN, 
dominant-negative; LOF, loss of function; GOF, gain of function; PA, 
protease-associated domain; TM, transmembrane region; RING, ring-
finger domain; SRR, serine-rich region.
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Dominant‑negative (DN) mutations that facilitate 
Wnt signaling

Most missense mutations to the intracellular domain do not 
provide the phenotype in Wnt facilitation, except for phos-
pho-switches or direct mutations to RING, which is essential 
for ubiquitin ligase activity, as described above (Tsukiyama 
et al. 2020; Yu et al. 2020). However, extracellular substitu-
tion mutations, such as I48T, S82S, and R127P, sometimes 
cause a DN effect on RNF43. RNF43 is matured via intracel-
lular trafficking going through ER, Golgi, and MVB/SV to 
the cell surface (Fig. 4). These extracellular mutations are 
reported to disrupt RNF43 intracellular trafficking and cause 
its localization to stack in the ER (Tsukiyama et al. 2015). 
Kinases, including CK1, cannot phosphorylate mutant 
RNF43 trapped in the ER, so the phosphorylation switch 
is not turned on (Fig. 4, right lower). These not-phospho-
rylated and not-activated mutant proteins are expressed as 
full-length RNF43 proteins and are not only present as inac-
tive proteins but also inhibit functional wild-type RNF43 
and ZNRF3 that still express in cells because RNF43 forms 
homodimer and heterodimer with ZNRF3 (Zebisch et al. 
2013; Tsukiyama et al. 2020; Toh et al. 2023). Remark-
ably, the R127P oncomutant was activated and functionally 
recovered to a tumor suppressor gene when a 3SD substitu-
tion was introduced into the phospho-switch of the R127P 
mutant (turning the switch to the ON) although it remained 
expressed in the ER (Tsukiyama et al. 2020). Therefore, 
the phospho-switch may be regulated in an intracellular 
localization-dependent manner. Cells that express mutant 
RNF43 completely lose the ability to degrade Fzds by both 
RNF43 and ZNRF3, causing surface Fzd accumulation and 
the hyper-sensitive state to Wnt ligands (Jiang et al. 2013). 
Therefore, those Wnt ligand–dependent hyper-activating 
cells are strikingly sensitive to PORCNi which eliminates 
Wnt proteins from extracellular space (Fig. 5, right, third 
from top) (Koo et al. 2015). Conversely, those cells do not 
respond to Rspo treatment, because excess Fzds in these 
cells do not depend on the substrate-switching by the LGRs-
Rspo-RNF43 association but originated from the DN effect 
of mutant RNF43 itself.

LOF mutations accelerate Wnt signaling

Recently, the second most frequent R117fs truncating muta-
tion of RNF43 after G659fs was reported to facilitate Wnt 
signaling (Giannakis et al. 2014; Cho et al. 2022). This short 
RNF43 that lacks most of the essential motifs, including TM 
and RING, might interact with Fzds and prevent its ubiqui-
tination and internalization, while retaining only partial PA 
domain (Fig. 5, right, fourth from top). Wnt facilitation with 
RNF43 (R117fs) mutants leads to Fzd accumulation and 
the hyper-sensitive state to Wnt ligands, thereby behaving 

similarly to DN mutants above, also showing PORCNi sensi-
tivity and Rspo independency. However, whether the R117fs 
mutation acts as LOF or DN remains unclear. The effect of 
RNF43 (R117fs) that interacts with Fzds to block the bind-
ing of Fzds to endogenous wild-type and functional RNF43 
and ZNRF3 may be DN rather than LOF. Further research 
is needed to investigate the molecular mechanism of how 
RNF43 (R117fs) accumulates Fzds and facilitates the Wnt 
signal.

Gain of functional (GOF) mutations activate Wnt 
signaling

The recently reported R519X mutation causes aberrant 
Wnt signal activation in a Wnt ligand–independent man-
ner, unlike the R659fs mutation, which does not show an 
impact on Wnt signals (Spit et al. 2020). This truncation 
mutation strongly stabilizes the binding of RNF43 to CK1 
much more than that of wild-type type, resulting in consti-
tutive membrane targeting of CK1 despite the absence of 
Wnt ligands (Fig. 5, right, bottom). Membrane localization 
of CK1 causes direct β-catenin accumulation through the 
destruction complex inactivation similar to the presence of 
Wnt ligands. The β-catenin accumulation and Wnt signal 
activation induced by R519X mutation do not accompany 
Fzd accumulation, so cells expressing this mutant do not 
show any Wnt dependency and sensitivity to PORCNi.

As described here, RNF43 is known to have a wide 
variety of mutations, and the changes in cellular proper-
ties resulting from these mutations also vary. In particular, 
all three types of mutations, namely DN, LOFs, and GOFs, 
facilitate or activate Wnt signaling and function as onco-
genes (Fig. 5, right). Therefore, for CRCs with RNF43 
mutations, the selection of drugs used should be considered 
depending on the type of RNF43 mutation (Tsukiyama et al. 
2021). Here, we showed some of the representative muta-
tions, but a study comprehensively describes for a huge num-
ber of mutations regarding Wnt signal facilitation/activa-
tion and the presence or absence of sensitivity to PORCNi; 
hence, please refer to this informative paper for the nature 
of RNF43 mutations (Yu et al. 2020).

Versatile roles of RNF43 in multistep 
carcinogenesis

Although RNF43 and ZNRF3 fine-tune Wnt signaling 
activity for maintaining homeostasis by regulating receptor 
expression, these ubiquitin ligases are also sensitive target 
genes of Wnt signaling (Takahashi N. et al. 2014; Tsu-
kiyama et al. 2015). When Wnt signaling is activated, the 
β-catenin-Tcf/Lef transcriptional complex is formed in the 
WREs on the intron of the RNF43 locus to initiate RNF43 
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expression. Sequentially, induced functional RNF43 protein 
terminates Wnt signaling as described, thereby forming a 
negative feedback circuit (Fig. 6, upper left). RNF43 plays 
the role of a tumor suppressor as one of the gatekeepers that 
prevents excessive Wnt signaling. However, once RNF43 
acquires genetic mutations arising DN, LOF, or GOF that 
activate Wnt signaling (Fig. 5, right), active Wnt signal by 
those mutations induces the expression of further mutants, 
thereby reversing the feedback loop to positive (Fig. 6, upper 
right). Hence, the signal is amplified by positive feedback, 
leading to a runaway of Wnt signaling, rather than signal 
termination, despite the weak initial activation with a small 
number of Wnt ligands. To put it simply, a genetic mutation 
in RNF43 causes the gatekeeper to switch sides and sell the 
Wnt signal to cancer.

Furthermore, RNF43 has been reported to suppress not 
only Wnt signaling but also downstream of a famous tumor 
suppressor gene known to be a guardian of the genome, p53 
(Shinada et al. 2011; Nailwal et al. 2015; Xie et al. 2015; 
Tsukiyama et al. 2020). A clear mechanism has not yet been 
shown for how RNF43 suppresses the p53 pathway. These 
reports show inconsistent results, including that RNF43 
directly degrades p53 by ubiquitination or it does not affect 
p53 stability but reduces its transcriptional activity (Shinada 
et al. 2011; Nailwal et al. 2015). However, all these studies, 
regardless of the molecular mechanism, at least revealed the 
same result that RNF43 suppresses Wnt signaling, although 
a recent report indicated the unlikely involvement of RNF43 
in the p53 pathway (Li et al. 2020). RNF43 is expressed 
after a short delay when Wnt signal is activated in normal 

Figure 6.  Diverse roles of 
RNF43 mutations in multistep 
carcinogenesis. Transient Wnt 
activation induces wild-type 
RNF43 in normal cells. RNF43 
starts to suppress Wnt signaling 
via Fzd degradation, but it also 
suppresses the p53 pathway 
simultaneously (upper left, dia-
gram). Attenuated Wnt signal 
reduces RNF43 expression to 
release p53 suppression, then 
returns to the resting state. Stem 
cells can self-renew only in 
the small window with hi-Wnt 
and low-p53 state (upper left, 
graph). Meanwhile, initial Wnt 
activation in CRCs even weakly 
induces oncogenic RNF43 and 
accelerates/amplifies Wnt sign-
aling by forming positive feed-
back (upper right, diagram). 
Excess Wnt signal activity and 
p53 suppression may cause cells 
to proliferate out of biological 
control since these oncogenic 
RNF43 still suppress p53 
(upper right, graph). Therefore, 
the oncogenic mutations of 
RNF43 in MSI-Hi CRC may 
simultaneously take the place 
of two mutations of APC and 
TP53 of MSS CRC (bottom). 
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cells (Fig. 6, upper left). Induced RNF43 suppresses p53 as 
well as Wnt signaling simultaneously, so RNF43 expres-
sion is rapidly downregulated by Wnt inactivation. This 
sequence releases p53 repression by RNF43, then returning 
to the steady state as well as before Wnt activation. This 
steady state could be speculated as the dormant/quiescent 
phase of stem cells in the niche, and the window for stem 
cell self-renewal is allowed only during the period when 
RNF43 expression and p53 suppression occur simultane-
ously due to Wnt activation. Meanwhile, the expression of 
mutant RNF43, as well as Wnt signaling, upregulates at an 
accelerating rate once the positive feedback circuit activates 
in cancer cells carrying oncogenic RNF43 mutations (Fig. 6, 
upper left). The ability of RNF43 to suppress p53 between 
wild-type and oncogenic mutant demonstrated no significant 
difference; thus, p53 activity decreases as RNF43 expres-
sion increases in inverse proportion (Tsukiyama et al. 2021). 
Therefore, an initially weak Wnt activation later triggers 
both excess Wnt signaling activation and strong p53 repres-
sion simultaneously when RNF43 gets oncogenic mutations. 
These changes in cellular properties act positively for tumor 
initiation and progression.

Constitutive activation of Wnt signaling by gene muta-
tions in APC or CTNNB1 changes normal cells into early 
adenomas in the first step of carcinogenesis in the classic 
multistep carcinogenesis/tumorigenesis model of MSS CRC 
presented by Bert Vogelstein (Fearon and Vogelstein 1990). 
These mutations confer on normal and organized cells the 
ability to escape from biological regulation and proliferate 
cells autonomously. In the second step, positive feedback is 
established between the Wnt pathway and the Ras-MAPK 
pathway to accelerate and stabilize each other’s signals when 
the Ras pathway is constitutively activated by the mutations 
in KRAS or BRAF (Karni et al. 2005; Thornton et al. 2008; 
Ji et al. 2009; Jeong et al. 2012; Jeong et al. 2018). Adenoma 
then acquires to proliferate more aggressively, develops fur-
ther, and progresses to the late adenoma stage. In the third 
step, p53 pathway inactivation due to mutations in TP53 or 
MDM2 transforms adenoma into carcinoma by immortal-
izing them. This mutation set frequently includes a pair of 
RNF43 and BRAF mutations in MSI-Hi CRC, whereas the 
combination of APC, KRAS, and TP53 mutations is com-
mon in MSS CRC as explained (Bond et al. 2016; Yan et al. 
2017; Fennell et al. 2020; Salem et al. 2020). Mutations in 
RNF43 are also mutually exclusive with those in TP53 as has 
been previously reported to be similar to the case for RNF43 
and APC (Tsukiyama et al. 2020). These findings enabled 
us to hypothesize a hypothesis that the RNF43 mutations 
compensate not only for APC in Wnt activation but also 
for the TP53 mutation for cell immortality. Experimentally, 
only two mutations of RNF43 and KRAS were sufficient for 
carcinogenesis (Tsukiyama et al. 2020). This study revealed 
that mutations in RNF43 simultaneously achieve the first 

and third steps of multistep carcinogenesis; thus, activation 
of just one more Ras pathway (second step) is sufficient for 
completing all steps of carcinogenesis.

These studies revealed a similar mechanism of carci-
nogenic progression between MSI-Hi and MSS CRCs, 
although the gene set is different between these distin-
guished CRC groups. Therefore, a complete understanding 
of the original RNF43 function and all the events caused 
by each genetic mutation including not only Wnt but also 
other signaling pathways will be important for developing 
the therapy of all cancer types carrying RNF43 mutations 
(Elez et al. 2022; Quintanilha et al. 2023).

Concluding remarks and future perspectives

The regulatory mechanism of Wnt receptors by RNF43 and 
the overall framework for its degradation are now roughly 
understood. However, the detailed functions of RNF43 in 
various biological reactions to maintain homeostasis and its 
functional change by genetic mutations remained unknown.

In particular, RNF43 was believed to function differently 
to suppress Wnt signaling at another point of the signaling 
cascade other than its membrane function. A report indicated 
that RNF43 suppresses Wnt signals by interacting with Tcf4 
on the nuclear membrane and prohibiting its nuclear entry 
(Loregger et al . 2015). Indeed, when exogenous epitope-
tagged RNF43 is detected by antibodies (Abs) for these 
tags, or endogenous RNF43 is stained with an anti-RNF43 
Abs in cancer cells, some signals were observed around the 
nuclear membrane (Nailwal et al. 2015; Tsukiyama et al. 
2015; Neumeyer et al. 2021). Biochemical fractionation also 
indicated that exogenous RNF43 is present in the nuclear 
fraction (Tsukiyama et al. 2021). However, endogenous 
RNF43 protein detection is now thought to be difficult due 
to their low expression (detectable by immunoblotting only 
after enrichment using immunoprecipitation form many 
cells) and/or rapid turnover (half-life within 90 min) (Tsu-
kiyama et al. 2015, 2021). Even when HA or FLAG tags, 
which allow much more sensitive and specific detection than 
antibodies against endogenous proteins, are directly knocked 
into RNF43 locus by genome editing, at least, the evidence 
that RNF43 expresses in nuclear membrane was not obtained 
(Tsukiyama et al. 2021; Li et al. 2023). Additionally, a more 
recent report of RNF43 has revealed that the nuclear locali-
zation observed when stained with most homemade or com-
mercially available Abs against RNF43 protein was likely to 
be nonspecific signals (Li et al. 2023). The inability to detect 
an original expression of endogenous RNF43 under the bio-
logical condition remains a disadvantage in understanding 
the exact function of RNF43 and remains an unsolved issue 
since RNF43 was identified.
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Another question is where RNF43 ubiquitinates Fzds 
in the cell. RNF43, which is localized in the ER immedi-
ately after synthesis, and mutants stuck in the ER due to 
oncogenic mutations are not yet activated by the phospho-
switch and thus do not ubiquitinate Fzd because they are 
not activated yet. Fzd and RNF43 take similar intracel-
lular transporting pathways; thus, opportunities for their 
interaction and ubiquitination are expected at any point 
within the cell after the activation as previously indicated 
(Tsukiyama et al. 2021). However, whether RNF43 is acti-
vated and ubiquitinates Fzds at the TGN later than ER, at 
secretory granules, or at the cell surface remains unclear. 
Therefore, it is essential not only to understand the cor-
relation between the localization and the phosphorylation 
of RNF43 but also to clarify its binding fashion with Fzd. 
The fact that RNF43/ZNRF3 can widely degrade various 
members of the Fzd family suggests that it is via conserved 
regions on each protein or a common mechanism. To date, 
two theories have been proposed: RNF43 can degrade many 
Fzds because (1) Dvl bridges the binding between RNF43 
and Fzd; and (2) the conserved extracellular CRD of Fzds 
directly binds to the extracellular PA domain or TM region 
of RNF43 (Jiang et al. 2015; Tsukiyama et al. 2015; Spit 
et al. 2020). However, we have not found a clear answer to 
it yet. Recent reports provided inconsistent results to those 
proposed models revealing that a part of Dvl-induced deg-
radation of Fzds does not require RNF43/ZNRF3 or that the 
PA domain of RNF43 is not essential for Fzd degradation 
(Zeng et al. 2018; Radaszkiewicz and Bryja 2020). Hope-
fully, further studies by many groups will clarify the exact 
molecular mechanism in which RNF43/ZNRF3 recognizes 
and degrades Fzds to make a consensus in the community.

Furthermore, Fzds are thought to be the only RNF43 sub-
strate. RNF43 suppresses p53, which does not appear to be 
ubiquitinated; thus, it might not be defined as a substrate 
strictly. However, a protease-activated receptor 2 (PAR2) 
has been identified recently as a novel RNF43 substrate in 
CRC (Nag et al. 2023). Elucidating how RNF43 recognizes 
this new substrate can provide us a hint for understanding 
the binding of RNF43 to Fzds. However, the commonly 
conserved amino acid in Fzds and the sequences of PAR2 
demonstrate no significant similarity; thus, Fzd or PAR2 
possibly interacts with RNF43 via the large structure, such 
as the inside of the transmembrane region consisting of 
seven small TM motifs. Further identification of novel sub-
strates can be expected by analogy with the many-to-many 
correspondence between ubiquitin ligases and substrates. 
Additionally, strategies for anti-cancer treatment utilizing 
RNF43/ZNRF3 ubiquitin ligases are being developed at 
present. Recently, several strategies for cancer therapy were 
developed for degrading disease-relevant target receptor pro-
teins, including IGF1R, EGFR, and PD-1, using RNF43/
ZNRF3 with antibodies (AbTACs/PROTACs, PROTAB) or 

nanobodies (REULR), and appear to be effective in their 
membrane clearance (Marei et al. 2022). Another report 
demonstrated that an artificial chimera protein with Rspo 
furin domain for ligase binding and extracellular domain 
of PD-1 can degrade the target protein PD-L1 and induce T 
cell activation to suppress tumor growth (ROTACs) (Sun et 
al. 2023). Therefore, further development of research in the 
field of Wnt/RNF43 is expected to guide to the application 
in clinical therapy of cancers in the future.
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