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BOLD: Blood-gas and Oximetry 
Linked Dataset
João Matos1,2,3,4 ✉, Tristan Struja5, Jack Gallifant  1,6, Luis Nakayama1,7,  
Marie-Laure Charpignon8, Xiaoli Liu9, Nicoleta Economou-Zavlanos10, Jaime S. Cardoso2,3, 
Kimberly S. Johnson11, Nrupen Bhavsar12,13, Judy Gichoya14, Leo Anthony Celi1,15,16  
& an-Kwok Ian Wong4,17 ✉

Pulse oximeters measure peripheral arterial oxygen saturation (SpO2) noninvasively, while the gold 
standard (SaO2) involves arterial blood gas measurement. There are known racial and ethnic disparities 
in their performance. BOLD is a dataset that aims to underscore the importance of addressing biases 
in pulse oximetry accuracy, which disproportionately affect darker-skinned patients. The dataset was 
created by harmonizing three Electronic Health Record databases (MIMIC-III, MIMIC-IV, eICU-CRD) 
comprising Intensive Care Unit stays of US patients. Paired SpO2 and SaO2 measurements were time-
aligned and combined with various other sociodemographic and parameters to provide a detailed 
representation of each patient. BOLD includes 49,099 paired measurements, within a 5-minute window 
and with oxygen saturation levels between 70–100%. Minority racial and ethnic groups account for 
~25% of the data – a proportion seldom achieved in previous studies. The codebase is publicly available. 
Given the prevalent use of pulse oximeters in the hospital and at home, we hope that BOLD will be 
leveraged to develop debiasing algorithms that can result in more equitable healthcare solutions.

Background & Summary
The measurement and management of arterial blood gas (ABG) and pulse oximetry in the Intensive Care Unit 
(ICU) have long been the subject of clinical interest but are often under-studied. Pulse oximeters and ABG are tools 
for evaluating systemic oxygen saturation and providing guidance for clinical decision-making. Standardization in 
pairing arterial blood gas samples with pulse oximeter readings, a critical component for effective patient monitor-
ing and management, is particularly scarce. This is due in part to challenges in coordinating large electronic health 
record (EHR) datasets and synchronizing clinical protocols across multiple medical centers.

Recent research by Sjoding et al., Wong et al., Valbuena et al., and Gottlieb et al., has added another layer of 
complexity by uncovering racial disparities in pulse oximeter reading accuracy, which have critical implications 
for patient care and outcomes1–4. Such disparities further emphasize the urgent need for robust and inclusive 
datasets allowing the conduct of thorough comparative analysis across subpopulations. Given these pervasive 
challenges and recent findings, the retrospective investigation of real-world data can offer invaluable insights.  
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All of the above-listed studies have used EHR data, which was stored in multiple formats that may not be easy to 
use and may not be available to external researchers, representing a significant barrier to entry.

Existing large-scale EHR datasets, even when available in open access or under a formal research protocol, 
are often not in a form that can help readily answer nuanced yet urgent clinical questions such as the need of 
applying potential corrections by skin tone to the measurements output by FDA-approved devices5–7. The under-
standing of health systems, data schemas, and critical care physiology necessary to make individual ICU-EHR 
datasets usable in practice is nontrivial; thus, our effort to preprocess raw time series to create a unified dataset 
removes a barrier to entry.

This paper aims to present a comprehensive approach to the extraction, processing, and analysis of arterial 
blood gas samples and pulse oximeter readings from electronic health records (EHR). We demonstrate the 
application of this principled approach to the issue of racial and ethnic disparities in device measurement and 
hope it can guide future studies.

We propose a clinically-grounded and reproducible methodology to convert unprocessed database queries 
into a clinically useful dataset. Our multidisciplinary team, which includes clinicians (i.e., pulmonologists and 
intensivists) and data scientists, has developed rules based on clinical and physiological standards for pairing 
each arterial blood gas sample with a corresponding pulse oximeter reading as well as with clinical scores, vital 
signs, and laboratory test values.

Our primary objective is to facilitate extensive analysis of pulse oximetry by merging data from three major, 
publicly available, ICU-EHR databases – MIMIC-III, MIMIC-IV, and eICU-CRD. A combined dataset not only 
offers a solution to the paucity of large and diverse datasets but also a unique platform for identifying disparities 
in pulse oximetry readings and designing approaches to remediate such inequities. By making this robust data-
set publicly available, we provide researchers with the means to develop models that address known racial and 
ethnic disparities and those yet to be discovered, with the potential to improve fairness in healthcare delivery. 
Furthermore, by making the platform and code available, this platform can serve as an example for conducting 
similar studies that would benefit from linked databases.

Our work stands as a necessary and fundamental milestone to any machine learning (ML)8 or advanced 
data analysis of oxygen readings that can be performed to produce actionable insights. Data curation is a critical 
step, especially considering the volume of data in our base datasets; e.g., MIMIC-III v.1.4 alone contains over 
58,000 hospital admissions from approximately 38,600 adults, resulting in 6.2GB of data. A traditional manual 
chart review (e.g., to identify patients at risk of hypoxemia) would be impractical given this volume of data, 
emphasizing the need for an automated, yet clinically-validated approach. As an example, we anticipate value 
in a machine learning model that, based on a patient’s oxygen saturation trajectory since ICU admission, could 
predict the likelihood of hypoxemia in the next hours.

The dataset we present not only addresses the critical issue of pulse oximetry disparities but also offers a ver-
satile tool for the broader medical research community. In the future, we plan to extend this dataset to other EHR 
databases and to include waveform data. By detailing our methodologies and sharing our modular scripts, we 
provide avenues for other researchers to build upon this work, potentially extending it to other biometric readings 
(e.g., body temperature, blood pressure) and clinical contexts (e.g., home-based care, primary care, emergency 
room).

Overall, our dataset aims to serve as a pivotal resource for the clinical and research communities alike, 
informing respiratory parameter management in the ICU with a particular focus on addressing racial and eth-
nic disparities in pulse oximetry accuracy. We operationalize the evaluation of racial and ethnic disparities in 
pulse oximetry by quantifying differences in the occurrence of hidden hypoxemia, defined as SaO2 > 88% but 
SpO2 ≥ 88%02. Finally, we provide the complete codebases for data curation and validation assays to encourage 
ongoing, collaborative research in this critical area.

As observational data collected in hospital settings are often used retrospectively to inform the develop-
ment, manufacturing, and quality control of pulse oximeters, our effort should prompt other parties (e.g., pulse 
oximetry equipment manufacturers) with access to such paired measurements but in different settings (e.g., 
randomized trials) to also share the underlying datasets with the public.

Methods
Data sources. Three EHR databases were used: MIMIC-III, MIMIC-IV, and eICU-CRD.

MIMIC-III. MIMIC-III (Medical Information Mart for Intensive Care III) is a comprehensive and publicly 
accessible database that contains de-identified health data associated with over 40,000 patients who stayed 
in critical care units of the Boston-based Beth Israel Deaconess Medical Center (BIDMC) between 2001 and 
2012. It is maintained by the Laboratory for Computational Physiology (LCP) at MIT and is shared through 
the PhysioNet platform. The database includes information such as demographics, vital sign measurements, 
laboratory test results, medications, and more. Since its release in 2016, it has served as a valuable resource for 
a wide range of research studies in healthcare, including those focused on critical care and machine learning 
applications in medicine6.

MIMIC-IV. MIMIC-IV builds on the foundation laid by MIMIC-III, extending the dataset to include patients 
admitted to the ICU from 2008 to 2019. Unique features of MIMIC-IV include clinical progress notes and phys-
iological data collected from bedside monitors. Approximately 70,000 de-identified medical records are archived 
in the MIMIC-IV database7.

As there is potential overlap of patients between 2008–2012 across both MIMIC versions, where the same 
patient may have distinct but not linkable identifiers, users of our dataset may consider dropping MIMIC-III 
encounters entirely or restricting their analysis to those corresponding to 2013–2019.
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eICU-CRD. The eICU-CRD database is a publicly available multi-center database sourced from the Philips 
Healthcare eICU Telehealth Program. It contains information about over 200,000 admissions from 208 hospitals 
or ICUs monitored by eICU programs across the United States, between 2014 and 2015. The eICU-CRD patients 
are distinct from MIMIC-III and MIMIC-IV subjects, alleviating any concerns regarding the potential overlap 
of their underlying populations5.

Software. For data extraction, BigQuery through Google Colaboratory (Python 3.10) was used.

Publicly-available derived views. The derived tables available on the MIMIC-Code (icustay_detail, vital-
sign, complete_blood_count, coagulation, chemistry, bg, enzyme, and sofa) and eICU-Code (pivoted_vital and piv-
oted_lab) repositories, made available on the MIT-LCP GitHub repository, were used9.

Inclusion and exclusion criteria. All patients admitted to a hospital or ICU captured by one of the afore-
mentioned databases who had valid ABG and pulse oximetry data were included. Two versions of the dataset 
were obtained: an extended dataset created primarily for validation purposes and a preprocessed, validated data-
set shared in the present study:

 1. Extended dataset (mainly for technical validation purposes):

•	 (SaO2, SpO2) pairs are captured within 90 minutes
•	 No range for the oxygen saturation is set
•	 All pairs per hospital admission are considered

 2. Preprocessed dataset (the shared version):

•	 (SaO2, SpO2) pairs are captured within 5 minutes10,11

•	 A range of 70–100% is set
•	 Only the first pair per hospital admission is considered

SaO2 – SpO2 matching. We require each pulse oximetry reading (SpO2) to precede the ABG measurement 
(SaO2). Missing ABG data is not allowed. For the extended dataset, the window is [−90, 0] minutes; for the pre-
processed dataset, [−5, 0] minutes. Figure 1 depicts the rationale of the final dataset.

Time alignment and curation across different databases. To facilitate modifications, ensure that 
definitions remain consistent across databases, and promote subsequent code reuse by other teams, we followed 
these steps to align each (SaO2, SpO2) pair with time-varying covariates:

 1. Create pivoted views of the lab measurements, vital signs, and hourly SOFA scores (either publicly-availa-
ble on BigQuery, or generated by our team);

 2. List the variables to be pulled, each with the following fields:

 a. Variable type (for the prefix)
 b. Original name (for the pull)
 c. New name (harmonized across databases)
 d. Time window for the value to be considered (variable-specific)
 e. Source table (the id of the pivoted view)
 f. Used foreign key (that links the (SaO2, SpO2) pair with the source table)
 g. Name of the timestamp variable (specific to the source table)

 3. Parse the new table (saved as an editable Google Spreadsheet) through Pandas, on Google Colab

Fig. 1 Rationale and variables included in the dataset.
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 4. Create the complete SQL query automatically, feeding it with all listed variables, previously aligned with 
the (SaO2, SpO2) pairs through separate subqueries

 5. Query the databases through the Python BigQuery API

The above-described stepwise process is summarized in Fig. 2. By setting relevant time windows for each 
variable, we ensure to extract relevant data only. For example, a temperature reading will only be aligned with a 
(SaO2, SpO2) pair if registered up to 8 hours before the SaO2value was measured. Missingness is kept as is to give 
users the flexibility to adopt their own imputation strategy, if needed.

Harmonization of concepts among databases. Data from different tables were harmonized into the 
same format across all databases. To minimize missingness, only variables that are available in all three databases 
were included. Patient-level variables (identifiers; demographics; admission characteristics and patient outcomes) 
were unified as shown in the Supplemental Table 1. Time-varying variables (vital signs; laboratory test values; 
hourly SOFA scores) were pulled and harmonized as shown in Supplemental Table 2. Each variable maps to an 
itemid (respectively, label) in the MIMIC (respectively, eICU-CRD) databases.

Since eICU-CRD is designed around time offsets (e.g., minutes from ICU admission, minutes from hospital 
admission, etc.), all dates were converted from offsets by a reference date of January 1st, 2014 (since eICU-CRD 
encompasses 2014-2015 data).

For race and ethnicity, the NIH Policy on Reporting Race and Ethnicity was used as the reference12. The eight 
unified categories were: “American Indian / Alaska Native”, “Asian”, “Black or African American”, “Hispanic OR 
Latino”, “More Than One Race”, “Native Hawaiian / Pacific Islander”, “White”, and “Unknown”. We mapped the 
original race and ethnicity labels present in the databases we studied to these categories. The exact mappings are 
further depicted in Supplemental Tables 3a,b, and c. Based upon how data was captured, none of the databases 
are able to distinguish between race (e.g., Asian, Black, White) and ethnicity (e.g., “Hispanic OR Latino” vs 
“Not Hispanic or Latino”). We denote “Hispanic OR Latino” as “Hispanic”, a coded value. As such, a 
patient could be addressed as either any race (but non-Hispanic ethnicity) or Hispanic ethnicity (of any race). 
This limitation remains present in BOLD.

Data types. Several additional variables can help augment analyses and characterize patients receiving a 
temporally proximate (SaO2, SpO2) pair. These are further described below.

All adjunctive (e.g., vital signs, laboratory test values, etc.) data are referenced from the time of the ABG. For 
the purpose of this manuscript, a time delta (delta_ prefix) refers to the time difference between the time of the 
most recently recorded covariate of interest and that of the ABG measurement. Each time-varying covariate is 
accompanied by a time delta. The ABG measurement time is set as the reference; any covariate measurement or 
reading must occur before this reference, unless otherwise noted.

Identifiers. Each encounter has three identifiers, at different levels: patient, hospital, and ICU admission. The 
original identifiers are kept to allow linking the data with the original databases and eventually pull other var-
iables of interest. However, to avoid overlap among the databases, we created new, unique identifiers for our 
preprocessed dataset; they reflect each of these three identifiers. In addition, each encounter has an identifier to 
reflect the source database.

Among the three considered databases, only eICU-CRD has hospital identifiers, since the MIMIC databases 
come from one single hospital, i.e., BIDMC. As a result, MIMIC data was assigned a hospital index of 9999, 
which is outside the range of eICU-CRD hospital indices. Other hospital-related variables (number of beds, US 
region, and teaching status) were harmonized accordingly.

Fig. 2 Pipeline created to curate and merge the datasets.
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Demographics. Demographics, such as age at admission, sex, race and ethnicity, were extracted from the 
demographics tables of each database. Age at admission age was unified, with values between 18–89 kept intact 
and values of 90 and above taken equal to 90.

Admission characteristics and patient outcomes. Comorbidities are calculated by van Walraven Elixhauser 
score13 (MIMIC-III) and Charlson Comorbidity Index14 (MIMIC-IV, eICU-CRD). BMI was computed with the 
weight and height on admission, for each database.

Hospital-level (e.g., hospital size) and patient-specific admission characteristics (e.g., admission time) as well 
as patient-specific outcomes (e.g., in-hospital mortality) were recorded for each encounter.

Vital signs. Vital sign data were merged in accordance with Supplemental Table 2. Temperature, blood pressure 
(both non-invasive and invasive), heart rate, respiratory rate, and SpO2 were extracted. These data were obtained 
from the chartevents and nursecharting tables of the original MIMIC and eICU databases, respectively. The prefix 
“vitals_” is used for each variable of this type, except for SpO2.

Laboratory test values. Common laboratory test values were merged within variable-specific time windows as 
noted. Measurements of the following categories were pulled: ABG (no prefix), complete blood count (“cbc_” 
prefix); coagulation (“coag_” prefix); basic metabolic panel (“bmp_” prefix); hepatic function panel (“hfp_” 
prefix); and other enzymes (“other_” prefix). In the MIMIC databases, all laboratory test data were collected 
from the original labevents table; in eICU-CRD, data were collected from the labs table.

Hourly SOFA scores. To characterize organ dysfunction and severity of illness, sequential organ failure assess-
ment (SOFA) scores were used15. SOFA scores for each dataset were calculated hourly. SOFA scores were 
extracted in the hour prior to the ABG to ensure that the latter has no impact on characterizing underlying 
organ dysfunction and thus avoid reverse causation (“sofa_past_” prefix). To quantify the impact of hypox-
emia on organ dysfunction, subsequent SOFA scores were also extracted 24 hours after the ABG (“sofa_future_” 
prefix).

In the MIMIC databases, the publicly available derived table with hourly SOFA scores were used. In the 
eICU-CRD, we used an auxiliary query created by our team.

Data storage. The preprocessed dataset, meeting the defined inclusion / exclusion criteria, is stored on 
PhysioNet as a single comma separated value (CSV) file.

Descriptive analytics and technical validation. We now present the methodology followed to support 
the criteria we set to select patients and clean the data.

Flow diagrams depicting the application of inclusion and exclusion criteria to select our cohort were created 
and analyzed. At each exclusion step, we analyzed the composition of the patients who are dropped in terms of 
demographics.

We created descriptive tables highlighting patients’ characteristics across source databases; race and ethnic-
ity; and hidden hypoxemia – when SpO2 ≥ 88% but SaO2 < 88%, as defined by Wong et al.2 The tableone package 
was used16.

We employed Modified Bland-Altman plots, based on the methodology proposed by Wong et al.2, to evalu-
ate the agreement between SaO2and SpO2 measurements. We assessed the calibration performance across two 
different time window sizes — 5 and 30 minutes — to justify our final selection of a 5-minute window. Moreover, 
we conducted separate analyses across racial and ethnic groups to highlight disparities in calibration accuracy.

Oxyhemoglobin dissociation curves17 are also reported as a referential integrity of our ABG data. To verify 
the existence of left and right shifts, we plotted, in different colors, the pairs with pH in the 90th and 10th per-
centiles, respectively.

The root mean squared error (RMSE) of each (SaO2, SpO2) pair was computed across different window 
limits, from 0 to 90, and stratified by race and ethnicity (for simplicity, considered groups were White, Black, 
Hispanic OR Latino, and Asian). RMSE was computed using Eq. (1) for each pair, aggregated with a mean, and 
then 95% confidence intervals were computed assuming normal distributions.

RMSE
N

x x1 ( )
(1)i

N
i i1

2�∑= −
=

Finally, the missingno package18 was used to assess the completeness of the data, reported as a bar plot.

Data Records
BOLD is available on PhysioNet as a credentialled database19.

Description of fields
Demographics. subject_id: Describes a unique subject. This is unique per component dataset and mapped 
directly to the equivalent term in each. A subject may have multiple admissions, denoted by hospital_admis-
sion_id. Same as in the original database.

hospital_admission_id: Describes a unique hospital admission. This is unique per component dataset and 
mapped directly to the equivalent term in each. Same as in the original database.

icustay_id: Describes a unique ICU admission. This is unique per component dataset and mapped directly 
to the equivalent term in each. Each hospital admission may have multiple ICU stays. Same as in the original 
database.
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unique_subject_id: Describes a unique subject. Guarantees that no subjects coming from different databases 
have the same identifier.

unique_hospital_admission_id: Describes a unique hospital admission. Guarantees that no subjects coming 
from different databases have the same identifier.

unique_icustay_id: Describes a unique ICU admission. Guarantees that no subjects coming from different 
databases have the same identifier.

source_db: Labeled as mimic_iii, mimic_iv, eicu to distinguish between component datasets.
race_ethnicity: Harmonized race and ethnicity.

Hospital characteristics. hospitalid: Unique hospital ID. Beth Israel Deaconess (MIMIC-III, -IV) was 
denoted as 9999.

numbedscategory: Hospital size, in numbers of beds. This was recorded as “<100”; “100–250”; “250–
500”; “≥500” beds for eICU-CRD. For MIMIC-III and -IV (BIDMC), we fixed the value at “≥500” beds.

teachingstatus: This field marks whether a hospital was identified as a teaching hospital, where a value of 1 
implies that it was a teaching hospital. BIDMC has teaching status = 1.

region: Maps to the US census region distribution per eICU. It is either Midwest, Northeast, South, or West. 
MIMIC (BIDMC) was set as Northeast.

admission_age: Harmonized age on admission. eICU admission age mapped to admission_age. MIMIC-III 
admission age mapped to admission age. MIMIC-IV admission_age mapped to admission_age.

sex_female: Assigned a value of 1 if the patient is of female sex.
weight_admission: Weight on admission (in kilograms).
height_admission: Height on admission (in centimeters).
BMI_admission: Calculated BMI on admission, based on weight_admission and height_admission. If either 

weight_admission or height_admission is missing, BMI_admission is missing.

Admission characteristics. datetime_hospital_admit, datetime_hospital_discharge, datetime_
icu_admit, datetime_icu_discharge: Date and time of hospital and ICU admission (_admit) and discharge 
(_discharge).

los_hospital, los_ICU: Length of stay for hospital (_hospital) and ICU (_ICU) in days.
in_hospital_mortality: This variable is true if the patient died during the hospital admission, regardless if the 

patient died during the ICU admission or not.
comorbidity_score_name, comorbidity_score_value: Comorbidity score (either Elixhauser or Charlson), 

along with score.

ABG data. SaO2_timestamp: Date and time of ABG test.
pH: pH value.
pCO2: Partial pressure of CO2 (mmHg).
pO2: Partial pressure of O2 (mmHg).
SaO2: Arterial oxygen saturation (%).
Carboxyhemoglobin: Percentage of hemoglobin bound to CO (%).
Methemoglobin: Percentage of methemoglobin (%).

Vitals data. SpO2: Pulse oximetry saturation (%).
SpO2_timestamp: Date and time of SpO2 recording.
vitals_heart_rate: Heart rate.
vitals_resp_rate: Respiratory rate.
vitals_mbp_ni, vitals_sbp_ni, vitals_dbp_ni: Mean arterial pressure (MAP), Systolic pressure (SBP), 

Diastolic pressure (SBP) calculated from noninvasive (cuff) blood pressure.
vitals_mbp_i, vitals_sbp_i, vitals_dbp_i: Mean arterial pressure (MAP), Systolic pressure (SBP), and 

Diastolic pressure (DBP) calculated from invasive (arterial line) blood pressure.
vitals_tempc: Temperature, from any body measuring site, in Celsius (°C).

Labs. Complete Blood Count (CBC). cbc_wbc: White blood cell. (109/L)
cbc_hemoglobin: Measured hemoglobin (g/L).
cbc_hematocrit: Measured hematocrit. (%)
cbc_platelet: Measured platelet count.(109/L)
cbc_mch: Measured mean corpuscular hemoglobin. (pg)
cbc_mchc: Measured mean corpuscular hemoglobin concentration. (g/L)
cbc_mcv: Measured mean corpuscular volume.(fL)
cbc_rbc: Measured red blood cells (RBC). (1012/L)
cbc_rdw: Measured RBC distribution width. (%)

Coagulation labs. coag_fibrinogen: Measured fibrinogen.
coag_pt: Measured prothrombin time. (s)
coag_inr: Measured international normalized ratio.
coag_ptt: Measured partial thromboplastin time. (s)

Basic Metabolic Panel (BMP). bmp_sodium: Measured sodium levels. (mmol/L)
bmp_potassium: Measured potassium levels. (mmol/L)
bmp_chloride: Measured chloride levels. (mmol/L)
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bmp_bicarbonate: Measured bicarbonate levels. (mg/dL)
bmp_bun: Measured blood urea nitrogen levels. (mg/dL)
bmp_creatinine: Measured creatinine levels. (mg/dL)
bmp_glucose: Measured glucose levels. (mg/dL)
bmp_aniongap: Measured anion gap. (mmol/L)
bmp_calcium: Measured calcium levels. (mg/dL)
bmp_lactate: Measured lactate levels. (mmol/L)

Hepatic function panel (HFP). hfp_alt: Measured alanine aminotransferase (ALT) levels. (U/L)
hfp_alp: Measured alkaline phosphatase (ALP) levels. (U/L)
hfp_ast: Measured aspartate aminotransferase (AST) levels. (U/L)
hfp_bilirubin_total: Measured total bilirubin levels. (mg/dL)
hfp_bilirubin_direct: Measured direct bilirubin levels. (mg/dL)
hfp_albumin: Measured albumin levels. (g/dL)

Other labs (enzyme). others_ck_cpk: Measured creatine kinase (CK) levels, also known as creatine phosphoki-
nase (CPK). (U/L)

others_ck_mb: Measured creatine kinase MB (CK-MB) levels. (U/L)
others_ld_ldh: Measured lactate dehydrogenase (LDH) levels. (U/L)

SOFA scores. sofa_past_overall_24hr: SOFA score, calculated from component values below, measured in 
the hour window prior to the ABG.

sofa_past_coagulation_24hr, sofa_past_liver_24hr, sofa_past_cardiovascular_24hr, sofa_past_cns_24hr, 
sofa_past_renal_24hr: SOFA score components, with highest value for each component in the past 24 hours. 
The hour window just prior to the hour window containing the ABG is recorded here to characterize baseline 
patient status.

sofa_future_overall_24hr: SOFA score, calculated from component values below, measured 24 hours after 
the ABG window.

sofa_future_coagulation_24hr, sofa_future_liver_24hr, sofa_future_cardiovascular_24hr, sofa_future_
cns_24hr, sofa_future_renal_24hr: SOFA score components, with highest value for each component in the 
24 hours after the ABG to characterize the 24 hour impact of discrepancies.

Technical Validation
In the extended dataset, at the loose cut-off of 90 minutes, we obtained on average 5 pairs for Asian and Hispanic 
OR Latino patients, 4.7 pairs for Black and American Indian / Alaska Native patients, and 4.5 pairs for White 
patients (see Table 1 with the average number of pairs per race and ethnicity).

To ensure that the distributions of SaO2 and PaO2 values obtained in the three considered EHR were con-
cordant with the literature, we plotted an oxyhemoglobin dissociation curve (Fig. 3). We did not observe sub-
stantial deviation from the known dissociation curve. Specifically, the pH-associated left and right shifts were 
verified, ensuring that the data curation process in the original databases was not flawed.

We examined the pairs of the extended dataset to study the agreement of SpO2 measurements by pulse oxi-
meter with the SaO2 measurements by ABG. We assessed various lengths of the eligible time window (delta_
SpO2) to pair readings. The modified Bland-Altman plots presented in Fig. 4 revealed no significant differences 
between the two readings over time windows of length 5 and 30 minutes, respectively. The patterns remained the 
same irrespective of the database, patient race, and patient ethnicity.

However, increasing delta_SpO2 tolerances yielded a sharp increase in the RMSE for Asian, Black, and 
Hispanic patients (Fig. 5); this change was most pronounced for a time delta of 60 minutes or more, most likely 
due to lower sample sizes among patients from minority groups than among White patients. Although increas-
ing the time delta mechanistically resulted in an incremental increase in the number of eligible paired samples, 
we selected 5 minutes as the optimal cut-off. Indeed, it coincided with a marked increase in paired samples, 
while still yielding a relatively small RMSE.

The final dataset consisted of 49,099 first (SaO2, SpO2) pairs. Most pairs emanated from eICU-CRD (43,438), 
followed by MIMIC-IV (4,921), and then by MIMIC-III (740) (see Fig. 6a–c, with the flow diagram per data-
base; Fig. 7 with the overall flow diagram). The distribution of eligible pairs by race and ethnicity varied across 
the three databases. Notably, the application of our exclusion criteria in the two MIMIC databases resulted in an 

Race and Ethnicity
Average No. Pairs (Standard 
Deviation) ↓ N

White 4.47 (7.74) 43,925

Black 4.65 (8.23) 5,467

American Indian / 
Alaska Native 4.71 (8.49) 397

Hispanic OR Latino 5.09 (8.65) 2,436

Asian 5.12 (10.88) 1,061

Unknown 4.96 (9.47) 5,030

Table 1. Average number of pairs per race and ethnicity, extended dataset.

https://doi.org/10.1038/s41597-024-03225-z


8Scientific Data |          (2024) 11:535  | https://doi.org/10.1038/s41597-024-03225-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

overrepresentation of White and male patients, while patients from racial and ethnic groups were dropped at a 
higher rate. This disproportionate exclusion rate may owe to the lower likelihood of ABG draws among patients 
from minority racial and ethnic groups2.

In sum, across all three databases, White patients formed the most prevalent racial and ethnic subgroup, 
accounting for ~75% of cases in the resulting dataset after application of our inclusion and exclusion criteria. In 
addition, the majority of patients in this dataset were male (55.3% in eICU-CRD; 61.6% in MIMIC-III; 65.0% 
in MIMIC-IV).

As noted in Table 2, the distribution of patients among different regions of the US varied by database, with 
the Midwest (%), South (%), and West (%) being the primary regions represented overall. The median admission 
age was approximately 66.0 years in eICU-CRD and 68.0 years in the two MIMIC databases, respectively. The 
median admission weight, height, and BMI were consistent across the three databases. The median Charlson 
comorbidity scores were consistent among MIMIC-IV and eICU-CRD; in MIMIC-III, this score was not availa-
ble. Length of stay (LoS) measures were more variable across databases; in particular, all forms of LoS were con-
sistently shorter in eICU-CRD than in MIMIC-III and MIMIC-IV (p < 0.001, as determined by a Kruskal-Wallis 
test). In-hospital mortality rates were found to be 17.8% in eICU-CRD, 17.4% in MIMIC-III, and 15.5% in 
MIMIC-IV (p < 0.001, as determined by a Chi-squared test). Patient characteristics by race and ethnicity, and 

Fig. 3 Oxyhemoglobin dissociation curve, per database, with the pH shift highlighted, on the extended dataset.

Fig. 4 Modified Bland-Altman plots, across race and ethnicity (White compared with racial and ethnic group), 
and across 2 time windows, on the extended dataset.
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presence of hidden hypoxemia are present in Supplemental Tables 4 and 5, respectively. The noted differences 
reflect significant differences across healthcare systems and should be handled carefully when using BOLD.

Static variables, such as the patient’s biological sex, or outcomes, like in-hospital mortality, had very few 
missing values (see Fig. 8 for covariates’ completeness). However, time-varying variables, such as laboratory test 
values, were more sporadic. For lab tests with significant temporal volatility (e.g., lactate), data up to a maximum 

Fig. 5 RMSE and number of pairs with varying window between SaO2 and SpO2, per race and ethnicity, on the 
extended dataset.

Fig. 6 a. Flow diagram for MIMIC-III depicting cohort selection. b. Flow diagram for MIMIC-IV depicting 
cohort selection. c. Flow diagram for eICU-CRD depicting cohort selection.
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of 4 hours before the SaO2 measurement were considered. For lab tests often drawn on a daily basis (e.g., basic 
metabolic panel), this window was extended to 24 hours before baseline. For labs drawn less frequently (e.g., 
hepatic function panel/complete metabolic panel), data up to 7 days before baseline were included. There were 
no relevant differences when assessing covariates’ completeness across racial and ethnic groups, as depicted in 
the Supplemental Figs. 1a,b, c, and d.

Researchers should carefully choose the most appropriate time window length for their study, based on our 
data. If they choose to include repeated measurements of the (SaO2, SpO2) pair for the same patient in their anal-
ysis, we strongly recommend replicating our data validation steps to mitigate the risk of introducing systematic 
errors and limit selection bias. To ensure the highest level of data fidelity, we suggest that a cross-disciplinary 
team of data scientists and domain experts be involved in the data analysis process.

Limitations. There are several noteworthy limitations associated with the preprocessed dataset presented in 
this paper that researchers and clinicians should consider.

First, imbalances in the sampling rate of arterial blood gas (ABG) across patient sociodemographics, includ-
ing by race and ethnicity, limit the potential for downstream model development2. Indeed, low ABG sampling 
rates make it challenging to merge pulse oximeter readings with gold-standard ABG data effectively to char-
acterize outcome heterogeneity in the population and in sufficient quantity to train correction models2. For 
example, the absence of a uniform rate of ABG sampling across sociodemographics may result in the poor esti-
mation of the differential prevalence of hidden hypoxemia in subpopulations, thereby hindering the evaluation 

Fig. 7 Flow diagram for the merged dataset.

eICU-CRD MIMIC-III MIMIC-IV

N Class 43,438 740 4,921

Covariates

Age (admission), median [Q1,Q3] 66.0 [55.0,76.0] 68.0 [58.0,77.0] 68.0 [59.0,77.0]

Race and Ethnicity, N (%) American Indian / Alaska Native 371 (0.9) 0 (0) 9 (0.2)

Asian 723 (1.7) 16 (2.2) 119 (2.4)

Black 4,405 (10.1) 42 (5.7) 336 (6.8)

Hispanic OR Latino 1,934 (4.5) 20 (2.7) 162 (3.3)

More Than One Race 0 0 3 (0.1)

Native Hawaiian / Pacific Islander 0 0 9 (0.2)

Unknown 2,648 (6.1) 72 (9.7) 846 (17.2)

White 33,357 (76.8) 590 (79.7) 3,437 (69.8)

Sex N (%) Female 19,431 (44.7) 284 (38.4) 1,720 (35.0)

BMI (Admission), median [Q1,Q3] 28.0 [23.7,33.7] 28.3 [24.7,33.5] 28.3 [24.7,32.7]

Charlson Comorbidity Index, median [Q1,Q3] 4.0 [2.0,6.0] N/A 5.0 [3.0,7.0]

Elixhauser Comorbidity Index, median [Q1,Q3] N/A 9.0 [3.0,16.0] N/A

Hospital Region, N (%) Midwest 13,979 (34.5) N/A N/A

Northeast 3397 (8.4) 740 (100.0) 4921 (100.0)

South 14,018 (34.6) N/A N/A

West 9,069 (22.4) N/A N/A

Outcomes

ICU LoS if dead, median [Q1,Q3], days 3.2 [1.4,6.8] 9.0 [3.0,17] 8.9 [4.1,15]

ICU LoS if survived, median [Q1,Q3], days 2.9 [1.7,5.7] 4.0 [2.0,10] 3.9 [2.0,8.7]

In-Hospital Mortality, N (%) 7,651 (17.8) 129 (17.4) 763 (15.5)

Table 2. Descriptive patient characteristics by individual dataset. LoS, length of stay.
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of disparities and the downstream implementation of subpopulation-specific corrections. This issue adds to 
the reality of limited patient sample sizes for certain racial and ethnic subgroups, posing a further challenge for 
recalibration efforts aimed at addressing documented disparities and those yet to be identified.

Second, a more general limitation of EHR data that affects our preprocessed dataset is the lack of objective 
information on skin tone, a factor known to bias pulse oximeter readings. In fact, some initial studies have 
suggested that skin tone (on top of self-reported race and ethnicity, when measured using administered visual 
scales, reflectance colorimetry, or reflectance spectrophotometry) is associated with pulse oximetry discrep-
ancies. However, it is still not clear which method is more suitable in the context of pulse oximetry20. As addi-
tional studies are needed to determine the contributions of skin tone and other potential confounders on pulse 
oximetry discrepancies, we advocate for efforts to thoughtfully collect such variables, using a diverse array of 
methodologies, upon hospital entry in future EHR systems, in order to better address disparities. Finally, as in 
any EHR-based dataset, we also acknowledge potential errors in data entry.

Strengths. Despite its limitations, our dataset offers several strengths that make it a robust foundation for 
future research. Notably, it provides a unique platform for quantifying the extent racial and ethnic disparities in 
intensive care, thereby laying the groundwork for innovative, data-driven solutions to enhance the outcomes of 
critically-ill patients.

We curated almost fifty thousand rigorously paired (SaO2, SpO2) measurements, obtained under strict, clini-
cally relevant criteria. Our curated dataset eliminates a key barrier to entry in the field of data science for critical 
care. Its creation required the involvement of specialized and multidisciplinary teams of data scientists and 
clinicians who can navigate complex EHR databases from different health systems. With its public release, our 
hope is that it will serve as a test bed for future generations of trainees.

The data formats we present are harmonized, user-friendly, and well documented. Original identifiers are 
kept in the curated dataset to allow the inclusion of further information from the original MIMIC and eICU 
databases by future users, upon its release in open access.

Finally, to facilitate broader use and encourage careful data engineering, we present what we believe to be a 
set of best practices in the field of data curation for health equity research. Our methodology for curating EHR 
data — specifically arterial blood gas and pulse oximetry readings — is fully accompanied by open-source code, 
which can be easily modified by interested users to accommodate new needs.

Usage Notes
The data of this paper employs three publicly available datasets MIMIC-III, MIMIC-IV, and eICU-CRD, all 
available on PhysioNet as CSV files, or on Google Cloud BigQuery. The BOLD dataset serves as an authorized 
extension originating from MIMIC-III, MIMIC-IV, and eICU-CRD, published on PhysioNet. It is duly acknowl-
edged that MIT-LCP and PhysioNet hold the legitimate rights for the redistribution of this extension data set.

Fig. 8 Completeness of the aligned covariates in the preprocessed dataset.
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BOLD is available on PhysioNet as a credentialled database19. To access BOLD, users must be registered on 
PhysioNet, have proper ethics training, and sign a data use agreement outlining the data usage and security 
standards, prohibiting any effort to identify the patients of the dataset.

(https://physionet.org/content/blood-gas-oximetry/1.0/)

Please note that the three source datasets are subject to restrictions on re-distribution. This prevents 
re-publication within secondary datasets as per the license terms (Physionet Data Usage Agreement, version 
1.5). To manage this, approval was sought and granted from the original data owner, host institution, and reposi-
tory to confirm this was possible in this case. This dataset therefore serves as an authorized extension originating 
from MIMIC-III, MIMIC-IV, and eICU-CRD, published on PhysioNet. It is duly acknowledged that MIT-LCP 
and PhysioNet hold the legitimate rights for the redistribution of this extension data set. This derived dataset is 
published under the same license as those source outputs (Physionet Data Usage Agreement, version 1.5)

We also share on GitHub all the code to recreate the dataset curation process.

(https://github.com/joamats/pulse-ox-dataset)

The 1_dataset.ipynb notebook contains all the necessary queries optimized to be used on Google’s BigQuery 
(SQL standard) to generate the final CSV file. We did softcode the important inclusion criteria of lower SaO2, 
upper SaO2, and lower and upper time windows to facilitate any changes to these key parameters. Analysts need 
to make sure they set up a BigQuery project according to the instructions in our notebook. We also share the 
notebooks 2_consort_diagrams.ipynb, 3_tableones.ipynb, and 4_technical_validation.ipynb to recreate all the 
analyses provided in this paper.

(https://docs.google.com/spreadsheets/d/1W4PS3__-jF3m8OemERsv2r_b9sfACWIr-JQcPxW2A7)

This Google’s Spreadsheet file contains the details for all time-varying variables that are encoded, as well as 
the necessary field for them to be pulled from the databases. These details can be changed either globally, or 
separately for each database.

(https://docs.google.com/spreadsheets/d/1Hv_sOd0–6TPYiB3Crjdn_JrIhIazXXJc05mL4GefOU)

Finally, this Google’s Spreadsheet file contains the unified mappings for the static variables (for reference), as 
well as the race and ethnicity mappings (which are then fed to the created scripts).

Code availability
All code used for data extraction, processing, visualization, and technical validation is available as SQL queries 
(Google’s Bigquery syntax) and Jupyter notebooks in the corresponding PhysioNet page and on GitHub.

https://github.com/joamats/pulse-ox-dataset

1.     The publicly-available scripts are structured as follows: 1. The folders MIMIC-III, MIMIC-IV, and eICU-
CRD contain the SQL queries to fetch the data, alongside auxiliary tables that need to be created first in 
a user’s BigQuery environment. 2. The source folder contains the Jupyter notebook (1_dataset.ipynb) to 
create the dataset, which is calling the main SQL scripts needed to create the final CSV file. It also contains 
the notebooks 2_CONSORT_diagram.ipynb, 3_tableones.ipynb, 4_technical_validation.ipynb, and 5_miss-
ingness.ipynb to recreate all the analyses.

2.     The source folder contains the Jupyter notebook (1_dataset.ipynb) to create the dataset, which is calling the 
main SQL scripts needed to create the final CSV file. It also contains the notebooks 2_CONSORT_diagram.
ipynb, 3_tableones.ipynb, 4_technical_validation.ipynb, and 5_missingness.ipynb to recreate all the analyses.
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