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Significance

Predicting whether two proteins 
interact physically has become a 
problem of major interest. 
Despite recent progress using 
deep learning approaches to 
predict PPIs, these methods are 
still not computationally efficient 
enough to interrogate the vast 
number of possible PPIs. We 
have previously developed the 
PrePPI algorithm which uses 
structural information and other 
sources of evidence to predict 
whether two proteins interact for 
most of the human proteome. 
However, PrePPI does not 
incorporate evolutionary signals 
embedded in multiple sequence 
alignments. The ZEPPI algorithm 
addresses this problem for 
defined interfaces and is 
computationally efficient enough 
to be applied to millions of 
putative PPIs. ZEPPI can be used 
alone, or in conjunction with 
other methods, to evaluate any 
structural model of a complex.
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We introduce ZEPPI (Z- score Evaluation of Protein–Protein Interfaces), a framework to 
evaluate structural models of a complex based on sequence coevolution and conservation 
involving residues in protein–protein interfaces. The ZEPPI score is calculated by com-
paring metrics for an interface to those obtained from randomly chosen residues. Since 
contacting residues are defined by the structural model, this obviates the need to account 
for indirect interactions. Further, although ZEPPI relies on species- paired multiple sequence 
alignments, its focus on interfacial residues allows it to leverage quite shallow alignments. 
ZEPPI can be implemented on a proteome- wide scale and is applied here to millions of 
structural models of dimeric complexes in the Escherichia coli and human interactomes 
found in the PrePPI database. PrePPI’s scoring function is based primarily on the evalua-
tion of protein–protein interfaces, and ZEPPI adds a new feature to this analysis through 
the incorporation of evolutionary information. ZEPPI performance is evaluated through 
applications to experimentally determined complexes and to decoys from the CASP- CAPRI 
experiment. As we discuss, the standard CAPRI scores used to evaluate docking models 
are based on model quality and not on the ability to give yes/no answers as to whether 
two proteins interact. ZEPPI is able to detect weak signals from PPI models that the 
CAPRI scores define as incorrect and, similarly, to identify potential PPIs defined as low 
confidence by the current PrePPI scoring function. A number of examples that illustrate 
how the combination of PrePPI and ZEPPI can yield functional hypotheses are provided.

protein- protein interactions | protein structure | coevolution | protein complex prediction

The past decade has seen continuing developments in the prediction of protein–protein 
interactions (PPIs). One can trace these advances to the use of amino acid coevolution to 
predict interresidue contacts (1, 2). These methods have been used to predict protein structures 
(3–5) and, more recently, to predict interaction partners and interfacial residues involved in 
PPIs (6–9). The underlying premise is that functional interactions between two residues in 
an interface will result in their coevolution, which should be reflected in species- paired mul-
tiple sequence alignments (pMSAs) of putative orthologs and detectable through mutual 
information (MI)–based metrics between the two corresponding positions in the alignment. 
Since MI measures the mutual dependence between two variables, a complication is that the 
correlation between two residue positions i and j, i.e., two columns in the MSA, may result 
from an indirect coupling of i and j through their interaction with a third residue k. To solve 
this problem, methods such as direct coupling analysis (DCA) (3, 10), sparse inverse covar-
iance (PSICOV) (11), EVcouplings (6, 8), and Gremlin (4, 7) have been developed. However, 
these methods rely on the availability of deep multiple sequence alignments (MSAs) and thus 
have almost exclusively been applied to bacterial systems. In contrast, as we demonstrate 
below, ZEPPI can be applied on a genome- wide scale to eukaryotic proteomes with relatively 
shallow MSAs.

AlphaFold- Multimer (12) (AFM) has fundamentally changed the landscape of the 
prediction of structures of multiprotein complexes. There have been continuing improve-
ments in AFM- based methods (13, 14) as is evident from the substantial progress in the 
recent CASP- CAPRI (15, 16) experiment (17). An underlying problem for MSA- based 
methods is that for optimal performance on a heterodimeric pair, it is generally necessary 
to carry out a species- based matching of the two query sequences which limits application 
to eukaryotic organisms due to the relatively limited number of sequences available for a 
paired MSA. Recently, RoseTTAFold/AlphaFold was used to screen 4.3 million potential 
yeast PPIs among proteins comprising 65% of the proteome with paired alignments 
containing >200 sequences and protein pairs with <1,500 amino acids (18). This was 
enabled in part by the large number of fungal genomes that contributed to the yeast MSAs. 
However, applying deep learning to predict whether and how two proteins interact for 
entire eukaryotic proteomes, for example, 20M and 200M pairwise combinations of yeast 
and human proteins, remains computationally challenging.
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Docking- based methods predict models of protein dimers based 
on the structures of the constituent monomers (19–22) but have 
not been applied on a proteome- wide scale or to predict whether 
two proteins interact. Template- based modeling (23) is an alternate 
approach where the structures of individual proteins are superim-
posed on structurally similar proteins that appear in a complex 
present in the PDB (24). In a series of papers, we reported the 
PrePPI (Predicting Protein–Protein Interactions) algorithm and 
database (25–27) which rely on template- based modeling and, 
through a highly efficient scoring function, leverage structural infor-
mation on a truly proteome- wide scale. The most recent version of 
PrePPI which uses AlphaFold models for monomers, effectively 
screens the ~200 million possible pairwise combinations of 20K 
human proteins which, in practice, amounts to billions of possible 
interactions among full- length proteins and individual protein 
domains. Based on a false positive rate (FPR) of < 0.005, 1.3 million 
high confidence predictions appear in the PrePPI- AF online data-
base with 370K predicted direct binary interactions (27).

Here, we use PrePPI- predicted complexes in the Escherichia coli 
and human proteomes (27) to examine the extent to which simple 
evolution- based metrics are informative even in those cases for 
which the paired MSA depth is shallow. Once an interface is 
defined, we expect that MI calculations alone would be sufficient, 
even for eukaryotic proteins, as the deep pMSAs required for DCA 
would no longer be necessary. Our method, ZEPPI (for Z- score 
Evaluation of Protein–Protein Interfaces), uses paired MSAs to 
determine coevolutionary information across interfaces but also 
leverages sequence conservation which provides an additional sig-
nal as to the reliability of a predicted interface. An essential feature 
of ZEPPI is the comparison of evolutionary metrics derived from 
pMSA positions corresponding to residues in predicted interfaces 
versus positions corresponding to randomly chosen residues.

Our focus on interfacial residues leads to a significant speedup 
in the evaluation of dimeric complexes that allows us to apply 
ZEPPI on a proteome- wide scale. Similarly, our finding that DCA 
is not needed for evaluating heterodimeric complexes effectively 
removes the need for deep pMSAs. As shown below ZEPPI is 
extremely effective in distinguishing correct from incorrect pro-
tein–protein interfaces as indicated by tests on PDB structures. 
Tests on a CASP- CAPRI benchmark set (15, 27, 28) indicate that 
ZEPPI is able to discriminate interfaces from acceptable versus 
incorrect decoys as defined by CAPRI criteria (15). Most notably, 
there is a strong inverse correlation between ZEPPI scores and 

FPRs for PrePPI predictions thus providing strong support for the 
reliability of ZEPPI’s efficacy in determining whether a PPI occurs 
for proteome- wide interactomes. We use a combined PrePPI/
ZEPPI screen to identify a large number of high- confidence inter-
actions that do not appear in any database. A number of such 
examples are discussed below.

Results

ZEPPI Overview. Fig. 1 summarizes the ZEPPI algorithm. The 
procedure starts with a structural model of a complex between 
proteins P1 and P2 (left panel) and a pMSA (right panel). 
Contacting interfacial residues are identified; in this case, P1- 
a contacts P2- d, P1- b contacts P2- e, and P1- c contacts P2- f. 
A pMSA is created and used to calculate the following metrics 
for each of the four interfacial contacts as described in Methods: 
mutual information (MI), conservation (Con), direct coupling 
(DCA), and the metric of each after applying the average product 
correction (APC) (29). The resulting values are then averaged 
over the interfacial contacts yielding six metrics. In addition, the 
highest single- contact score for each metric, denoted as “top” is 
retained, resulting in a total of twelve metrics that characterize 
a predicted interface. Columns in the pMSA corresponding to 
contacting interfacial residues are colored in purple. For example, 
the residues in columns P1- a and P2- d are almost completely 
conserved and would give a strong Con signal but a weak MI 
signal. Columns P1- b and P2- e show no obvious Con or MI 
signal, but P1- c and P2- f show a clear MI signal.

The next step is to carry out the same procedure for a set of 
randomly chosen surface residues that are not in the interface. 
These are denoted in orange and are treated as if they were inter-
facial so that, for example, the metrics calculated between col-
umns P1- a and P2- d are replaced by those between P1- g and P2- j. 
Each contact in the real interface is replaced in this way by fake 
contacts as indicated in the figure. Note that when the number 
of surface residues outside the interface is less than the number 
of residues in the interface, buried residues, e.g. P1- m, are 
included in sampling. This occurs for <10% of PPIs evaluated. A 
hundred fake interfaces with corresponding values for the twelve 
metrics are generated in this way. A Z- score for the predicted 
interface is then calculated for each of the metrics based on the 
values for the real interface as compared to the values obtained 
for the 100 fake interfaces.

Fig. 1.   Schematic of the ZEPPI algorithm. Two proteins, P1 and P2, form a complex with three interfacial contacts between residues a and d, b and e, as well as 
c and f (purple; Left), respectively labeled as 1, 2, and 3 in the Right panel. Various evolutionary metrics (see text) are calculated from the corresponding columns 
in the pMSA (purple; Right). “Fake interfacial contacts” are generated between randomly chosen surface residues outside the interface (orange), shown by 1′, 2′, 
and 3′ on the Right panel. When the number of surface residues outside the interface does not exceed the number of interfacial residues, buried residues (m) 
are considered as well. The same metrics are calculated from the corresponding columns in the pMSA (orange; right) for each of 100 samples.
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Testing ZEPPI on PDB Complexes. Dimeric PDB complexes were 
collected from the first bioassembly, as defined in the PDB structure 
file, for both bacterial and human complexes (24). We tested 
performance with both prokaryotic and eukaryotic proteomes 
which, overall, have very different pMSA depths. As described 
in Methods, complexes were selected based on resolution, chain 
length, and the requirement that the proteins in the complex 
are from the same species. In total, 279 bacterial heterodimers, 
247 human heterodimers, 3,976 bacterial homodimers, and 
977 human homodimers, for a total of 5,479 dimer structures, 
were obtained. For each complex, we calculated the 12 metrics 
(SI Appendix).

Fig. 2 displays plots of the fraction of PPIs with a Z- score above 
the threshold denoted along the x- axis for different metrics. The 
curves are derived from those in SI Appendix, Figs. S1 and S2 
which plot, for each of the twelve metrics, the fraction of PPIs 
with a Z- score above the threshold denoted along the x axis. For 
example, in SI Appendix, Fig. S1A, at a Z- score of 2, the metric 
for average APC- corrected MI, <MIAPC>, by itself recovers 60% 
of bacterial heterodimers, whereas integrating all metrics (Fig. 2, 
purple curve) recovers 80%. Overall, it is evident that, for het-
erodimers, the APC correction improves performance relative to 
raw (uncorrected) metrics for MI and DCA but not for Con 
(SI Appendix, Fig. S1 A and B). In contrast, for homodimers, the 
APC- corrected Con metric is more effective than the correspond-
ing raw metric (SI Appendix, Fig. S1 C and D). Further, choosing 
the top value for each metric is less effective than choosing the 
value averaged over the entire interface (dashed curves versus solid 
curves, SI Appendix, Figs. S1 and S2). This is not unexpected since 
all contacts identified in PDB complexes are presumed to be 

correct and likely contribute to the total score. However, this is 
not necessarily the case with docked and predicted complexes as 
depicted below.

The plots in Fig. 2 are similar to those in SI Appendix, Figs. S1 
and S2 but, for a given metric, the higher value of raw versus 
APC- corrected metric is chosen for each complex. The ZEPPI 
curve (purple) is generated by choosing the metric with the highest 
score for each complex. For the remainder of the paper, the ZEPPI 
score for a given complex corresponds to the maximum Z- scores 
from among the complex’s 12 metrics. For bacterial heterodimers 
(Fig. 2A), MI is the best- performing metric although DCA is 
slightly better at high Z- scores and Con performance is similar to 
both MI and DCA. In contrast, Con is clearly the most important 
metric for human heterodimers (Fig. 2B). We suggest that the 
difference in performance for humans and bacteria is the greater 
coevolutionary divergence underlying bacterial pMSAs as opposed 
to eukaryotic pMSAs. Of note, the overall ZEPPI performance is 
very similar for bacterial and human heterodimers with, in both 
cases, about 80% of the complexes having a ZEPPI score >2 and 
65% having a score >4.

For homodimers, the two coevolutionary metrics perform the 
best with DCA performing better than MI at high Z- scores for 
bacteria (Fig. 2C) while MI is, overall, the best performer for humans 
(Fig. 2D). The improved performance of coevolution for homodi-
mers is likely due to the fact that pMSA sequence depth for homod-
imeric complexes is much larger (reflecting two copies of a single 
protein) than for heterodimers. It is interesting that in all cases, 
except for bacterial homodimers, MI performance is comparable to 
or better than that of DCA, reflecting the existence of a known 
interface. But even in this case, the differences manifest only at high 

A B

C D

Fig. 2.   Percentage of PDB PPIs as a function of Z- score is shown for bacterial heterodimers (A), human heterodimers (B), bacterial homodimers (C), and human 
homodimers (D). Colors and line types in the legend indicate curves for different metrics each of which corresponds to the maximum of the raw and APC values 
for a given PPI. The mean and top metric of all interface contacts are denoted as <>, and top, respectively. The ZEPPI score for a given PPI is the largest Z- score 
among all metrics (purple). See SI Appendix for details.
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Z- scores. Most importantly, since DCA contributes very little for 
human complexes and, given its need for deep pMSAs and the extra 
computer time required in its use, we use DCA for only homodi-
mers in the work below. Of note, Bitbol et al. have reported that, 
using an interative pairing algorithm, MI alone performs at least as 
well as DCA in the sequence- based identification of protein–protein 
interaction partners (30).
Effect of pMSA depth. Fig. 3 plots ZEPPI score (red dots) versus 
the sequence depth of the pMSAs (NMSA). The histogram (green) 
displays the number of interfaces as a function of NMSA. On 
average, the ZEPPI score increases with increasing pMSA depth 
although there are examples where ZEPPI scores >2 are obtained 
for very shallow pMSA depths (NMSA < 10). Most of these result 
from significant sequence conservation of interfacial residues but 
there are cases where even MI yields a significant signal. Although 
these few cases may well be statistical anomalies, there are many 
high- scoring interfaces of relatively shallow depths with values 
of NMSA in the range of 10 to 100. Note that NMSA here is a raw 
number that does not include the low- weighting of redundant 
sequences. It is generally accepted that, for most applications, 
NMSA should be at least the sum of the number of residues in each 
protein (7, 31–33) and is typically taken to be greater than 500 or 
1,000 for predictions of protein–protein interactions (7, 32). Our 
results highlight the success of ZEPPI in leveraging even shallow 
pMSAs, made possible by the evaluation of interfacial residues in 
experimentally determined structures.

Test on CAPRI Benchmark Decoys. To place ZEPPI in the context 
of other interface prediction methods, we tested the performance of 
ZEPPI in differentiating good versus poor models in a widely used 
decoy set, score_set (28), which was derived from targets from the 
CASP- CAPRI experiment. The score_set contains docking models 
predicted by 47 participating groups for proteins from bacteria, 
yeast, vertebrates, and of artificial design. We considered 13 widely 
studied targets which, overall, have 18,538 corresponding decoys: 
10% represent docking predictions of acceptable, medium, or 
high quality (15, 28). We combine these three categories and 
annotate them as “acceptable+,” whereas the remaining 90% are 
annotated as “incorrect”. Even though two of the targets, T53 
and T54, contain designed proteins, they both have pMSAs with 

NMSA values of 2,110 and 198, respectively. SI Appendix, Table S1 
reports pMSA depth for all targets along with the number of 
acceptable+ and incorrect decoys, and the area under the ROC 
curve (AUROC) for each target (34). In contrast to the results with 
PDB complexes, the “top” metrics contribute to the ZEPPI score 
to a greater extent likely because the interfaces for acceptable+ 
models have inaccuracies. It is clear from the table that shallow 
pMSA depths (<100) can produce good AUROCs, particularly 
for T47 which has an AUROC of 0.93 and NMSA of only 24.

SI Appendix, Fig. S3 plots the percentage of all models that have 
a given ZEPPI score in each of the four categories across targets 
(SI Appendix, Fig. S3). There is a clear distinction between accept-
able+ and incorrect decoys with essentially 90% of the acceptable+ 
models having Z- score >2 and about half with Z- score >4. 
Nevertheless, some incorrect decoys do have high Z- scores and 
some correct decoys have low Z- scores.

Table 1 compares ZEPPI performance across targets to that of 
other methods (34–39), most of which are based on deep learning 
and have been trained on docking decoy sets. The data for other 
methods were taken from figure S9 of Réau et al. (34). ZEPPI, 
despite not involving training, is essentially tied as the top per-
former as measured by AUROC and is the best performer based 
on top 100 Success Rate. However, ZEPPI is outperformed by a 
number of other methods as measured by top 1 and top 5 Success 
Rates. Of note, Success Rate measures the ability to identify the 
best model among a group of presumably other good models. As 
such it is a meaningful basis for CASP- CAPRI rankings since it 
evaluates success in identifying the most accurate model. In con-
trast, a ROC curve measures success in distinguishing acceptable+ 
models from incorrect ones even if the acceptable model is not 
particularly accurate. Since the main application we envision for 
ZEPPI is not to choose among models but, rather, to distinguish 
among pairs of proteins that interact and those that do not, ROC 
curve performance may serve as a better indicator of success in 
this application. Nevertheless, that ZEPPI performs comparably 
to other methods on CASP- CAPRI decoys suggests that it may 
also be useful in the scoring of docking models, especially in com-
bination with other methods (40).

It is important to recall in this regard that all targets used in 
CASP- CAPRI actually form complexes so that, if CASP- CAPRI 
models are evaluated based on their ability to provide yes/no 
answers as to whether two proteins form a complex, the experi-
mental answer would always be yes. The CAPRI criteria (15, 28) 
or the later defined continuous score, dockQ (41) are based in 
part on the fraction of interfacial contacts and RMSD of the 
models relative to the native complex. They do not directly 

Fig. 3.   Effect of MSA depth on ZEPPI score for PDB dimers. The ZEPPI score 
is plotted against pMSA depth, NMSA, where each red dot and error bar 
correspond to the average and SD of the ZEPPI score for the PPIs in a given 
bin of NMSA values. A histogram of the numbers of PPIs in each bin is shown 
in green. Data are plotted on a log scale for NMSA and the number of PPIs. 
NMSA is the depth of the paired MSAs after checking the coverage of surface 
residues (Methods).

Table 1.   Performance of different scoring methods on 
CAPRI decoys

Method AUROC
Success rates

Top1 Top5 Top100

ZEPPI 0.72 ± 0.13 2/13 2/13 12/13

HADDOCK 0.57 ± 0.23 2/13 3/13 9/13

iScore 0.68 ± 0.21 5/13 6/13 9/13

DeepRank 0.64 ± 0.19 1/13 1/13 9/13

DOVE 0.56 ± 0.14 1/13 2/13 10/13

GNN- DOVE 0.63 ± 0.16 1/13 6/13 8/13

DeepRank- 
GNN

0.72 ± 0.19 1/13 5/13 10/13

The AUROC in this table is averaged over values for each of 13 targets. Success Rates of 
Top N indicates the number of targets where there are acceptable or better predictions 
in the Top N predictions.

http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
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account for the number of correctly predicted interfacial residues. 
As a result, even if many residues on both sides of an interface are 
correctly predicted, if the contacts are wrong due, for example, to 
an incorrect orientation between two proteins in a complex, the 
prediction will be scored as incorrect. This is reasonable for the 
evaluation of CAPRI models since better models will have more 
accurate orientations, but the signal for a PPI based on correct 
prediction of interfacial residues will be lost. Thus, even models 
deemed to be incorrect may contain evidence for an interaction 
between two proteins (42).

SI Appendix, Fig. S4 reports the distribution of the fraction of 
interfacial contacts (SI Appendix, Fig. S4A) and interfacial residues 
for acceptable+ and incorrect decoys (SI Appendix, Fig. S4B). As 
expected, the fraction of interfacial contacts maps well to the two 
categories but the fraction of interfacial residues does not. Rather, 
we find, in agreement with previous evidence (42) that many 
incorrect models have a significant number of correctly predicted 
interfacial residues. This likely accounts for the fact that many 
incorrect models have high ZEPPI scores (SI Appendix, Fig. S3) 
which can arise from MI and conservation signals between residues 
positions not in direct contact in the native structure. These find-
ings then highlight ZEPPI’s ability to provide evidence for an 
interaction even based on models that do not score well in CAPRI.

Evaluating PrePPI Models with ZEPPI. In recent work, we reported 
calculations from our PrePPI algorithm for the human and E. coli 
interactomes represented by models for the full- length sequences 
and constituent domains (43). A structural modeling score, SM, was 
trained on the HINT high- quality literature- curated (HINT- HQ- 
LC) dataset for human PPIs. HINT- HQ- LC datasets are designed 
to contain high- confidence binary interactions (44). ROC curves 
were reported for testing the PrePPI human and E. coli models on 
the human and E. coli HINT- HQ- LC datasets using 10- fold cross- 
validation. This yielded AUROC values of 0.83 and 0.88, respectively, 
thus, attesting to the overall high quality of the predictions.

SI Appendix, Fig. S5 displays violin plots for the range of ZEPPI 
scores for PrePPI predictions in different bins of FPR (SI Appendix, 
Fig. S5). For PrePPI predictions of higher confidence (lower FPR), 
the median ZEPPI score is larger. These results provide a strong 
consistency check in that better structural models as defined by 
PrePPI produce stronger evolutionary signals as measured by ZEPPI. 
For bacterial heterodimers (SI Appendix, Fig. S5A), at FPR < 10−4, 
the percentage of predicted PPIs with a ZEPPI score >2, 3, 4 is 94%, 
81%, and 67%, respectively. The comparable numbers for PDB 
structures (see discussion of Fig. 2) are 95%, 85%, and 71% sug-
gesting that PrePPI’s highest confidence predictions have ZEPPI 
scores close to those of PDB structures. Performance deteriorates as 
FPR increases but there are still many good ZEPPI scores for higher 
FPR values. The distributions in SI Appendix, Fig. S5 demonstrate 
that high and low ZEPPI scores are obtained in all FPR bins sug-
gesting that the ZEPPI score can be used as an additional evidence 
source for prioritizing PrePPI models SI Appendix, Fig. S5.

Binding specificity among homologs. An issue with PrePPI and 
other PPI prediction methods is that they encounter difficulties in 
predicting binding specificity when closely related homologs are 
involved. However, the evolutionary signals in ZEPPI can be used 
to address this issue. As shown in Table 2, PrePPI models filtered 
by ZEPPI score are enriched for observed PPIs. For example, 
PrePPI predictions with FPR ≤0.01 are almost two times as likely 
to appear in the experimental PPI databases (DBs, as defined 
below) when filtered by a ZEPPI score ≥4. A striking example is 
provided by interactions of the small GTPase, K- Ras, with other 
GTPases and signaling proteins. Based on the X- ray complex for 
H- Ras/Grb14 (45) (PDB ID: 4k81), PrePPI makes predictions 
(FPR ≤ 0.005) for K- Ras interactions with Grb7, Grb11, and 
Grb14. However, ZEPPI is significant (Z = 3.5) for only KRAS- 
Grb7 (46), the only partner for which there is evidence of an 
interaction (in databases as defined above). This is a case where 
the structural models are too similar to be distinguished from one 
another by PrePPI scoring but where there is a clear evolutionary 
signal that ZEPPI detects among interfacial residues.

The E. coli Structural Interactome. The E. coli K12 proteome 
contains 4,403 proteins with 97M possible protein–protein 
pairwise combinations. Table 2 lists the number of E. coli PPIs 
(out of the 5.4 million for which a model can be built) and the 
number of proteins that comprise these interactions for different 
FPRs and ZEPPI scores. At FPR < 0.01, PrePPI predicts 71K 
PPIs involving 3.5K proteins, and these numbers are significantly 
decreased when more stringent PrePPI FPRs and ZEPPI scores 
are applied. 2.3K PPIs satisfy the highly restrictive criteria of FPR 
< 0.0001 and ZEPPI score > 4.

Table 2 also lists the overlap of ZEPPI- filtered PrePPI predic-
tions with PPIs annotated in experimental databases (DBs). Any 
PPI that appears in the listed databases (Methods) is considered 
whether or not the interaction is likely to be direct or indirect so 
as to determine the number of truly novel PPIs that our methods 
predict. At the most stringent end of the scale (FPR < 0.0001, 
ZEPPI score > 4) 518 novel predictions are made. On the other 
hand, as an example, there are 21,000 novel predictions made for 
FPR < 0.05 and ZEPPI score > 4 suggesting that using ZEPPI 
may facilitate the identification of meaningful predictions that 
might be missed based on PrePPI alone.

The Human Structural Interactome. The human proteome 
contains 20,596 proteins with 212M possible protein–protein 
combinations. Table 3 presents results for the PrePPI- predicted 
human interactome that parallel those for E. coli (Table 2). In 
contrast to PrePPI results reported recently, which are based on 
both structural and nonstructural evidence, Table 3 reports data 
for structural evidence only, i.e., domain–domain structure- based 
predictions. A total of 1M PPIs are predicted with an FPR < 0.01 
which is an overly tolerant criterion. This number is reduced to 
only 101K for FPR < 0.001 and only 11K for FPR < 0.0001 (43). 

Table  2.   Number of proteins, PPIs, and novel predictions for different combinations of PrePPI FPRs and ZEPPI- 
scores for E. coli
PrePPI FPR (≤) 0.05 0.01 0.001 0.0001
ZEPPI Score (≥) – 4 – 4 – 4 – 4

# PPIs 303,212 38,062 71,151 17,098 10,336 6,002 3,151 2,355

# Proteins 3,941 3,671 3,557 3,030 2,464 1,993 1,605 1,350

# PPIs in DBs 38,916 9,069 14,580 6,090 5,289 3,528 2,386 1,837

# Novel PPIs 264,296 28,993 56,571 11,008 5,047 2,474 765 518

http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
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ZEPPI provides an alternate filter; for example, ZEPPI = 4 reduces 
the number of predictions to 184K, 26K, and 7K for FPR < 0.01, 
0.001, and 0.0001, respectively.

As is the case for E. coli (Table 2), most PrePPI predictions do 
not appear in any experimental database nor in STRING, (47) 
which includes many PPIs inferred from sequence relationships 
(collectively, “PPIs in DBs”). Although PrePPI provides structural 
models for many experimentally determined interactions, its value 
is also in hypothesis generation as many of its predictions are 
novel. At the highest confidence level (FPR < 0.0001, ZEPPI > 
4), there are 2,713 novel human PPI predictions. ZEPPI can be 
used to discriminate predictions at different PrePPI confidence 
levels, as indicated in the following examples.

Biological Applications of ZEPPI/PrePPI. In this section, we 
highlight examples where ZEPPI can be used to identify PPIs 
whose PrePPI FPRs are in the range where they would be defined 
as low- confidence predictions, thus revealing ZEPPI’s ability to 
extract signal from otherwise uncertain PrePPI predictions.
A possible role for K- Ras in synaptic signaling. As shown in Fig. 4A, 
PrePPI predicts interactions among K- Ras, Sharpin (the Shank- 
interacting protein- like 1), and Shank1 (the SH3 and multiple 
ankyrin repeat domains protein 1). Structural predictions are 
shown for 1) the Sharpin ubiquitin- like (UBL) domain and K- 
Ras (Fig. 4B); 2) K- Ras and Sharpin ankyrin repeats (Fig. 4C); 
and 3) Sharpin PH domain and Shank1 FERM domain (Fig. 4D). 
Sharpin has previously been shown to interact with Shank1 
and both colocalize at synaptic sites in mature neurons (48). 
Altogether, our predictions (Fig. 4) and the related experimental 
evidence suggest a role for K- Ras in synaptic signaling. Indeed, 
a recent study (49) found that mutant K- Ras increases synaptic 
transmission in inhibitory neurons, while it promotes the cell 
death of excitatory neurons.
Secreted peptide fragments in the pancreas. Chymotrypsin- like 
elastase family member 1 (CELA1) is a secreted elastase with high 
pancreatic expression. Recent studies have implicated peptides 
produced from the amyloid precursor protein (APP) in metabolic 
diseases (50, 51). In particular, human pancreatic islet cells process 
APP to release secreted fragments of APP (sAPP). The CELA1- 
APP model (SI Appendix, Fig. S6) suggests a pancreatic- specific 
mechanism for the production of sAPP.
Role of Cystatins in tumorigenesis. Cystatins are inhibitors of cysteine 
peptidases. In tumor development and cancer progression, the 
balance between cystatins and cysteine peptidases may be disrupted 
(52). Cathepsin F (CTSF) was observed to have an antitumor 
effect in lung adenocarcinoma (LUAD) (53) whereas Cystatin- 
SN (CST1) promotes the epithelial–mesenchymal transition in 
LUAD cells (54). The CST1- CTSF model (SI Appendix, Fig. S7) 
suggests that the mechanism of action of CST1, which is highly 
expressed in LUAD (54), may be to inhibit the antitumorigenic 
activity of CTSF.

Discussion

Here, we have introduced ZEPPI, a method that uses species- 
paired MSAs as a basis for scoring predicted models of protein–
protein interfaces. ZEPPI’s central feature involves the analysis of 
evolutionary information involving only contacting residues in a 
3D structural model. The relatively limited number of residues to 
be analyzed results in a major reduction in computer time required 
to evaluate a model. Moreover, ZEPPI extracts signals from shallow 
pMSAs enabled in part by its reliance on sequence conservation 
as well as mutual information. Deep learning methods implicitly 
leverage both sources of information but since most analyze entire 
sequences they are more computationally intensive.

In addition to validation on crystal structures, ZEPPI was tested 
on thirteen CASP- CAPRI targets (28) and its performance was 
found to be comparable to or better than other interface evaluation 
approaches (34). We note that evolutionary information has been 
used for some time in the evaluation of docking models (55–57) 
but generally in combination with other evidence sources, such as 
statistical propensities for surface residues to be in protein interfaces. 
ZEPPI differs from these approaches in its combined use of mutual 
information and conservation within interfaces and, especially, in 
its method of calculating Z- scores through the comparison of met-
rics for positions in the pMSAs corresponding to interfacial residues 
versus positions in the pMSAs corresponding to randomly chosen 
surface residues outside an interface. Our results on both PDB and 
CASP- CAPRI complexes demonstrate that ZEPPI provides a com-
putationally efficient and effective measure of interface quality that 
can easily be combined with other sources of evidence.

To demonstrate its computational efficiency, we have applied 
ZEPPI to 5.4 million E. coli PPIs (300,000 with FPR < 0.05 
shown in Table 2) and to a total of 6.2 million (FPR < 0.05) 
human PPIs predicted by PrePPI (27) (Table 3). As suggested by 
the results in Tables 2 and 3, filtering PrePPI predictions by ZEPPI 
scores has the potential to increase the reliability of high confi-
dence predictions while identifying low- confidence PrePPI pre-
dictions that are worthy of further consideration. An immediate 
application of ZEPPI is its integration into the PrePPI algorithm 
with the goal of combining evolutionary signals with a method 
based entirely on 3D structure. The integration should prove to 
be quite valuable, especially in applications to the human pro-
teome and other eukaryotic organisms where available sequence 
information supports alignments of relatively shallow depth.

The vignettes provided above indicate the ability of ZEPPI to 
aid in the identification of potentially important functional hypoth-
eses. In this regard, PrePPI/ZEPPI can be viewed as a hypothesis-  
generating method that could be followed up with slower structure 
prediction methods ranging from docking to AF- multimer to meth-
ods based on their combination as evidenced from the most recent 
CASP- CAPRI experiment (17). Of course, alternatively, ZEPPI 
can be used independent of PrePPI to evaluate any predicted model 

Table  3.   Number of proteins, PPIs, and novel predictions for different combinations of PrePPI FPRs and ZEPPI- 
scores for humans

PrePPI FPR (≤) 0.05 0.01 0.001 0.0001
ZEPPI Score (≥) – 4 – 4 – 4 – 4

# PPIs 6,209,528 1,002,052 1,271,323 228,321 130,447 30,572 11,896 7,392

# Proteins 16,780 15,987 13,903 11,781 6,358 5,250 2,882 2,441

# PPIs in DBs 463,971 130,426 148,461 54,131 20,605 10,762 6,293 4,409

# Novel PPIs 5,745,557 871,626 1,122,862 174,190 109,842 19,810 5,603 2,983

http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
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of a complex such as generated by AlphaFold- Multimer (12) or 
AlphaFoldComplex (14).

The combination of PrePPI with ZEPPI suggests a general 
approach to the proteome- wide prediction of whether and how 
two proteins interact. It is important to note that AF- related meth-
ods are still too slow to provide yes/no predictions on a proteome-  
wide scale; for humans, this would require evaluation 200 million 
possible interactions and, as we have done with PrePPI, billions 
of interactions between full- length proteins and individual 
domains, and allowing for more than one model per domain. In 
contrast, Burke et al. (58) have built AF- based models for only 
65,000 human PPIs that have been identified with high- throughput 
methods. Gao et al. (14) have estimated that it would take on the 
order of 1 million processor hours to run their computationally 
efficient AlphaFoldComplex algorithm on the entire E. coli pro-
teome (~9 million putative PPIs) while Humphreys et al. (18) 
arrived at a similar estimate for the time it would take to run AF2 
on the 4.3 million paired MSAs they assembled for yeast. Thus, at 
this stage, PrePPI/ZEPPI appears the only viable option for 
structure- based proteome- wide studies. These can then be used to 
provide interactome- wide yes/no answers along with 3D models 
which, when of interest, can be studied with slower but increasingly 
accurate deep learning methods.

Methods

Selecting Bacterial and Human PDB Dimer Structures. Taxonomy and 
UniProtKB summary files for all PDB chains were downloaded from the Structure 
Integration with Function, Taxonomy and Sequence (SIFTS) project (59). From 
the SIFTS PDB chain taxonomy file, PDB chains that correspond to only one tax-
onomy ID were selected and then filtered to bacterial and human PDB chains, 
respectively. The taxonomy list of bacteria was collected by searching both the 
UniProt proteome (60) and the NCBI Taxonomy databases (61). The union of the 
two searches provided 521,897 unique bacteria taxonomy IDs.

From the SIFTS PDB chain UniProt file, PDB files with only two UniProt IDs for 
heterodimers and one UniProt ID for homodimers with both chains longer than 30 
amino acids are selected. PDBs that have any single chain mapped to ≥2 UniProt 
IDs are excluded to avoid fusion or chimera proteins. Structure resolution infor-
mation is obtained through the PDB API service (24). PDBs that are protein- only 
as the polymer entity type, and either from X- ray with resolution ≤4 Å or from EM 
with resolution ≤4.5 Å are selected. NMR structures are not used. Further, through 
reading the PDB file header, PDBs where the oligomer state of the first BioAssembly 
(BIOMOLECULE annotations) defined as “DIMERIC” by either the author or software 
with resolved sequence lengths longer than 30 amino acids are selected. Different 
PDB dimer structures for the same UniProt ID pairs are collapsed by keeping the 
structures with better structural resolution or longer chain- concatenated length 
(at least twice as long). Last, to remove closely related homologous protein pairs, 
we compared the pairwise sequence identities and removed sequence redundant 
structures where both protein sequences have 90% sequence identity with another 
structure. The detailed pipeline is provided in SI Appendix.

Defining Protein Surface and Protein–Protein Interface. The accessible sur-
face area (ASA) of residues for individual chains A and B and their complex AB are 
obtained using our in- house program of surfv (62). An interface is defined as long as 
the buried ASA is larger than zero. The interface between proteins A and B consists of 
contacting residues where the distance between any heavy atoms is less than 6.0 Å. 
All the residue indices from the PDB are updated after mapping the PDB sequences 
to their full UniProt sequences using hhalign of the hh- suite package (63).

Generating Random Protein–Protein Interfaces. The positions of interface 
residues on proteins A and B in the concatenated MSA are replaced, one by 
one, with positions for randomly chosen surface residues of the same protein 
as indicated in Fig. 1. If one protein has more interface residues than surface 
residues that are not on the interface, the sampling pool goes to the entire pro-
tein sequence. To ensure statistical significance of the Z- score calculations, 100 
random interfaces are generated for each protein–protein interface.

Generating and Pairing MSAs. To avoid biased sequence sampling due to over-
studied model species, we carried out homolog sequence search on 5,090 repre-
sentative proteomes that were carefully curated and selected in EggNog 5.0 (64). 

A

B C D

Fig. 4.   High- confidence PPIs in synaptic signaling. (A) PrePPI and ZEPPI predict interactions among Sharpin (the Shank- interacting protein- like 1, colored in green), 
the small GTPase K- Ras (orange), and Shank1 (the SH3 and multiple ankyrin repeat domains protein 1, colored in blue). Solid lines between protein domains 
denote the domains involved in the PPIs which are depicted as backbone ribbons. In B–D, the darker colored ribbons represent the chains from the PDB PPI 
template and are defined below the query protein names: (B) Sharpin- K- Ras; (C) K- Ras- Shank1; and (D) Sharpin- Shank1. In all but two cases (KRAS- 6ba6:B and 
KRAS- 5o2t:A), the pairwise sequence identities between the queries and the respective template chains are less than 25%.

http://www.pnas.org/lookup/doi/10.1073/pnas.2400260121#supplementary-materials
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This database includes 4,445 prokaryotic reference genomes selected from original 
25,038 bacteria genomes, and 477 eukaryotic genomes. Homologous sequences 
are searched using Jackhmmer (hmmer- 3.2.1) (65) with five iterations and the 
default E- value of 0.001. In the final outputted multiple sequence alignment, only 
the sequence with highest identity to the query is kept as the representative sequence 
for each species.

The MSAs of two proteins, p1 and p2, are paired based on the shared common 
species. Sequence rows that cover less than 50% of surface residue positions of 
p1 or p2 are excluded from the paired MSA. MSA columns, either for interface 
residue or surface residue positions, that have more than 50% gaps are excluded.
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Calculating Mutual Information, Conservation, DCA, and their APC- 
corrected Terms. For two positions (a, b) in the paired MSA, their mutual 
information (MI) is calculated with Eq. 1, where x and y denote one of 20 amino 
acids, and a gap in the MSA is treated as the 21st amino acid. p(x) and p(y) are 
the frequencies of a given amino acid type in columns a and b, respectively, and 
p(x, y) is the frequency of x and y being paired in the MSA. The conservation score 
between two MSA positions (a, b) is defined through the complement of their 
normalized joint entropy with

Eqs. 2 and 3, where the p(x, y) is still the joint frequency of (x, y) amino acid 
pair.
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The DCA method (3, 10) yields a value for direct coupling information, DI, used 
above in the analysis of the curves labeled DCA. DI is calculated with Eq. 4 where 
p(dir)(x, y) involves only the isolated direct coupling strength of (a, b) obtained 
from DCA (3). The average product correction (APC) is applied to measurements 
as denoted throughout the text. Taking MI as an example, the APC term APCMI 
between position (a, b) (from protein p1 and p2, respectively) is calculated with 
Eq. 5, where <MI(a,y)> is the average value of MI between position a in protein 
p1 and any position y in p2. Similarly, <MI(b,x)> is the average value of MI 
between position b in protein p2 and any position x in p1 and <MI(x,y)> is the 
average MI between any position x in p1 and position y in p2. The APC- corrected 
MI is calculated by subtracting the APC- term APCMI from the original MI with Eq. 6. 
The same correction correspondingly applies to Con, and DCA scores.

Calculating Z- scores of the Interface. For each interface contact of a given 
interface between protein p1 and p2 and the generated 100 random interfaces, 
the following six measurements are calculated: mutual information, conservation, 
direct coupling information, and their corresponding APC- corrected terms. Of all 
the interface contacts, we choose the top and the mean as the representative met-
ric for each measurement, denoted as MItop and <MI>, for example. The Z- score 
of the 12 metrics is then calculated for the given interface versus the generated 
random interfaces. The larger Z- score of the raw metric versus its APC- corrected 

metric is taken as the Z- score for this metric. The maximum of all metrics is taken 
as the final ZEPPI score.

Building the E. coli Experimental PPI Database. The experimental database 
of E. coli PPIs is integrated from several major resources including Interactome3D 
(66), HINT (44), APID (67), STRING (47), and Ecocyc (68), as well as previously 
known large- scale E. coli PPI high- throughput screening with experimental meth-
ods such as APMS (69) and Y2H (70). Another well- known experimental database 
BioGrid (71) is not included due to the lack of E. coli (NCBI Taxonomy ID: 83333) 
PPIs included. Before their integration, each database was preprocessed by select-
ing only E. coli K12 proteins (proteome size: 4391) and sorting the uniport IDs for 
each pair of PPIs. During the integration, redundant PPIs were removed. Note that 
Interactome3D also includes homology- modeled PPIs and the STRING database 
has many inferred PPIs, which are not determined by direct physical interaction 
experiments but inferred by other methods such as gene- related methods or 
species PPI transfer. By excluding these two contributions, we also built a purely 
experimental PPI database of E. coli based on direct physical experiments. In all, 
there are 565,007 PPIs in the integrated experimental database set and 45,634 
PPIs in the physical experimental PPI dataset.

In summary, the integrated experimental database set includes all HINT binary 
and complex PPIs (updates of 2021/11), all APID PPIs (updates of 2021/11), all 
Interactome3D PPIs (updates of 2021/11), all STRING PPIs (v11.5), the Y2H PPI set 
from Rajagopala et al. (70), the high- confidence and median- confidence APMS 
PPI set from Babu et al. (69), the gold standard dataset and the high- throughput 
experimental (HTE) PPI set used in Zhang and coworkers’ Threpp work (72), and 
the EcoCyc and APMS PPIs used in Baker’s 2019 work (73). For the physical exper-
imental PPI dataset, only physical links in the STRING database with experimental 
score >0 are included; only the PDB subset of Interactome3D is included; the 
other datasets remain the same as in the integrated experimental database.

Building the Human Experimental PPI Database. The integrated human exper-
imental PPI database consists of the following resources: all HINT binary and com-
plex PPIs, all Interactome3D PPIs, all APID PPIs, all STRING PPIs (v11.5), all BioGrid 
(71) PPIs, all HURI (48) PPIs, and the HC- 2016 set from PrePPI (26). In total, there 
are 6,068,248 PPIs collected from the above- mentioned experimental databases 
with the large majority derived from STRING. For the physical experimental PPI 
dataset, only the physical- links subset with experimental score >0 from STRING 
database, the PDB subset from Interactome3D, and the MV- physical from BioGrid 
are integrated with the other datasets, together contributing to 766,044 PPIs.

Data, Materials, and Software Availability. All the data generated in this study 
are available to download from the online open access repository FigShare with this 
link https://doi.org/10.6084/m9.figshare.c.6800502.v1 (74). The provided data 
include the ZEPPI results for Bacterial and Human PDB heterodimer complexes and 
homodimer complexes, the CASP/CAPRI score_set complexes, and the PrePPI- AF 
predictions of E. coli and humans with FPR ≤ 0.05. The collected and integrated 
experimental PPI databases of E. coli and humans are provided as well. The predicted 
structures of vignette models are available on FigShare while the rest of mentioned 
PrePPI predictions can be accessed from the PrePPI- AF website https://honiglab.
c2b2.columbia.edu/PrePPI/. All other data are included in the manuscript and/or 
SI Appendix. Code for the ZEPPI method with tutorial examples is available at https://
github.com/honig- lab/ZEPPI.
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