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Abstract

Allostery plays a crucial role in regulating protein activity, making it a highly sought-after target 

in drug development. One of the major challenges in allosteric drug research is the identification 

of allosteric sites, which is a fundamental aspect of the field. In recent years, many computational 

models have been developed for accurate allosteric site prediction. However, most of these models 

focus on designing a general rule that can be applied to pockets of proteins from various families. 

In this study, we present a new approach to this task using the concept of Learning to Rank (LTR). 

Our LTR model ranks pockets of each protein based on their relevance as allosteric sites. The 

model outperforms other common machine learning models, with a higher F1 score and Matthews 

correlation coefficient. After training and validation on two datasets, the Allosteric Database 

(ASD) and CASBench, the LTR model was able to rank an allosteric pocket in the top 3 positions 

for 83.6% and 80.5% of test proteins, respectively. The trained model is available for free on the 

PASSer platform (https://passer.smu.edu) to aid in drug discovery research.
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1. Introduction

Allostery is a biological process where an effector molecule binds to a site that is separate 

from the active site of a protein. This binding results in conformational and dynamical 
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changes that can regulate the protein’s function, making it a key aspect of cellular signaling 

and considered as the second secret of life. Liu and Nussinov (2016); Wodak, Paci, 

Dokholyan, Berezovsky, Horovitz, Li, Hilser, Bahar, Karanicolas, Stock et al. (2019); 

Krishnan, Tian, Tao and Verkhivker (2022); Fenton (2008) Despite its importance, the 

allosteric mechanisms of most proteins remain unknown, with no universal mechanism 

having been discovered yet. Nussinov and Tsai (2013)

Allostery offers several advantages in drug development. Compared to binding at the 

orthosteric site, allosteric site binding provides a controlled regulation of protein function 

that can either enhance or reduce the binding of ligands at the orthosteric site. Peracchi 

and Mozzarelli (2011) Additionally, allosteric modulators are reported to have fewer side 

effects and no additional pharmacological effects once allosteric sites are fully occupied. 

Wu, Strömich and Yaliraki (2022) Furthermore, allosteric sites experience low evolutionary 

pressure, ensuring the safety of on-target drugs. Christopoulos, May, Avlani and Sexton 

(2004); De Smet, Christopoulos and Carmeliet (2014) These benefits make allosteric 

drug development a promising field and offer substantial advantages over orthosteric drug 

development.

Identifying appropriate allosteric sites is a major challenge in allosteric drug development. 

Lu, Huang and Zhang (2014); Lu, Shen and Zhang (2019) In recent years, numerous 

computational methods for allosteric site identification and prediction have been developed. 

With the help of machine learning (ML), Allosite Huang, Lu, Huang, Liu, Mou, Luo, Zhao, 

Liu, Chen, Hou et al. (2013) applies support vector machine (SVM) to learn the physical and 

chemical features of protein pockets. Another ML-based approach, the three-way random 

forest (RF) model developed by Chen et al. Chen, Westwood, Brear, Rogers, Mavridis and 

Mitchell (2016), is capable of predicting allosteric, regular, or orthosteric sites. PASSer 

Tian, Jiang and Tao (2021); Xiao, Tian and Tao (2022) is a recently developed method that 

combines extreme gradient boosting (XGBoost) Chen and Guestrin (2016) with a graph 

convolutional neural network Kipf and Welling (2016) to learn physical and topological 

properties without any prior information. In addition to ML, traditional methods such 

as normal mode analysis (NMA) Panjkovich and Daura (2012) and molecular dynamics 

(MD) Laine, Goncalves, Karst, Lesnard, Rault, Tang, Malliavin, Ladant and Blondel 

(2010) are widely used to investigate the communication between regulatory and functional 

sites, including SPACER Goncearenco, Mitternacht, Yong, Eisenhaber, Eisenhaber and 

Berezovsky (2013) and PARS Panjkovich and Daura (2014). It is also important to note 

the development of allostery databases, including the Allosteric Database (ASD) Huang, 

Zhu, Cao, Wu, Liu, Chen, Wang, Shi, Zhao, Wang et al. (2011), which contains 1949 

entries of protein-modulator complexes with annotated allosteric residues, and ASBench 

Huang, Wang, Shen, Liu, Lu, Geng, Huang and Zhang (2015), a smaller benchmark set 

optimized from the ASD data. CASBench Zlobin, Suplatov, Kopylov and Švedas (2019) is a 

benchmarking set that includes annotated catalytic and allosteric sites. These datasets play a 

crucial role in training and evaluating allosteric site prediction models.

Most previous research on prediction models has focused on developing universal models 

for allosteric site prediction. These models intend to make ‘absolute’ predictions (either as 

labels or probabilities) for all pockets detected in different types of proteins, which is a 
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challenging and time-consuming task. Learning to Rank (LTR), an emerging area, was first 

applied in information retrieval Trotman (2005) and has been used in many bioinformatics 

studies, ranging from drug-target interaction prediction Ru, Ye, Sakurai and Zou (2022) 

to compound virtual screening Furui and Ohue (2022). Unlike ‘absolute’ predictions, LTR 

models provide ‘relative’ predictions by ranking objects from the most to the least relevant, 

making it a more achievable and reasonable approach for the allosteric site prediction task.

In this study, we present the state-of-the-art machine learning model on allosteric site 

prediction using LambdaMART. LambdaMART model is implemented with gradient 

boosting decision tree (GBDT) and lambdarank loss function. Compared with other machine 

learning models such as XGBoost, SVM, and RF, LambdaMART achieved the highest F1 

score and Matthews correlation coefficient (MCC). Moreover, this model has a better ability 

to rank actual allosteric sites at top positions. The trained LambdaMART model is freely 

available at PASSer (https://passer.smu.edu) to facilitate related research.

2. Methods

2.1. Allosteric Protein Databases

Two databases were used to train and validate different machine learning models, including 

the Allosteric Database (ASD) and CASBench.

In the latest version of ASD, there are 1949 entries of protein-modulator complexes. To 

ensure data quality, a filtration process is applied to the protein-modulator complexes based 

on standards proposed in the Allosite study Huang et al. (2013). These standards include 

the requirement for high resolution protein structures with a resolution smaller than 3 Å, 

the presence of a complete structure in the allosteric site, and a low sequence identity 

threshold of 30% or greater. To facilitate the filtration process, a data processing pipeline 

script has been created and made available as open source on GitHub (https://github.com/

smu-tao-group/PASSerRank).

The CASBench benchmark set comprises proteins annotated with allosteric sites, but 

only those entries that include both allosteric ligands and sites were included in the set. 

Additionally, proteins that were already present in the ASD dataset were removed to ensure 

the diversity of the benchmark set.

2.2. Pocket Descriptors and Labeling

FPocket is an open-source software for protein pocket detection. In this work, FPocket was 

applied on each protein to detect protein pockets. For each detected pocket, 19 physical and 

chemical features are calculated, ranging from pocket volume, solvent accessible surface 

area to hydrophobicity. A complete list of feature names is shown in Figure 2.

To label each pocket as an allosteric or non-allosteric site, we have automated the process 

by assigning the closest pockets to the modulator as the allosteric site. The center of mass 

is first calculated for all pockets and the modulator, and then the pairwise distances between 

the pockets and the modulator are computed. The pocket with the shortest distance is labeled 

as positive (allosteric site), while all other pockets are labeled as negative (non-allosteric 
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site). However, if the closest distance is greater than 10 Å, this entry is removed from the 

dataset, as such a large distance may indicate inaccurate pocket detection and negatively 

impact the performance of the model.

2.3. Learning to Rank

Prior research on allosteric site prediction focus on developing a universal model that can 

accurately predict allosteric sites in all proteins. However, in practice, it is more important 

to identify the most promising pockets within each individual protein. Therefore, a machine 

learning model that is capable of ranking pockets in order of their likelihood to be allosteric 

sites is more desirable and attainable than a binary classification model that provides 

absolute predictions for all pockets.

In this study, we implement the LTR algorithm using gradient boosting decision tree 

(GBDT) and the LambdaMART method. GBDT is a popular machine learning approach 

that iteratively learns from decision trees and ensembles of their predictions. Here, we use 

LightGBM Ke, Meng, Finley, Wang, Chen, Ma, Ye and Liu (2017), one of the two popular 

implementations of GBDT, over XGBoost Chen and Guestrin (2016). LambdaMART is an 

LTR method that trains GBDT with the lambdarank loss function. The lambdarank loss 

function optimizes the value of the normalized discounted cumulative gain (NDCG) for the 

top K cases, and is calculated using discounted cumulative gain (DCG) and ideal discounted 

cumulative gain (IDCG) as:

DCG@K = ∑
i = 1

K
2Gi − 1

log2(i + 1)

(1)

IDCG@K = ∑
i = 1

K
2 G i − 1

log2(i + 1)

(2)

NDCG@K = DCG@K
IDCG@K

(3)

where Gi is the gain (graded relevance value) at position i and |G| is the ideal ranking.

The LGBMRanker module in the LightGBM package (v3.3.4) was used to implementate 

the LambdaMART algorithm with GBDT as boosting type and lambdarank as the objective 

function.
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2.4. Machine Learning Models

In addition to the LTR model, other commonly used machine learning models in allosteric 

site prediction were considered for comparison. XGBoost and RF are tree-based models. As 

previously stated, XGBoost is an implementation of the GBDT model that could also be 

uesd to train the LTR model. The RF model employs a bagging approach, training several 

independent decision trees in parallel. The prediction of RF is obtained through the weighted 

average of the outputs of all decision trees. The SVM classifier, on the other hand, learns a 

high-dimensional hyperplane that separates data points based on their labels. The XGBoost 

algorithm was implemented using the XGBoost package (version 1.7.3), and the RF and 

SVM classifiers were implemented using the Scikit-learn package (version 1.2.0) Pedregosa, 

Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg et al. 

(2011).

SHapley Additive exPlanations (SHAP) value is a method to increase model interpretability 

by quantifying feature importance. It has been implemented recently to explain tree-based 

models. Yin, Song, Tian, Palzkill and Tao (2023) In this study, the SHAP values of 19 

features from FPocket were calculated and compared. The method is implemented in the 

SHAP Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Katz, Himmelfarb, Bansal and Lee 

(2020) package (v0.41.0).

2.5. Performance Criteria

Several metrics are calculated to compare and evaluate different machine learning models. 

Precision, recall, and specificity are good indicators for binary classification. The F1 score 

is a weighted measure of precision and recall. Moreover, it is reported that the Matthews 

correlation coefficient is a more suitable indicator than the F1 score and accuracy in binary 

classification evaluation Chicco and Jurman (2020).

Precision = TP/(TP + FP)

(4)

Recall = TP/(TP + FN)

(5)

Specificity = TN/(TN + FP)

(6)

F1 score = 2 * Precision * Recall/(Precision + Recall)

(7)
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Accuracy = (TP + TN)/(TP + FP + FN + TN)

(8)

MCC = TP * TN − FP * FN
(TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)

(9)

In order to evaluate the performance of the models, the percentage of actual allosteric sites 

that are ranked in the top 1, 2, and 3 positions is calculated. This metric is commonly 

used in evaluating various allosteric site prediction models. The actual allosteric sites are 

compared with the predicted top 3 most probable pockets in each protein, and the percentage 

is calculated and accumulated for each position.

3. Results

In this study, we adhered to three established standards and the pocket labeling strategy 

while preparing the training data for machine learning models. To ensure the quality of 

the protein-modulator complexes, we only considered those with high resolution protein 

structures (i.e., with a resolution of less than 3Å) as reported in the RCSB Protein Data Bank 

Burley, Berman, Kleywegt, Markley, Nakamura and Velankar (2017). Any protein structures 

that were missing modulators were excluded from the analysis.

FPocket was initially used to identify potential pockets in each protein, after which the 

center of mass was calculated for both the pockets and the modulator. The pairwise 

distances between the center of mass of each pocket and the modulator were calculated, 

and the closest pocket to the modulator was designated as the allosteric site while the other 

pockets were designated as non-allosteric sites. In order to ensure that the allosteric site and 

modulator were in contact, a distance threshold was imposed on the closest pocket. The 

effect of different distance thresholds on the percent of proteins included in the training 

set is shown in Figure 1(A), with a final distance threshold of 10 Å chosen to avoid the 

inclusion of incorrectly labeled pockets. Consequently, 91.1% of proteins from the ASD 

were included in the training set. To avoid overrepresentation of highly similar proteins, 

the pairwise sequence similarity was calculated between each newly selected protein and 

all previously selected proteins. If the similarity was higher than a specified threshold, the 

protein structure was discarded. The effect of different sequence identity thresholds is shown 

in Figure 1(B), with a final threshold of 30% chosen. After these steps, 207 proteins were 

included in the overall training set.

We randomly selected 80% of these proteins as the training set and used the remaining 20% 

as testing set. A total of four machine learning models, including LambdaMART, XGBoost, 

random forest, and SVM, were trained through 5-fold grid search with cross validation. 

The grid search takes an exhaustive search strategy over all combinations of pre-specified 

parameter values. All models were trained on a high-performance-computing platform 

with a 60GB V100 graphical processing unit (GPU). The parameters were finetuned and 
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determined with the best performance on the training set. For comparison, the performance 

of FPocket is reported, in which the pocket with the highest score was treated as the positive 

(allosteric) prediction and others as negative (non-allosteric) predictions based on FPocket 

results. Similarly for the LambdaMART predictions, the pocket with the highest prediction 

score in each protein was labeled as positive. This explains that precision and recall metrics 

have the same number in LambdaMART and FPocket models, respectively, as there is only 

one positive prediction. If this positive prediction is wrong, we have a false positive, and 

there will also be a false negative, leading to the same number of FP and FN and thus the 

same value of precision and recall as seen in Equation 4 and 5.

All models were evaluated using the testing set. The results are listed in Table 1. The 

percentage of true allosteric sites that appeared in the predicted top 1, 2, and 3 positions was 

calculated and abbreviated as Top 1, 2, and 3, respectively. The performance of four machine 

learning models was compared with FPocket. It is shown that both LambdaMART and 

XGBoost exhibited better performance than FPocket under all or most metrics. RF and SVM 

were comparable to FPocket with higher F1 scores, MCC, and Top 3 percent. Specifically, 

LambdaMART achieved the best performance in 8 out of 9 metrics among all models.

These models were further evaluated using the CASBench dataset. The CASBench training 

data was prepared with the same procedures as the ASD training data. In addition, the 

proteins included in the ASD training data were excluded in the CASBench set to ensure 

the evaluation quality. The same metrics were calculated, and the results are listed in Table 

2. Compared with the numbers reported in Table 1, the performance of all models was 

decreased but within an acceptable range. Overall, LambdaMART is superior to FPocket and 

leads in 7 out of 9 metrics. Therefore, this demonstrates the ability of LambdaMART to rank 

protein pockets in terms of the relevance to allostery, which leads to a high F1 score, MCC, 

and Top 3 percent.

The feature importance of the LambdaMART model was analyzed using SHAP values. As 

shown in Figure 2, the SHAP value distributions and mean SHAP values were displayed in 

descending order. Figure 2 shows the distribution and mean SHAP values of the features in 

descending order. The results indicate that the FPocket score was the most important feature 

and significantly outperformed all other features. This highlights the effectiveness of the 

FPocket score in differentiating between allosteric and non-allosteric sites. Other features 

that were found to be important include the volume score, flexibility, charge score, and 

total solvent-accessible surface area (SASA). As seen from the SHAP value distribution, 

allosteric sites (represented in red) tend to have high FPocket scores, high volume scores, 

high charge scores, but low flexibility and low total SASA.

The trained LambdaMART model has been made accessible to the public through the 

PASSer platform (https://passer.smu.edu). Users can access the model either through 

the webpage or through the command line interface using the PASSer API (https://

passer.smu.edu/apis/). To demonstrate the efficacy of the model, two examples that were 

not part of the training and validation sets are presented in Figure 3. These examples 

show the predicted allosteric sites of the light-oxygen-voltage domains of Phaeodactylum 
tricornutum Aureochrome 1a Tian, Trozzi, Zoltowski and Tao (2020) and Avena Sativa 
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phototropin 1 Ibrahim, Trozzi and Tao (2022) obtained using the LambdaMART model. 

The top three pockets are highlighted in red, orange, and yellow, with the corresponding 

predicted relevance scores, and the actual allosteric sites are highlighted in red.

4. Discussion

The collection and cleaning of training data is a crucial step in the development of a high-

performing machine learning model. The study by Huang et al. Huang et al. (2013) applied 

three rules to select protein structures from the ASD dataset and curated a training set of 

90 proteins, but there is no available script to automate this process. This can result in an 

unequal comparison between models trained on different datasets. To address this, an open-

source script for protein-modulator preparation is provided with a customizable labeling 

strategy and sequence identity threshold. This pipeline offers a simple and customizable 

benchmark for evaluating various machine learning models. However, it is worth noting 

that proteins with multiple modulators in the same chain are discarded, as this can result in 

inconsistent ratios of allosteric and non-allosteric sites in each protein. Further refinement of 

the data cleaning process can lead to higher-quality training data.

Efforts have been invested in developing a universal model for allosteric site prediction by 

learning pockets from different proteins without considering the protein itself, such that all 

detected pockets from proteins in the training set are gathered and shuffled in a pool for 

training purposes. This approach, however, poses a challenge in model design and requires 

a model to learn a general rule that applies to all proteins of various families. Additionally, 

this training process is not reflective of real-world applications, where all pockets in a 

target protein need to be compared to determine the most probable ones. In light of these 

challenges, we offer a new perspective by focusing on protein-level learning to rank pockets 

in each protein. The model focuses on the protein level and learns a ranking pattern among 

pockets. The proposed LambdaMART model outperforms other popular machine learning 

models such as XGBoost and SVM, with high F1 score and MCC, and is capable of ranking 

actual allosteric sites at the top positions. This demonstrates that it is more effective to learn 

the relative differences among pockets rather than a universal law that applies to all proteins.

In the context of allosteric site prediction, explainable machine learning is important as it 

helps researchers understand how a model arrived at its predictions. This information can 

be useful in drug design, as it can provide insight into the factors that influence whether 

a pocket is likely to be an allosteric site. Tree-based models, such as random forest and 

gradient boosting decision tree, have good explainability as they can use metrics like Gini 

impurity to determine feature importance. SHAP values, a method from cooperative game 

theory, can also be used to quantify the contribution of each feature to the predictions 

made by a machine learning model. In this study, the LambdaMART model was used 

and its SHAP values indicated that the FPocket score was the most crucial feature, which 

aligns with the good performance of FPocket as a benchmark model. The SHAP values 

also revealed that the model tends to predict pockets with high charge, volume, and low 

flexibility as allosteric sites, which can benefit the development of allosteric drugs.
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5. Conclusion

The prediction of allosteric sites is crucial to the development of allosteric drugs. While 

many efforts have been dedicated to constructing a universal model for such prediction, this 

study presents a novel approach by utilizing a relative ranking model through the learning 

to rank method. The proposed model outperforms other machine learning models based on 

various performance metrics, including a high rate of ranking true allosteric sites at the top 

positions. Furthermore, a customizable pipeline has been provided for the preparation of 

high-quality proteins for training purposes. The trained model has been deployed on the 

PASSer platform (https://passer.smu.edu) and is readily available for use by the scientific 

community.
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Figure 1: 
The number of proteins included in the training set, along with different distance and 

sequence identity thresholds. (A) The minimum distances between the center of masses from 

pockets to the modulator in each protein were calculated. One protein-modulator complex 

is discarded if the minimum distance is higher than the threshold. With the threshold being 

set as 10Å, 91.1% of proteins were included. (B) To ensure uniqueness, proteins with high 

sequence identity were removed. The threshold was set as 30% to include 207 proteins in the 

training set.
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Figure 2: 
SHAP value distributions and mean values of 19 features. These features are calculated from 

FPocket. Red and blue colors indicate positive and negative samples, respectively. FPocket 

score was identified as the most important feature.
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Figure 3: 
Predictions of the light-oxygen-voltage domains from (A) Phaeodactylum tricornutum 
Aureochrome 1a and (B) Avena Sativa phototropin 1. The top 3 pockets are highlighted 

in red, orange, and yellow colors. The top 1 pockets from both examples are the actual 

allosteric sites.
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Table 1

Performance comparison of machine learning models on the ASD dataset.

Metric LambdaMART XGBoost RF SVM FPocket

Precision 0.662 ↑ 0.586 ↑ 0.528 ↓ 0.444 ↓ 0.556

Accuracy 0.968 ↑ 0.961 ↑ 0.956 ↓ 0.944 ↓ 0.958

Recall 0.662 ↑ 0.609 ↑ 0.677 ↑ 0.758 ↑ 0.556

Specificity 0.983 ↑ 0.979 ↑ 0.970 ↓ 0.953 ↓ 0.978

F1 score 0.662 ↑ 0.596 ↑ 0.593 ↑ 0.559 ↑ 0.556

MCC 0.645 ↑ 0.577 ↑ 0.575 ↑ 0.554 ↑ 0.536

Top 1 59.5% ↑ 56.6% ↑ 58.0% ↑ 57.5% ↑ 55.6%

Top 2 73.9% ↑ 69.6% ↓ 71.0% ↓ 69.6% ↓ 71.5%

Top 3 83.6% ↑ 80.7% ↑ 79.7% ↑ 78.3% ↑ 76.8%
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Table 2

Performance comparison of machine learning models on the CASBench dataset.

Metric LambdaMART XGBoost RF SVM FPocket

Precision 0.608 ↑ 0.504 ↓ 0.431 ↓ 0.395 ↓ 0.550

Accuracy 0.963 ↑ 0.953 ↓ 0.941 ↓ 0.932 ↓ 0.956

Recall 0.608 ↑ 0.657 ↑ 0.767 ↑ 0.803 ↑ 0.550

Specificity 0.980 ↑ 0.968 ↓ 0.950 ↓ 0.939 ↓ 0.977

F1 score 0.608 ↑ 0.569 ↑ 0.551 ↑ 0.529 ↓ 0.550

MCC 0.589 ↑ 0.551 ↑ 0.548 ↑ 0.534 ↑ 0.527

Top 1 56.3% ↑ 52.5% ↓ 44.1% ↓ 57.3% ↑ 55.5%

Top 2 73.7% ↑ 70.0% ↓ 68.4% ↓ 73.2% ↑ 71.4%

Top 3 80.5% ↑ 77.0% ↑ 76.6% ↓ 76.0% ↓ 76.7%
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