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Abstract

Recent progress in whole-genome mapping and imaging technologies has enabled the 

characterization of the spatial organization and folding of the genome in the nucleus. In parallel, 

advanced computational methods have been developed to leverage these mapping data to reveal 

multiscale 3D genome features and provide a more complete view of genome structure and its 

connections to genome functions such as transcription and DNA replication. Here, we discuss 

how recently developed computational tools, including machine learning-based methods and 

integrative structure modelling frameworks, have led to a systematic, multiscale delineation of the 

connections among different scales of 3D genome organization, genomic and epigenomic features, 

functional nuclear components, and genome function. However, moving forwards, new approaches 

that more comprehensively integrate a wide variety of genomic and imaging datasets will be 

needed to uncover the functional role of 3D genome structure in defining cellular phenotypes in 

health and disease.

ToC blurb

In this Review, Zhang et al. discuss how recent advances in computational methods are helping to 

reveal the multiscale features involved in genome folding within the nucleus and how the resulting 

3D genome organization relates to genome function.

Introduction

Nuclear genomes contain most of the genetic information needed to define the phenotype of 

a cell, tissue, and organism, and they are intricately organized in 3D space1. This 3D genome 

architecture is crucial for genome functions such as transcription. Genetic, molecular, 
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imaging, biochemical, and computational approaches over the past two decades have led to 

the identification of some of the basic principles that shape genome architecture. Chromatin 

fibers can form loops which compact the genome and bring control elements, such as distal 

enhancers, close to target genes for regulation2,3. These loops also form larger structures 

called topologically associating domains (TADs)4–6, which are often established by cohesin-

mediated loop extrusion [G]7. Multiple chromatin domains [G] further associate with each 

other via physical homotypic interactions [G] to form higher-order compartments that 

segregate chromosomes, referred to as compartments A and B. These compartments largely 

represent transcriptionally active, decondensed euchromatin and transcriptionally repressed, 

compacted heterochromatin, respectively8,9. Ultimately, the interphase chromosomes occupy 

a restricted volume within the nuclear space, known as chromosome territories (Box 1, Fig 

1). While these multiscale genome organization features are found in most cell types and 

organisms, they are dynamic and show considerable single-cell heterogeneity10–16.

In the past decades, methods for understanding genome organization have advanced greatly. 

Early studies often involved correlative microscopy studies of chromatin organization of 

single loci with limited resolution, but recent breakthroughs in biochemical approaches have 

enabled the mapping of genome-wide chromatin-chromatin interaction contact frequency 

[G], through methods such as Hi-C8,17 and Micro-C18–20. Notably, in the context of 

these mapping methods, the term ‘interaction’ is often used loosely to represent physical 

proximity rather than direct physical interaction and frequently refers to population averages 

rather than single cell behavior. The variation of 3D genome organization, including the 

dynamic folding patterns, can be revealed by capturing chromatin-chromatin interactions in 

individual cells using single-cell Hi-C techniques21, but these methods suffer from sparse 

data. Complementary information on cell-to-cell heterogeneity of chromatin organization 

has also been generated from imaging methods, which offer sub-megabase scale resolution 

and direct spatial measurement of the chromatin fiber in intact single cells12,22, and by 

using computational frameworks that deconvolve ensemble data into single-cell structures23. 

A combination of population-based and more affordable single-cell methods is bound to 

provide the most accurate description of 3D genome organization.

Computational methods are critical tools for addressing pressing challenges in the study of 

genome organization. Essential computational tools have a range of applications, including 

identifying multiscale 3D genome structural features using genome-wide mapping data, 

modeling local dynamic properties of chromatin and analyzing single-cell imaging data. 

Importantly, computational methods are crucial in multi-omics approaches for connecting 

multiple aspects of genome organization (such as DNA sequence, epigenomic features 

and 3D genome organization) and linking these features to genome functions, particularly 

gene activity and transcription. While methods for analyzing individual features are widely 

available, the integration of multiple types of data, especially sequencing-based mapping 

data with data generated by imaging approaches, remains a formidable challenge.

In this Review, we explore the latest computational approaches for studying 3D genome 

organization and highlight opportunities for creating integrated multi-omic models of 

genome structure and function. While many methods have been developed to handle specific 

types of datasets, such as those obtained through sequencing-based or imaging assays, 
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or those focused on single-cell or population-based data, there is a growing interest in 

integrative methods. These methods can combine different modalities, giving us a more 

comprehensive view of genome organization. We also discuss limitations of current methods 

and outline future needs to fully harness the tremendous potential of computational methods 

in elucidating genome organization in space and time.

3D features from genomic mapping data

Much of our understanding of multiscale 3D genome features comes from patterns in 

population-based genomic mapping data, especially Hi-C data, generated through a series 

of computational data analysis steps. The Hi-C analysis workflow starts with mapping 

paired-end sequencing reads to the reference genome, filtering, binning, and summarizing 

the read count into a symmetric contact frequency map [G] (Fig. 2a, for review see24,25). 

Normalization schemes then correct for systematic biases25,26, either by taking bias factors 

as input27 or using matrix-balancing strategies8,28–30. The goal of Hi-C data analysis is 

to identify meaningful 3D genome structural features from the normalized 2D contact 

frequency map. The identified features can be grouped into three categories based on their 

length scales: from largest to smallest, these are compartments (and sub-compartments), 

TADs (and sub-TADs), and loops.

Compartments and sub-compartments.

At the largest length scale, Hi-C analysis confirmed early cytological observations that 

chromosomes tend to occupy distinct territories in the nuclear space31 and that chromatin 

segregates into A and B compartments that largely correspond to euchromatin and 

heterochromatin8. Chromatin in the same type of compartment tends to have higher 

contact frequencies than chromatin in different compartments, which creates characteristic 

checkerboard or plaid patterns in megabase-scale 2D contact frequency maps (Fig. 2b)8. 

From an algorithmic perspective, the goal of identifying these coarse-grain patterns in 

the 2D contact frequency maps is to classify genomic bins based on the similarity of 

their chromatin interactions (Fig. 2b) (for example, via eigenvector analysis). Subsequent 

high-coverage Hi-C experiments further refined this view, suggesting that finer-grained 

chromatin structures exist within A or B compartments (that is, sub-compartments, Fig. 2b), 

each characterized by a unique pattern of histone modifications and replication timing8,30. 

In line with this observation, predictive models have been developed to identify cell-type-

specific sub-compartments based on epigenomic data32. However, traditional clustering-

based approaches, such as the Gaussian hidden Markov model30, requires billions of read 

pairs to identify sub-compartments, restricting their application to a limited number of 

datasets. To address this problem, recent methods have reduced high-dimensional 2D contact 

frequency maps into low-dimensional representations, making it easier to find patterns33–

35. In addition, ligation-free methods, including Tyramide Signal Amplification sequencing 

(TSA-seq) and DNA adenine methyltransferase identification (DamID), provide information 

about the relative positioning of chromatin with respect to different nuclear bodies (Fig. 

1c). Recent integrative modelling approaches, such as Spatial Position Inference of the 

Nuclear genome (SPIN), aim to reconstruct the 3D compartmentalization of chromatin by 

reconciling Hi-C, TSA-seq, and DamID data into a unified probabilistic model36.
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TADs and subTADs.

TADs and subTADs are smaller structural units of chromosomes that were first identified 

in population-level Hi-C contact frequency maps37. In Hi-C maps, TADs are represented 

as blocks along the diagonal with sizes ranging from ~100kb-2Mb, and they indicate 

increased interactions amongst chromatin within the domain compared to the upstream 

and downstream regions. Early TAD-calling methods, such as the directionality index 

(DI)4 and insulation score (IS)38,39, partitioned the genome into bins and quantified the 

skewness of chromatin interactions between a sliding window and flanking regions. The 

TAD boundaries are then determined by segmenting genomes based on DI or finding 

local minima of IS (Fig. 2c). Several recently developed methods aim to reconstruct the 

hierarchy of TADs, including subTADs and nested TADs37,40,41, which exhibit weaker 

skewness than TADs, show a nested structure within TAD boundaries (Fig. 2c), and are 

often more cell-type specific37. Early methods reconstruct the nested structure of TADs 

by recursively testing the skewness of putative multiscale domain boundaries42,43. Other 

methods, such as 3DNetMod44, consider calling nested TADs in a manner similar to that 

used to identify dense subgraphs, whereby nodes are genomic bins and edges represent 

contact frequencies. However, systematic evaluation studies found poor concordance among 

existing TAD-calling or subTAD-calling methods, particularly for determining the number 

and size of TADs, whereas TAD boundaries are more consistently defined among different 

TAD calling methods45,46.

Chromatin loops and stripes.

At the smallest length scale, chromatin loops are pairs of genomic loci that have 

higher contact frequency than expected based on random interactions and their genomic 

distance. Two types of existing loop-calling methods differ from each other by whether 

the background expectation is based on a genome-wide (global) model or local context 

(Fig. 2d). Global background methods use the contact frequency map to fit a model 

relating contact frequency with 1D sequence distance. Examples of this approach are 

Fit-Hi-C47 and HiC-DC48/HiC-DC+49. Local context-based methods, such as HiCCUPS30, 

SIP50, and Mustache51, use filters or post-processing steps to distinguish direct interactions 

from bystander interactions [G]. Additionally, there have been efforts to use supervised 

machine learning to predict chromatin loops, such as LooPbit52 and Peakachu53. Besides 

chromatin loops, computational methods have also been developed to detect other structure 

features such as stripes54,55 (also called lines or flames), which reflect statistically increased 

contact frequency of a loop anchor with an extensive stretch of consecutive chromatin 

across a domain, likely caused by one-sided loop extrusion56. However, the agreement 

of loop identifications among methods is less consistent than it is for determining TAD 

boundaries46,57.

Predicting features with machine learning

A fundamental question in the field of 3D genome organization is how chromatin 

interactions combine to generate the emerging higher-order genome structure. Because 

machine learning, particularly supervised learning, is a powerful tool for sample 

classification and outcome prediction based on input features, it offers a unique opportunity 
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to predict 3D chromatin interactions and higher order structure from population-level 

data. Although building a model to infer 3D genome data does not require a complete 

understanding of the underlying biological mechanism, a successful predictive model would 

potentially provide insights into how DNA sequences and epigenetic profiles contribute 

to 3D genome folding58,59. Additionally, the capability to reliably predict chromatin 

interactions has the potential to identify regulatory elements and genetic variants that affect 

chromatin folding.

Overview of machine learning approaches for predicting 3D chromatin interactions.

Among various machine learning methods, ensemble learning approaches (that is, those 

that combine predictions from multiple models) such as random forest [G] and gradient 

boosting [G], are commonly used owing to their robustness to overfitting and their ability 

to capture non-linear relationships between features that encode the dependencies from 3D 

genome features and functions60. However, these methods are limited in their ability to 

quantitatively predict chromatin interactions from genome sequences, for which sequence 

context information has to be aggregated into megabase scales to reflect structure features 

in contact frequency maps. Deep learning models have emerged as effective approaches for 

predicting large-scale genome organization involving larger sequence context typically at 

megabase-scale. Convolutional neural networks (CNNs) [G]61 use convolutional kernels [G] 
to scan and incorporate local information up to ~100kb, while recurrent neural networks 

(RNNs) [G]61,62 are effective in modelling long-dependence in sequence data. Graph neural 

networks (GNNs) [G]63,64 use the graph structure of data to learn the representation by 

incorporating information from the neighborhood. However, it is critical to note that a well-

performing predictive model does not necessarily equate to understanding the chromatin 

folding mechanism. Effectively interpreting the ‘black box’ of machine learning remains 

an active area of research. The machine learning approaches used to predict chromatin 

structures can be grouped into three major categories: predicting pairwise chromatin 

interaction, predicting genome-wide contact frequency maps, and multiway chromatin 

interaction prediction.

Predicting pairwise chromatin interactions.

The goal of predicting pairwise chromatin interactions is to determine whether the 

propensity of two genomic loci to form a loop is related to their DNA sequence, 

relative genomic distance, and/or epigenetic marks (Fig. 3a). This task can be formulated 

as a supervised learning problem in which chromatin loops65,66 or enhancer-promoter 

interactions67–69 observed from population-level experimental data are used as the ground 

truth for training. Early predictive models use handcrafted features such as transcription 

factor (TF) binding site composition and the average profiles of epigenomic marks67,70. 

However, these methods have limitations owing to the quality and relevance of feature 

selection and the need for prior knowledge of the potentially predictive features. In recent 

years, deep learning-based methods have gained popularity in the genomics field, as they 

can automatically model sequence dependencies from multi-scale genome architecture 

measured by Hi-C, reducing the need for manual feature engineering59. Alternatively, 

some methods use the methods initially developed for natural language processing by 

encoding DNA sequences into vector representations [G] (also known as embeddings) in 
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a semantic space65,68,71. While a combination of sequence and epigenomic marks provides 

strong predictive power for chromatin interactions in matched cell types, deep learning 

models using DNA sequences alone can still perform well69,72. However, these models 

struggle to predict cell-type specific chromatin interactions72. Some methods solve this issue 

by integrating sequence information with chromatin accessibility data73, which has been 

generated for many cell types using Assay for Transposase-Accessible Chromatin using 

sequencing (ATAC-seq) and DNase I hypersensitive sites sequencing (DNase-seq). All these 

methods, however, have limited interpretability, which hinders the accurate identification 

of specific features that drive the formation of chromatin interactions. It is also crucial 

to consider that at the single-molecule level, loop formation is short-lived and dynamic, 

as demonstrated by live-cell imaging74. Thus, the process by which features predicted by 

machine learning methods on average observables from cell population data can be linked to 

actual biological processes remains unclear.

Predicting genome-wide contact frequency maps.

The methods discussed previously focus on predicting specific pairwise interactions and 

do not consider genome-wide chromatin contacts. This leads to the intriguing question of 

whether we can predict genome-wide chromatin interactions directly from 1D genomic 

signals of any paired loci. Recently, several methods have demonstrated that this is 

computationally feasible through the use of deep learning models on available Hi-C contact 

frequency maps that incorporate megabase-scale sequence context. These methods can be 

grouped into three types (Fig. 3b). The first group, including Akita75 and Orca76, predicts 

chromatin interactions between genomic bins solely from DNA sequences with a trained 

model using Hi-C data from a specific cell type. Akita predicts contact frequency maps 

for any regions located within 1Mb sequence distance, whereas Orca achieves multiscale 

prediction from kilobase to chromosome scale by using a cascading encoder and decoder 

module. The second group, represented by DeepC77, uses a transfer learning approach 

consisting of two steps: It first encodes sequences using a CNN model pre-trained for 

epigenomic signal prediction across multiple cell types and then generates contact frequency 

maps using a stack of dilated CNNs [G] with the extracted DNA sequence features. 

However, both of these methods face the problem of whether the model can be generalized 

to make de novo predictions in a different cell type or species as well as in time course 

events such as differentiation. To address this issue, the last group of methods aims 

to predict cell type-specific Hi-C contact frequency maps by incorporating epigenomic 

marks, allowing for predictions in cell types for which Hi-C data are not available78,79. 

As methodological advancements continue, there is high potential, and an urgent need, 

for new methods to not only accurately predict chromatin interactions but also create 

deeper insights into the mechanisms of chromatin folding. Techniques aimed at improving 

the interpretability of machine learning models could potentially synergize with in silico 
mutagenesis and high-throughput perturbation experiments, leading to identification of 

genetic variants that result in reconfiguration of the 3D genome structure75–78.

Predicting multiway chromatin interactions.

The prediction of multiway chromatin interactions is challenging. Representing higher-

order chromatin interactions as hypergraphs [G] extends the modelling of pairwise 
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interactions, whereby hyperedges [G] can connect any number of genomic loci. However, 

the development of computational methods for denoising or predicting multiway interactions 

is still in its early stages80–82. The number of potential hyperedges increases exponentially 

as the order of interactions increases, making the prediction of higher-order interactions 

difficult. The algorithm MATCHA81 aims to overcome these challenges by utilizing 

the hypergraph representation learning framework to analyze multiway interactions. It 

can denoise the observed multiway interactions data as well as predict the occurrence 

of multiway interactions. However, effectively predicting cell type-specific multiway 

interactions remains an unsolved problem.

Polymer models for physical processes

The mechanisms that lead to the observable features of chromatin and genome folding are 

not well understood. Computer simulations also have the capability to test potential folding 

mechanisms. Successful computational models for genome modelling identify appropriate 

degrees of freedom needed to describe the genome and their dynamic interactions at a 

given structural resolution. These inferences are trained and validated using independent 

experimental data83,84. An effective model is expected to generate genome structures 

that both accurately predict and explain the mechanistic underpinnings of experimental 

observations.

Mechanistic approaches to genome structure modelling assume that one or more known 

physical mechanisms, such as phase separation [G] or loop extrusion, drive the chromatin 

folding process. In these approaches, the chromatin fiber is represented as a polymer 

chain of monomers that can be divided into classes with different physicochemical 

properties. Interaction terms model the physical processes believed to drive folding, 

and model parameters are optimized to maximize agreement with experimental data. 

Overall, a model can be validated if a given folding hypothesis can, in principle, explain 

experimental observations; however, it cannot rule out other potential mechanisms that may 

also explain the data equally well. Simulations of excluded volume and gene tethering 

constraints85,86 as well as loop extrusion and phase separation have provided insights into 

the mechanistic underpinnings of chromatin organization and predicted structural changes 

based on biological perturbations, such as sequence mutations87,88 or protein knockdown 

experiments89–91. Additionally, unbiased comparisons of different models on benchmark 

datasets can allow a uniform and comprehensive evaluation of their predictive power92.

Loop extrusion.

Active loop extrusion, whereby cohesin complexes slide along chromatin fibers in different 

directions to form loops, was proposed more than 20 years ago to play a role in chromatin 

condensation93, but was only recently put to the test in simulations7,93–96 and eventually 

observed in vitro in single-molecule experiments97,98 (Fig. 4a). Computer simulations 

of the loop extrusion process have explained a variety of observed phenomena99,100, 

including mitotic chromosome compaction and segregation93,101–103, meiotic chromosome 

organization104, interphase chromatin domains and loops7,94, and functional interactions, 

such as V(D)J recombination of the immunoglobulin heavy chain105. The model’s success 
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lies in the ability to predict the effects of loop extrusion perturbations106, particularly 

by protein knockdown experiments89–91. However, loop extrusion does not explain, and 

even acts antagonistically to, large-scale chromatin compartmentalization107, suggesting that 

other mechanisms may also be involved.

Phase separation.

Phase separation has been proposed to contribute to genome compartmentalization (such 

as heterochromatin compartments), transcriptional condensates, and the formation of 

nuclear bodies108–111 (Fig. 4b). In phase separation, proteins and other biomolecules 

demix and form distinct condensates via weak, multivalent interactions. In modelling 

approaches, chromatin fiber segments can be partitioned into different classes with 

preferential homotypic interactions leading to micro-phase separation that mimics chromatin 

compartmentalization. Many approaches have incorporated similar models of phase 

separation to reproduce experimental observations112–124. Critical to the predictivity 

of such models is the correct assignment of polymer loci to different interaction 

classes, which usually exploits knowledge of histone modifications for each chromatin 

region87,114,120,125,126. Phase separation models can be extended by adding other folding 

mechanisms, such as loop extrusion, which can act antagonistically to phase separation 

at the level of short-range chromatin interactions107,116,127, as well as incorporating 

centromere interactions128, or chromatin interactions with nuclear bodies129,130.

However, mechanistic approaches to modelling chromatin folding have limitations. They 

are not easily transferable between genome types and across different scales, and often rely 

heavily on knowledge of physical processes that are not fully understood. Also, multiple 

unknown mechanistic processes are likely to coexist and simultaneously shape chromatin 

architecture on a global scale and disentangling the relative importance of those remains 

challenging.

Data-driven structure modelling

Data-driven approaches in 3D genome structure modelling do not require prior knowledge 

of folding mechanisms or pre-defined chromatin classes. Instead, they use experimental 

data, such as contact frequencies from Hi-C or information from imaging experiments, to 

reconstruct 3D genome structures that statistically recapitulate that experimental data131,132 

(Fig. 5a). Structural information is modeled through spatial proximity terms between 

chromatin loci or nuclear landmarks: for example, a harmonic potential that constrains 

the positions of two chromatin regions is a viable interpretation of a single cell chromatin 

contact probed in experiments. Chromatin structures are then generated by minimizing 

one or more scoring functions that describe the discrepancy between the model and 

the experimental data. These structures are the result of the interplay of a multitude 

of data-driven interactions rather than of a single physical folding process132,133. These 

3D structures can then be examined to derive structure-function correlations and make 

quantitative predictions. There are two main data-driven approaches: resampling-based and 

deconvolution-based methods, which differ in their interpretation of experimental data, 

scoring functions, and sampling strategies (Fig. 5b).
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Resampling approaches.

Resampling approaches distill all the information contained in the data into a solitary 

scoring function, which is then sampled in independent optimizations to generate multiple 

structures that are all compatible with the experimental data134–139 (Fig. 5b). However, 

the use of a single scoring function can be flawed when applied to ensemble data from 

highly variable objects such as entire genomes, since mutually conflicting information 

will inevitably produce structures that cannot fully reconcile all the data. In this scenario, 

the ensemble of structures cannot provide a realistic representation of structures and their 

cell-to-cell variability. This problem has been addressed in some approaches by considering 

only the most significant subsets of interactions, assuming the presence of a single dominant 

structural state, for instance when modelling the folding patterns of individual gene loci 

or some chromosomal regions134–136,138,140–143. Because of these limitations in handling 

highly variable objects, resampling is most suited for modelling chromosome structures 

from single-cell Hi-C maps13,21,144–147 or modelling chromatin structures to augment the 

coverage of single cell imaging data137.

Deconvolution approaches.

Deconvolution methods are designed to resolve cell-to-cell variability by allowing individual 

structures to account for only a subset of the experimental data, so that contradicting 

information can be resolved in different structures132,133 (Fig. 5b). These methods divide 

ensemble data into individual subsets, each representing a single structure in a population. 

This means that the population of structures as a whole, rather than an individual model, 

is statistically consistent with the overall ensemble data. Some methods encode Hi-C data 

into tailored potential energy functions between pairs of chromatin regions, producing an 

ensemble of structures through molecular dynamics [G] or Monte Carlo [G] simulations. 

This helps reproduce experimental Hi-C contact probabilities, while also capturing their 

cell-to-cell variability113,148,149. However, the computing demand could become intractable 

with increasing complexity of the underlying structures. This is particularly true for methods 

that explore the conformational landscape by simulating the conformational changes in 

one genome model over time with molecular dynamics simulations, which could require 

prohibitive amounts of sampling for whole genome models. Another approach, called 

population-based modelling131,150, deconvolves ensemble data into a large population of 

single-cell structures by finding optimal allocations of data to all structures in an iterative 

fashion. This is achieved by solving a maximum likelihood estimation problem that 

uses structural information of the models during the optimization process. As a result, 

each individual structure in the population is described by a unique scoring function, 

which expresses only a subset of all data and describes the deviation of the model 

from experimental data. The collective optimization of all scoring functions generates a 

population of single cell genome structures recapitulating all the experimental data. As 

a result, conflicting data is assigned to different structural models, which capture the 

cell-to-cell variability of genome structures observed between individual cells150–152. This 

approach allows for a rigorous and unbiased sampling of the conformational space16. 

Such an approach was recently used23 to simultaneously deconvolve data from four 

different sources (Hi-C, lamin DamID, Split-Pool Recognition of Interactions by Tag 
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Extension (SPRITE), and High-throughput Imaging Position Mapping Fluorescence In 

Situ Hybridization (HIPMap FISH imaging)) into a population of whole diploid genome 

structures that not only recapitulate the input data but also accurately predict orthogonal 

observables from a variety of imaging and genomics experiments. These structures are 

highly predictive for nuclear locations of chromatin and nuclear bodies, chromatin folding 

patterns, spatial segregation of functionally related chromatin domains and reproduce 

chromosome conformations from single-cell chromosome tracing experiments, as discussed 

in a recent preprint152. Thus, these structures can provide a characterization of the nuclear 

microenvironment of individual genes in single cell nuclei (Fig. 5c), which can be related to 

their gene expression or other functional properties. For example, increased gene expression 

has been linked to specific nuclear microenvironments and the cell-to-cell variability of 

a gene’s nuclear microenvironment predicted by the models has been linked to observed 

heterogeneity in gene expression from single-cell RNA-seq experiments, as shown in152 and 

a recent preprint153.

Overall, data-driven approaches are well-suited to uncover relationships between genome 

structures and function and can provide insights into the differences in nuclear organization 

across different cell types. However, they cannot provide information on the physical 

processes that drive chromatin folding.

Single-cell 3D genome analysis

Extracting 3D genome features from single cells is challenging for both single-cell Hi-C 

(scHi-C) data and multiplexed imaging data. For scHi-C data, the computational difficulties 

are caused by the sparsity and low signal-to-noise of the data (Fig. 6a). Despite yielding 

20k to 80k interactions per cell, which is similar to other single-cell assays such as single-

cell RNA-seq (scRNA-seq) or single-cell ATAC-seq (scATAC-seq), the fraction of missing 

interactions in scHi-C data is much higher (95% vs 30%)21,154. This is attributed to its 

two-dimensional structure and the technology limitations of the current scHi-C methods. 

Therefore, imputing missing interactions is essential for a comprehensive understanding of 

chromatin organization. By contrast, multiplexed imaging techniques are less affected by 

missing data and are capable of portraying chromatin loci in 3D, but their limited imaging 

resolution makes it difficult to precisely determine the spatial location of genomic loci 

from noisy fluorescent signals. Despite these challenges, both modalities offer a unique 

opportunity to study cell-to-cell variability of 3D genome features, especially in complex 

tissues where conventional bulk Hi-C experiments cannot distinguish cell type-specific 3D 

genome features. To fully unleash the potential of single-cell 3D genome mapping data, new 

computational methods are needed to alleviate experimental biases, identify multiscale 3D 

genome features in single cells, and advance our understanding of the connections between 

3D genome features and cell type-specific gene regulation. Below, we discuss computational 

challenges of analyzing multiplexed imaging data and two important steps for scHi-C data 

analysis: dimensionality reduction and imputation (Fig. 6).
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Chromatin tracing.

Chromatin tracing involves labeling DNA with fluorescent probes and visualizing the 

spatial arrangement of these DNA sequences through either super-resolution microscopy 

or multiplexed imaging (Box 1). However, assigning fluorescent signals to a probe with very 

high accuracy can be challenging owing to inefficient probe detection in individual cells and 

signal background, often resulting in ambiguous patterns and variable data representation 

amongst probes. Furthermore, variability in signal detection may also reflect spatial and/or 

temporal biological variations, such as copy number variation and DNA replication timing. 

Early computational methods relied heavily on the assumptions of a consistent number of 

fluorescent spots in each cell and often utilized heuristics to assign spots to the reconstructed 

chromatin fiber, for instance, choosing the spot with the strongest fluorescent intensity. A 

recent method named ‘Jie’155 addresses these issues by employing a polymer model to 

rank the potential of all the possible paths of fluorescent spots, with the final path selected 

based on the highest likelihood. Integrating this method with existing ones allows for the 

separation of sister chromatids and prediction of the cell’s ploidy.

Dimensionality reduction.

Dimensionality reduction aims to simplify the information contained in scHi-C data by 

representing the chromatin interactions of each cell in a lower-dimensional feature space 

(Fig. 6b). This reduction of dimensionality results in a cell embedding, which can be further 

visualized in two dimensions using t-distributed stochastic neighbor embedding (t-SNE) 

or uniform manifold approximation and projection (UMAP)156,157. Early work in scHi-C 

analysis adapted existing methods for other single-cell assays such as principal component 

analysis [G] (PCA)158 and latent Dirichlet allocation [G] (LDA)159 to reduce the dimensions 

of the scHi-C contact frequency maps, and found that the learned cell embeddings could 

differentiate between various cell lines159. The HiCRep metric, which originally aimed to 

measure similarity between bulk Hi-C samples, has also been used to calculate the similarity 

scores between scHi-C contact matrices, followed by multidimensional scaling (MDS) to 

capture structural patterns during cell-cycle states159,160. While these methods perform well 

in some high-coverage datasets, generating accurate embeddings from tissue datasets with 

complex cell types and low coverage can be a difficult task owing to the high fraction 

of missing interactions. More recent approaches, such as Higashi146 and Fast-Higashi161, 

solve this by combining embedding and imputation into a unified framework (see below). 

Another approach, demonstrated by scVI-3D162, uses variational inference [G] to tackle this 

problem.

Data imputation and integrative modelling.

To further improve the effectiveness of embedding, imputation, and denoising strategies 

have been developed to address the sparsity of scHi-C data and enhance the signal-to-noise 

ratio147,163 (Fig. 6b). The idea behind imputation is that missing interactions can be 

inferred from adjacent genomic bins because they tend to have similar contact frequency 

profiles. Methods such as scHiCluster164 use linear convolution and random walk with 

restart [G] to impute missing interactions. Higashi146 is an integrative framework that 

combines embedding and imputation in an end-to-end framework through the formulation 
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of hypergraph representation learning. In Higashi, the whole single-cell 3D genome data is 

represented as a hypergraph in which individual cells and genomic loci are modeled as two 

types of nodes in the same embedding space, with hyperedges connecting them to represent 

observed contact interactions in each cell. Because the whole dataset is trained together, 

Higashi enables cells with a similar overall 3D chromatin organization to share the latent 

representation of interactions to further improve imputation. A variant of Higashi, called 

Fast-Higashi161 is based on tensor decomposition [G] and scalable to large datasets and 

can jointly infer chromatin meta-interactions with cell embeddings. Both Higashi and Fast-

Higashi have shown that cell embeddings alone have sufficient information to distinguish 

cell types in complex tissues such as the brain.

In addition to dimensionality reduction and imputation, several important aspects of 

data processing and analysis of scHi-C data need more future exploration (Fig. 

6c). Computational methods to identify 3D genome features146,164–168, including A/B 

compartments, sub-compartments, TAD-like structures, and chromatin loops, are still limited 

and lack benchmark datasets for evaluation owing to high intrinsic cell-to-cell variation. 

There are only a few methods available that can effectively reconstruct 3D models from 

scHi-C data while also taking into account the different haplotypes145. Moreover, methods 

that can jointly model different types of single-cell epigenomic data together with scHi-C 

data should offer a more comprehensive view of 3D genome structure in single cells (see 

reviews147,163).

Connecting structure and function

How structural features of the genome relate to its function remains the central question 

in the field. Long-range chromatin interactions have long been believed to play crucial 

roles in various aspects of biological function, such as transcription regulation, DNA 

replication timing, and DNA damage repair169. While most conclusions regarding structure-

function relationships are based on correlations, disruption of chromatin interactions can 

cause abnormal gene expression and lead to disease170,171. Predictive models, which aim 

to estimate the activities of biological processes from DNA sequences and epigenomic 

marks, have the potential to identify crucial features involved in these processes and hold 

promise for prioritizing non-coding genetic variants responsible for human diseases and 

traits. However, most current methods can only capture local dependencies of sequences up 

to 100kb away from a gene and do not incorporate the spatial connectivity of regulatory 

sequences in their model architecture172.

To overcome this limitation, methods173 have emerged that use graph-based neural network 

models to integratively model 2D chromatin interactions with 1D functional epigenomic 

signatures and DNA sequences in order to reveal the associations between chromatin 

folding and gene regulation. In these models, chromatin interactions are represented as 

a graph with nodes representing genomic bins and edges indicating potential regulatory 

relationships inferred from the chromatin interaction mapping data, such as interactions 

from Hi-C data. The node representations are initially assigned the sequence or epigenomic 

features and iteratively updated by incorporating the neighborhood information in the 

interaction graph, enabling the prediction of gene expression levels from both 1D and 
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3D features. Interpretable machine learning techniques174,175 can be applied to reveal the 

important genomic bins (nodes) and chromatin interactions (edges) contributing to the 

predictive power of the model. Additionally, integrative analysis of genetic variants in 

expression quantitative trait loci (eQTL) and experiments that perturb the spatial positioning 

or activity of selected genomic loci176 may validate important loci predicted by the model 

and interpret the functions of cis-determinants in gene regulation. While graph-based neural 

network models exhibit superior performance compared to models that do not account 

for long-range interactions, it is crucial to recognize the inherent stochasticity of gene 

regulation. Consequently, using a fixed chromatin network to model gene regulation might 

not precisely capture the intricacies of the underlying biological processes. In fact, recent 

studies utilizing live-cell imaging have demonstrated that chromatin loops are generally 

relatively short-lived (~20 min) and infrequent events, further highlighting the dynamic 

nature of gene regulation74.

In addition to transcriptional regulation, the spatial organization of the genome has a 

crucial role in various other cellular processes, including DNA replication177 and cell 

division177,178. However, the mechanisms connecting chromatin structures and these events 

remain unclear. A recent preprint179 on replication timing reported the use of a deep learning 

model to predict replication timing profiles by extracting features from DNA sequences 

alone and successfully prioritized DNA elements that overlap with previously validated loci 

known to modulate genome-wide replication timing180. Integrating genomic features using a 

graph-based neural network to predict the formation of DNA double-strand breaks revealed 

specific subgraph patterns related to loop extrusion process181. Applying network theory 

to model the chromatin interactions has also been found to be effective to identify crucial 

network topological patterns in gene regulation182 and cancer development183.

Graph-based models have also been developed to integrate genomic mapping data for 

a more comprehensive view of large-scale genome structures. An example of this is 

the inference of genome compartmentalization, which can be achieved by extending the 

framework of the hidden Markov model into the hidden Markov random field. This 

extension allows for the spatial dependency among observed DamID184 and TSA-seq185 

signals on genomic bins to be accounted for, as demonstrated in SPIN36. Segway-GBR is a 

related algorithm that uses significant Hi-C interactions to help with inference of chromatin 

states through a graph-based posterior regularization [G]186.

Taken together, the integration of genome structure features and functional genomic data 

combined with DNA sequences is a promising new direction in the study of 3D genome 

organization. These approaches and models are expected to be crucial to shedding new light 

on the multiscale organization of the nuclear genome and its relationship to function.

Current limitations

Recent and ongoing advances in computational modelling approaches for probing 3D 

genome organization play an important part in revealing 3D genome features and generating 

new testable hypotheses on the interplay between genome structure and function. However, 

major limitations remain.
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One of the most pressing challenges in 3D genome analysis is the lack of methods that 

can identify the full range of multiscale 3D genome features. The folding of chromatin 

occurs over ranges of kilobases to megabases, but existing methods designed to identify 3D 

genome features are often limited to a fixed set of length scales, which can make it difficult 

to study the relationships between the different levels of chromatin folding and cellular 

processes and functions. Moreover, few methods can use multiple data types (generated by 

different approaches such as Hi-C, ligation-free mapping methods, scHi-C, and imaging) as 

input23,187. This can limit the scope and accuracy of the analysis, as different data types 

could provide complementary information about the 3D genome if they were compared in 

the same analysis approach. Integrative frameworks that can utilize different types of data 

will ultimately provide a more comprehensive view of nuclear organization.

A further challenge is the analysis of scHi-C data, which exhibits a high level of complexity 

because single-cell 3D genome organization is intrinsically significantly variable16. This 

variability, together with data quality limitations and substantial costs for profiling large 

numbers of cells, can make it challenging to obtain reliable and consistent results from 

single-cell 3D genome data analysis. Additionally, integrative analysis with other single-cell 

data types and bulk data is difficult. In particular, new methods are needed to reveal, and 

understand the biological implications of, the differences between features observed from 

bulk Hi-C and scHi-C data.

It is imperative to recognize that evaluating the outcomes of computational methods 

should consider potential biases stemming from various input data types and preprocessing 

steps. For instance, the normalization strategy used in processing Hi-C data could 

introduce biases, such as possible underestimation of inter-chromosomal interactions. Each 

experimental technique produces data with its own distinct patterns and limitations, meaning 

computational models tested on certain data types, such as Hi-C, may not deliver accurate 

results for other data types, such as SPRITE. Therefore, care must be taken to choose a 

method appropriate for the data type and research questions. A comprehensive evaluation 

of methods using the same benchmark data can also be advantageous in identifying these 

biases and providing guidance on different application scenarios.

Deep-learning-based methods have demonstrated substantial success in predicting 3D 

genome features from 1D genomic features and in the integrative analysis of nuclear 

structure and function. However, these complex ‘black-box’ methods still have limitations in 

terms of interpretability and often require independent validation in unseen datasets for cell 

type-specific predictions. Over recent years, post-hoc methods174,188 and attention-based 

methods189 [G] have been developed to reveal the essential input features contributing to 

the model’s predictions. These methods have delivered mechanistic insights into nuclear 

structure and function, including the identification of sequence determinants for genome 

folding77, the prediction of chromatin spatial positioning relative to nuclear bodies190, and 

the recognition of chromatin interactions that are crucial for regulating gene expression173. 

Nevertheless, it is important to note that feature importance scores can vary across 

different methods and may be cell-type specific, potentially yielding inconsistent results191. 

Therefore, additional verification steps are necessary to ensure the robustness of findings, 

especially across various cell types not used during the training process. Moreover, it is 
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essential to acknowledge that feature importance scores do not necessarily reflect true 

underlying biology, particularly given the high correlation among multi-modal genomic 

features. To overcome these challenges, future research and collaboration between genomics 

and machine learning experts are paramount in designing interpretable machine learning 

methods specifically tailored to genomic data and in deciphering the mechanisms of the 3D 

genome from the computational perspective.

Future directions

The field of 3D genome research is rapidly evolving, and there are many exciting future 

directions ahead. One outstanding question in the field is how to design computational 

models that can coherently integrate observations from multimodal data, including 

genomics, imaging, 3D genome structural models, as well as multi-omic single-cell 

data. These different techniques often probe various aspects of genome architecture at 

different resolutions, creating a potential opportunity for an integrated framework that 

can simultaneously analyze complementary data to provide a complete view of various 

technical, biological, and physiological aspects of nuclear organization. Some of the major 

areas of expected progress are outlined below.

Integration between genomic and imaging data.

One future direction to obtain a comprehensive picture of genome organization is to 

coherently integrate various genomic data with imaging data to better understand the 

relationship between the 3D genome and other components in the cell nucleus. Compared 

with sequencing-based methods, recent multiplexed imaging based approaches have 

emerged as powerful tools for visualization of chromatin structure. These methods can 

probe multiple loci close to the nucleosome scale, as demonstrated in a recent preprint192, 

or simultaneously visualize hundreds of DNA probes and RNA molecules, along with 

immunostaining of nuclear bodies and histone modification, all within a single cell193. 

Although the resolution of current multiplexed imaging methods is low compared to 

sequencing-based methods at the population level and are often restricted to pre-selected 

loci, their throughput has the potential to be improved through the development of 

experiment strategies, thereby providing a more comprehensive view of the 3D genome 

and its role in cellular processes and functions23. For instance, a recent preprint reported a 

new method, two-layer DNA FISH194, which utilizes two rounds of imaging to separately 

resolve each 25kb bin and the 1.5Mb chromosome blocks in which these bins are located, 

thereby probing ~100,000 loci per cell. In another recent preprint, the method Pop-C195 was 

reported as a multiplexed version of Dip-C that was designed to enhance throughput.

More realistic nuclear architecture models.

Another future direction is to develop more realistic models of nuclear architecture by 

integrating various -omics assays, single-cell assays, and imaging data. These models 

will need to accurately reflect the variability and dynamics of the 3D genome across 

different cells and over time196, as compared with static models. This will enable a better 

understanding of the complex relationships between the 3D genome and cellular processes 

and functions and how chromatin organization reacts to external stimuli.
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Explanation of the functional impact of 3D genome features.

Another important future direction is to gain a better understanding of the functional impact 

of 3D genome features. One promising avenue for future research involves using in silico 
mutagenesis to assess the impacts of sequence alterations75. This approach was used to 

identify loci with divergent 3D genome organization between humans and archaic hominins 

in a recent preprint197. Making predictions trustworthy will require the development of 

new methods and techniques to specifically perturb 3D genome features and assess the 

downstream impact on gene expression and cellular processes.

Disease relevance.

Finally, a major future direction is to understand the role of the 3D genome in disease. This 

will involve identifying causal 3D genome changes that lead to phenotypic abnormalities 

and understanding how these changes disrupt cellular processes and functions. DNA 

alterations such as short tandem repeats198 and structural variations199 have been found 

to shape the 3D genome organization. As the volume of Hi-C data from patients 

continues to increase, a crucial area of focus emerges: discerning the connections among 

3D genome structure, disease-causing DNA variants, and the consequent ectopic gene 

expression induced by aberrant chromatin interactions200. This information will be critical 

for developing new treatments for a range of diseases, including cancer and genetic 

disorders.

Conclusions

Computational approaches are a central part of most 3D genome mapping methods. Their 

importance now reaches far beyond data analysis, with roles in integrating complex datasets 

into structural models and generating mechanistic and functional hypotheses. In fact, it can 

be argued that the study of the 3D genome currently represents the most extensive use of 

advanced computing methods in cell biology. There is no doubt that the development and 

combined use of increasingly sensitive 3D genome mapping methods and more advanced 

computational approaches will provide a deeper understanding of the relationships between 

the 3D genome and cellular processes and functions and will have important implications for 

human health and disease.
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Glossary

Attention-based mechanism
A machine learning technique used in neural network models to prioritize the most relevant 

parts of input when making decisions

Bystander interactions
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An indirect effect of chromatin interactions that occurs through nearby long-range chromatin 

interactions

Chromatin domains
Distinct units formed by the chromatin fiber inside the cell nucleus

Cohesin-mediated loop extrusion
The process by which cohesin complexes extrude DNA into loops until they reach 

boundaries insulated by architectural chromatin proteins such as CTCF

Contact frequency
The probability that a pair of genomic loci in the 1D linear genome are spatially closer than 

a threshold value

Contact frequency map
A symmetrical square matrix filled with the estimated contact probabilities between any pair 

of loci

Convolutional kernel
A compact matrix or vector applied to an input DNA sequence to represent the significance 

of a specific pattern or feature at each position within the sequence

Convolutional neural network (CNN)
A type of artificial neural network that uses convolution layers to learn data representations 

by applying filters or kernels to the input signal to generate transformed output signals

Dilated CNN
A variant of convolutional neural networks (CNN) in which a ‘dilated’ or expanded 

convolution kernel is applied to broaden the receptive field of the network without 

increasing the number of parameters

Gradient boosting
A machine learning method that iteratively trains a series of models, each of which is 

designed to correct error from the previous model

Graph-based posterior regularization
A method to improve the prediction accuracy by incorporating a penalty term that 

discourages solutions that violate the dependencies between variables, as represented within 

a graph structure

Graph neural network
A type of neural network that is designed to handle data represented as graphs

Homotypic interactions
Binding or association of objects with similar properties, in this context chromatin segments 

sharing the same type of activity

Hypergraph
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A generalization of a graph in which an edge can connect any number of vertices

Hyperedge
A connection between any number of vertices of a hypergraph

Latent Dirichlet allocation
A type of generative statistical model that allows sets of observations to be explained by 

unobserved groups or topics

Molecular Dynamics
A computational method used to simulate the evolution of a molecular system over time, by 

numerically integrating Newton’s equations of motion

Monte Carlo
A computational method to generate configurations of a physical system by drawing 

samples from a probability distribution

Principal component analysis
A statistical method used to reduce the dimensionality of data by transforming it into a set of 

linearly uncorrelated variables, known as principal components

Phase separation
Spatial separation of different phases of matter from one homogeneous mixture

Random forest
A classic machine learning method for classification and regression tasks that works by 

combining the output of multiple decision trees

Recurrent neural network
An artificial neural network designed to recognize patterns in sequences of data, with each 

output dependent on previous computations

Random walk with restart
A stochastic process on a graph that randomly selects a starting node and then 

probabilistically determines the next move

Tensor decomposition
A mathematical technique used to break down a complex tensor (multi-dimensional data) 

into a series of simpler, more interpretable components

Variational inference
A probabilistic method in machine learning and statistics that uses optimization techniques 

to approximate complex, intractable posterior distributions

Vector representation
A means of representing data, usually in the form of a real-valued vector, such that the data 

points that are closer in the vector space are expected to have similar attributes
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Box 1 |

Overview of different mapping methods for 3D genome organization

Diverse methods for mapping chromatin structure exist, which have improved our 

understanding of chromosome folding inside the nucleus (Fig. 1a).

Methods to capture pairwise chromatin interactions.

While ligation-free methods such as DamC201 exist, most 3D genome mapping 

methods are derivatives of the chromosome conformation capture (3C) assay202 and 

involve a DNA ligation step. In these approaches, spatially proximal chromatin 

loci are chemically crosslinked, the DNA fragmented with restriction enzymes and 

then re-ligated before paired-end sequencing to revealing the identities of proximal 

sequences in the genome203 (Fig. 1b). The basic 3C assay has been further improved 

by incorporating various modifications, such as increasing the number of captured 

interacting loci with ultimate ‘all versus all’ methods (Hi-C)8,17,18, selective enrichment 

of interactions involving specific proteins (for example, Chromatin Interaction Analysis 

with Paired-End-Tag sequencing (ChIA-PET), Hi-C chromatin immunoprecipitation 

(HiChIP))204,205, capturing interactions at regions of interest (such as gene promoters206–

208) and using DNase or MNase for more uniform fragmentation and enrichment of local 

interaction between pairs of nucleosomes18,209,210.

Methods to capture multiway interactions.

Conventional 3C-like methods identify pairwise interactions but generally fail to uncover 

concurrent multiway chromosomal interactions. To address this limitation, multiplexed 

barcoding or long-read-based sequencing has been applied to 3C libraries211–213. 

Ligation-free methods such as Genome Architecture Mapping (GAM)214, Split-Pool 

Recognition of Interactions by Tag Extension (SPRITE)215, and ChIA-Drop216 can 

provide complementary views to ligation-based methods by capturing multiway 

interactions beyond the range of proximity ligation (Fig. 1b)203. Multiway interactions 

provide higher order information regarding 3D genome structures and can facilitate 

structure modelling.

Ligation-free methods to map subnuclear positioning.

Ligation-free methods have been developed to capture interactions between chromatin 

and nuclear bodies (such as Tyramide Signal Amplification sequencing (TSA-seq)185 

and DNA Adenine Methyltransferase Identification (DamID)217,218) or probe radial 

positioning of chromatin in the nucleus (for example Genomic Loci Positioning by 

Sequencing (GPSeq)219) (Fig. 1c).. These methods provide information about the spatial 

arrangement of chromatin, including spatial positioning and an approximation of the 

cytological distance or contact frequency to a specific type of subnuclear structure.

Single-cell 3D genome mapping approaches.

While most genome mapping methods are population-based, the averaged chromatin 

interaction profiles generated from these methods are not capable of uncovering the 

heterogeneity among individual cells or the unique patterns in rare cell types. To solve 
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these issues, a series of single-cell Hi-C (scHi-C) methods have emerged to probe 

chromatin structures in individual cells and reveal cell type-specific 3D genome features 

in complex tissues (Fig. 1d)13,21,145,158,166,220–222. However, the sparsity of scHi-C data, 

with typically thousands of fold lower coverage than population-based methods, poses a 

challenge for analysis.

Imaging-based methods.

Microscopy-based imaging provides a direct measurement of 3D chromatin structures at 

the single cell level (Fig. 1e). Chromosome tracing using super-resolution microscopy 

can detect detailed chromatin folding trajectories12,137,223–225, although it is limited 

to short stretches of chromatin. Recent innovations leveraging multiplexed barcoding 

methods have enabled the detection of thousands of probes simultaneously, along with 

RNA detection and subnuclear structure analysis22,193,226,227. These methods are limited 

by their throughput and coverage, with a maximum of a few thousand loci per single 

cell. Computational methods designed to assign raw fluorescence signals onto chromatin 

fibers, while accounting for both imaging noise and intrinsic biological noise, remain in 

the early-stage of development155.
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Figure 1. 
Overview of multiscale 3D genome features and assays. a. Schematic view of multiscale 

3D chromatin organization: DNA is packaged into chromosome territories, where it is 

intertwined with nuclear bodies such as nuclear speckles. Packaging is achieved through 

progressively finer resolution structural motifs such as compartments (megabase scale), 

chromatin domains such as TADs (100kb to a few Mb) and chromatin loops (10kb to 

100kb apart, mediated by architectural proteins such as cohesin and CTCF). b. Experimental 

methods such as Hi-C can be used to capture chromatin contact frequency between 

pairwise loci or across multiple loci. c. Ligation-free methods (such as DNA Adenine 

Methyltransferase Identification (DamID), Tyramide Signal Amplification sequencing 

(TSA-seq), and genomic loci positioning by sequencing (GPSeq)) measure distance and 

contact frequency relative to nuclear bodies or positioning within the nucleus. d. Single-cell 

Hi-C can be used to detect variation in chromatin interactions among cells in complex 

tissues, for example, through adding multiplexed barcodes to individual cells. e. Multiplexed 

DNA Fluorescence In Situ Hybridization (DNA-FISH) provides direct spatial location of 

DNA loci and traces chromatin conformations in the nucleus.
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Figure 2. 
Computational methods for identifying 3D genome features from Hi-C data. a. First, 

Hi-C reads are aligned onto the reference genome, filtered, and invalid read pairs are 

removed. Bins of equal size are created and valid interactions are assigned to generate the 

raw contact frequency map, which is further normalized and assessed by various quality 

control metrics. The quality of the Hi-C contact frequency map can be evaluated through 

a distance-dependent contact frequency decay curve or stratum-adjusted correlation based 

on distance-based stratification. b. A/B compartments are identified from the 2D contact 

frequency maps. Applying Principal Component Analysis (PCA) on the Pearson correlation 

matrix calculated from the observed over expected (O/E) matrix allows genomic bins to 

be assigned to A/B compartments, which can be further separated into sub-compartments. 

c. Topologically Associating Domains (TADs) are domain structures along the diagonal of 

the Hi-C contact frequency map. Some TADs have subTADs nested within a meta-TAD, 
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and they may show partially overlapping structures (left). The schematic chromatin structure 

corresponding to the contact frequency map is shown as a cartoon (middle). TAD and sub-

TADs have distinct characteristics (right). d. Loops and stripes are fine-scale structures on 

contact frequency maps. Two different approaches are used to identify significant chromatin 

interactions (left). The first approach selects strong chromatin interactions by comparing 

contact frequency with neighboring bins on the contact frequency map (center). The second 

approach fits a global distribution between contact frequency and 1D distance and selects 

significant chromatin interactions as outliers based on the fitted model (right).
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Figure 3. 
Machine learning-based approaches for predicting 3D genome features. a. Significant 

chromatin interactions, such as CTCF-CTCF loops and enhancer-promoter interactions, 

can be predicted using machine learning methods that take both sequence and epigenomic 

signals at loop anchors and features between anchors as input. A supervised method is 

trained on a subset of true interactions and evaluated on unseen test data. TF, transcription 

factor. b. Deep neural network models predict genome-wide contact frequency between loci 

using large stretches of DNA sequence context as input. Some methods also pre-train the 

model by predicting 1D epigenetic signals from DNA sequence and then transferring the 

learned DNA feature representations to a second model to predict 2D contact frequency 

maps.
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Figure 4. 
Incorporation of mechanisms of genome folding in modelling approaches. a. The process 

of loop extrusion is shown, whereby a cohesin molecule attaches to the chromatin fiber and 

starts extruding it into a loop; the process stops when cohesin falls off or encounters another 

cohesin or a bound CTCF protein. Loading and unloading factors facilitate the process. 

Loop extrusion accounts for both loops and Topologically Associating Domains (TAD) 

observed in Hi-C contact frequency maps. b. The mechanism underlying phase separation 

is shown. Chromatin segments with different affinities (represented by different colors) 

micro-phase separate within the nucleus owing to attractive interactions between regions of 

the same affinity class, spatial restraints from the polymer chain, and competition with other 

interactions. This mechanism accounts for chromatin compartmentalization as observed in 

the characteristic Hi-C contact frequency map checkerboard pattern.
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Figure 5. 
Data-driven genome modelling methods. a. Spatial information from data generated by a 

variety of 3D genome mapping methods, such as Hi-C, Tyramide Signal Amplification 

sequencing (TSA-seq), and imaging data, is used to simulate 3D genome structures by 

minimizing the deviation of the model prediction from the experimental input. b. The 

rationale behind the resampling (left) and deconvolution (right) modelling methods is shown 

using ensemble Hi-C data as experimental input. In the resampling approach, the same 

set of contacts (shown as coloured dumbbells) is expressed in all the sampled structures. 

By contrast, in the deconvolution method, different batches of contacts are allocated 

into different structures. c. The simulated structures are used to compute 3D genome 

features that comprehensively characterize the local and global nuclear microenvironment 
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of all chromatin loci, such as the average radial position and distance to speckle of each 

chromatin locus and their variabilities across the ensemble of single-cell models. SPRITE, 

Split-Pool Recognition of Interactions by Tag Extension; GAM, Genome Architecture 

Mapping; DamID, DNA Adenine Methyltransferase Identification; FISH, Fluorescence In 

Situ Hybridization; HIPMap, High-throughput Imaging Position Mapping.
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Figure 6. 
A typical workflow for processing and analyzing single-cell Hi-C (scHi-C) data. a. 
scHi-C data provides insights into cell-to-cell variability and temporal cellular processes 

by separating sequencing reads into individual cells based on cellular barcodes. b. 
Computational methods are used to transform the contact frequency map into lower 

dimensional space (embeddings), impute missing values, and enhance data quality. 

Hypergraph representation learning (middle) can perform embedding and data imputation 

jointly. c. Using the embeddings, downstream analyses can reveal cell types (through 

clustering), multiscale 3D genome features, heterogeneity and variability of 3D genome 

organization, and association with other cellular processes such as DNA methylation. TAD, 

topologically associating domain
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