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Polygenic risk scores for autoimmune
relateddiseases are significantly different
in cancer exceptional responders
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A small number of cancer patients respond exceptionally well to therapies and survive significantly
longer than patientswith similar diagnoses. Profiling the germline genetic backgrounds of exceptional
responder (ER) patients, with extreme survival times, can yield insights into the germline
polymorphisms that influence response to therapy. As ERs showed a high incidence in autoimmune
diseases, we hypothesized the differences in autoimmune disease risk could reflect the immune
background of ERs and contribute to better cancer treatment responses. We analyzed the germline
variants of 51 ERs using polygenic risk score (PRS) analysis. Compared to typical cancer patients, the
ERs had significantly elevated PRSs for several autoimmune-related diseases: type 1 diabetes,
hypothyroidism, and psoriasis. This indicates that an increased genetic predisposition towards these
autoimmune diseases ismore prevalent among the ERs. In contrast, ERs had significantly lower PRSs
for developing inflammatory bowel disease. The left-skew of type 1 diabetes score was significant for
exceptional responders. Variants on genes involved in the T1D PRS model associated with cancer
drug response aremore likely to co-occurwith other variants amongERs. In conclusion, ERs exhibited
different risks for autoimmune diseases compared to typical cancer patients, which suggests that
changes in a patient’s immune set point or immune surveillance specificity could be a potential
mechanistic link to their exceptional response. These findings expand upon previous research on
immune checkpoint inhibitor-treated patients to include those who received chemotherapy or
radiotherapy.

In cancer trials, there is a small numberof patientswhohavemeaningful and
long-lasting responses to treatment that greatly exceed historical norms.
Historically, these rare patients have been declared as unexpected outliers,
and the molecular basis behind their therapeutic successes has not been
thoroughly investigated. However, the advent of whole genome sequencing
(WGS) has increased interest in mechanisms responsible for these
remarkable outcomes.

Important insights have emerged regarding the mechanisms that may
explain the exceptional response of some cancer patients. Some of these
mechanisms include genetic variation and unique responses to DNA
damage pathways, crucial mutations in cancer driver genes or tumor sup-
pressor genes, diversity in intracellular signaling, variations in immune

engagement and special gene fusion events1–5. For example, a patient with
metastatic urothelial cancerwho responded exceptionallywell tonivolumab
after unsuccessful attempts with chemotherapy, radiation, and surgery, was
found to have elevated mRNA levels of the genes responsible for encoding
PD-1 and PD-L1. In addition, there was a 32x amplification in IFNG,
leading to extremely high expression of the gene in both cancer cells and T
cells, which were considered potential explanations for the exceptional
responsebyWheeler et al1. This demonstrateshowalterations in the tumor’s
immune microenvironment can account for a patient’s favorable response
to a specific treatment. In addition, germline genetic factors are important
modifiers in tumor immune microenvironment, cancer risk and immu-
notherapy response, which can be investigated by polygenic risk scores6,7.
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In 2018, to further learn from these exceptional cancer survivors, we
launched the registry for the Network for Enigmatic Exceptional Respon-
ders (NEER) across all trials as a patient-directed study so that any patient
could volunteer their own case and data as a candidate for the NEER
registry. The first 53 patients who survived 2 standard deviations greater
than the survival rate or exhibited significant deviation from standard
clinical treatment (see methods) were enrolled and sequenced. The registry
contains a broad collection of cancer types (Table 1) and a range of treat-
ments including chemotherapy, radiation therapy and immunotherapy
(Supplementary Table 1). Here, we describe the results of our first study
examining the germline genomes of NEER participants in search of shared
genetic tendencies towards cancer exceptional responses. As the contribu-
tion to an exceptional response of any given common variant is going to be
small, we used previously published polygenic risk scores (PRS) to compare
the genetic risk for autoimmune diseases between exceptional responders
(ERs) and typical cancer patients8–12. Prior studies have reported that ele-
vated PRSs for autoimmune diseases such as hypothyroidism in patients
receiving immunotherapy are associated with autoimmune adverse events
and are variably associated with improved outcomes8,13. Additionally,
genetic variants associated with autoimmune diseases based on GWAS
analysis were reported to alter cancer immunity and IFN signaling14.
Interestingly, inour cohort ofERs, 20%ofpatientshavebeendiagnosedwith
autoimmune diseases and some of them also have first-degree relatives with
autoimmune diseases. Therefore, we hypothesize the inherited germline
genetics of ERs related to autoimmune diseases could have an impact on a
favorable therapeutic response. The difference in PRSs of autoimmune
diseases may reflect how common variants contribute to the general
immune functions of individuals and affect cancer prognosis. Rather than
generating a new set of scores based on a single reference population, we
decided to use previously published PRSs to directly compare findings in
NEER with the claims of the prior studies. These previous reports hypo-
thesized that autoimmunity led to better outcomes for cancer treatment by
modulating the overall reactivity of helper T cells and B cells. To build upon
this hypothesis and investigate which autoimmune processes could offer a
potential explanation for favorable therapeutic response, we conducted PRS
analysis for 7 different autoimmune-related diseases (Supplementary
Table 2). Additionally, while the previous studies largely focusedonpatients
with immunotherapy treatments, we decided to include the full range of
treatments in NEER, allowing us to determine whether the improvement
was present in patients treated with chemotherapies and other non-
immunomodulating therapies.

Results
Characteristics of the NEER exceptional responders
The two outliers of NEER ERs in terms of genetic ancestry were excluded in
the following analysis and a comparable control set was identified according
to cancer site and ancestry population (see methods) based on the clinical
information and germlineWGS data collected by the Pancancer Analysis of
WholeGenomes (PCAWG) project15. PCAWGwas selected as it comprises
a large heterogeneous set pan-cancer cohort with WGS. The NEER parti-
cipants were 51 cancer ERs with different cancer types. Of these 51 parti-
cipants, a majority of them were breast cancer patients (26%), followed by
pancreatic cancer patients (14%), and lung cancerpatients (10%).Notably, a
highproportion of the ERswere diagnosedwithdistantmetastasis and stage
IV disease, accounting for 84% of the total. There are four ERs of whom
stagingwas not applicable (onewith primary plasma cell leukemia, onewith
acute myeloid leukemia, and two with glioblastomas) because the TNM or
Binet staging systems are not typically used for these types of cancer.Despite
the advanced disease status of the NEER cohort, the median survival
duration is a remarkable 12.77 years, highlighting their exceptional survival
trajectories (Table 1). The detailed demographic, clinical and drug assign-
ment data of 51 ERs can be found in Supplementary Table 3.

ERs underwent a variety of therapies, including surgery, chemother-
apy, hormone therapy, immunotherapy, radiation and targeted therapy.
The vast majority (78%) underwent at least one surgical procedure focused

on the primary tumor or distant metastasis. A heterogeneous set of che-
motherapies protocols were administered to 75% of the patients. Radiation
therapy was another common treatment modality, with 59% of patients
receiving it. Nearly half of the patients (45%) were also treated with targeted
therapy. Hormonal therapy and immunotherapy were less frequently
administered at 22% and 14% respectively (Supplementary Table 1).

In the NEER group, 10 participants (20%) were confirmed to have
autoimmune diseases (Supplementary Table 3), while the rate of having at
least one autoimmune disease is about 4% worldwide and in the US is
around 8%16. Of these 10 patients, eight had a single autoimmune diagnosis:
Crohn’s disease (3), multiple sclerosis (MS) (3), Graves’ disease (1), and
antiphospholipid syndrome (1). The remaining two patients had dual
diagnoses: one with Hashimoto’s disease and lichen planus, and the other
with autoimmune hepatitis and nephritis. Concerning familial predisposi-
tion, 16% of the NEER participants had a first-degree relative with an
autoimmune disease. The autoimmune disease rate of PCAWG typical
cancer patients is not available.

Differences in PRSs between NEER and PCAWG
We implemented several previously published PRS models corresponding
to seven autoimmune disorders, including type 1 diabetes (T1D)9, rheu-
matoid arthritis (RA)10, psoriasis10, MS11, inflammatory bowel disease
(IBD)12, hypothyroidism8, and celiac disease10. TheERs showed significantly
higher PRSs for hypothyroidism (OR = 1.58, CI = [1.19, 2.11], p = 0.002),
T1D (OR = 2.66, CI = [1.90, 3.81], p < 0.001) and psoriasis (OR= 1.52, CI =
[1.13, 2.06], p = 0.006) risk. In contrast, there were significantly lower PRSs
for IBD (OR = 0.58, CI = [0.42, 0.79], p < 0.001) risk compared to typical
cancer patients (Fig. 1, Supplementary Fig. 1). RA,MS and celiac PRSs were
not significantly different.

In order to know whether the PRSs generalized to prognosis in a wide
range of typical cancer patients, for each of the PRSs we also checked the
survival curves of all PCAWG patients when stratified by high vs low PRS
(see Methods). These are illustrated in Supplementary Fig. 2. None of the
differences were statistically significant, but those cancer patients with high
hypothyroidism risk tend to live longer (p = 0.078), which is consistent with
our analysis in ERs.

The PRS should approximate a normal distribution when the sample
size is adequate, but the skewness of the PRS distribution may also reflect
some special characteristics of a small group of people. All PRSs in the large
cohorts, the typical cancer patients, are not skewed except the one for RA,
which had a significant right-skew (Table 2). With a much smaller sample
size in NEER, the NEER T1D PRS distribution was left-skewed (Table 2),
whichmeans the distribution of the scores is asymmetrical with enrichment
for scores that are on the higher end and a larger proportion of ERs had
significantly higher T1DPRSs. As the distribution of the PCAWGT1DPRS
scores is not skewed, this indicates that many NEER patients were at higher
genetic risk of T1D than typical cancer patients in PCAWG. There are 42
ERs having higher T1D PRSs than the mean of T1D PRS of typical cancer
patients.

Differences in PRSs observed with stratification
Differences in PRSs for autoimmune diseases were observed when strati-
fying ERs by cancer type or treatment, although sample sizes were small
(Fig. 2). Breast cancer ERs had higher PRSs for T1D (OR = 3.12 CI = [1.57,
6.85] p = 0.002) and hypothyroidism (OR = 1.96, CI = [1.15, 3.48],
p = 0.015), but lower PRS for IBD (OR= 0.44, CI = [0.20, 0.88], p = 0.028)
compared to typical breast cancer patients. Pancreatic cancer ERs showed
higher PRSs for T1D (OR = 2.21, CI = [1.03, 5.57], p = 0.061) and psoriasis
(OR = 2.90, CI = [1.16, 8.50] p = 0.030). Lung cancer ERs had a lower PRS
for IBD (OR = 0.45, CI = [0.17, 1.04], p = 0.075). When stratifying by
treatment type, ERs receiving radiation and chemotherapy consistently had
higher hypothyroidism PRSs, suggesting the autoimmune-cancer drug
response link extends beyond immune checkpoint inhibitors.

ERs were also stratified by whether they received a specific type of
therapy, with similar differences observed (Supplementary Fig. 3a–e).Given
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that many ERs have multiple treatments, we also stratified ERs with their
regimen, the combinations of treatment types. NEER ERs with different
regimens consistently showed increased PRSs for T1D and decreased PRSs
for IBD. ERs receiving radiation and chemotherapy consistently had higher
hypothyroidism PRSs, suggesting the autoimmune-cancer drug response
link extendsbeyond immunecheckpoint inhibitors. (Fig. 3a, Supplementary
Fig. 3f).

Among chemotherapy-only treated ERs (n = 7) versus PCAWG
typical cancer patients (n = 52), ERs had significantly higher psoriasis PRS
(OR = 4.33, CI = [1.61,18.09], p = 0.014) (Fig. 3b). T1D PRS was elevated
(OR = 2.19, CI = [0.96, 5.62], p = 0.074) but not statistically significant,
likely due to limited sample size. For the chemotherapy and radiation
group
(10 ERs, 11 PCAWG), ERs had significantly higher T1DPRSs (OR = 3.17,
CI = [1.30, 10.80], p = 0.027) (Fig. 3c).HypothyroidismPRSwas increased
and IBD PRS decreased, but not significantly. Notably, most PCAWG
patients in this group had pancreatic cancer. Examining just the pan-
creatic cancer ERs (n = 3) and one breast cancer ER revealed their T1D
PRSs were higher than the upper PCAWG quantile (Fig. 3c).

In summary, despite small sample sizes, ERs stratified by cancer type
and treatment consistently showed altered autoimmune disease PRSs,
especially the elevated T1D PRS, suggesting a link between genetic auto-
immune risk and exceptional drug response.

Genes involved in the T1D PRS model related to cancer drug
response may influence exceptional responses
Because the T1D PRS model only includes 66 SNPs and shows the most
significant difference between NEER and PCAWG, we investigated the
SNPs and eQTLs to find whether they are associated with high T1D PRS in
ERs. The allele frequencies of every single variant in the model were com-
pared between NEER and PCAWG. There are 5 variants showing different
frequencies between NEER and PCAWG, with 4 of them implicated in risk
of T1D and were enriched in NEER, but none of them are of significance
after multiple testing corrections. Thus, it is the accumulative effect of
multiple common variants in the model that may influence the immune
background of ERs. The genes involved are TUFM, C11orf21, OAS1 and
FUT2 (Supplementary Table 4).

Table 1 | Demographic summary of NEER and PCAWG subset

NEER PCAWG

N 51 414

Male, n(%) 20 (39.2%) 154 (37.2%)

Age, median (IQR) 66 [62,70] 62 [51,71]

Organ System, n(%)

Breast 13 (25.5%) 106 (25.6%)

Pancreas 7 (13.7%) 57 (13.8%)

Lung 5 (9.8%) 41 (9.9%)

Leukemia 4 (7.8%) 33 (8.0%)

Ovary 4 (7.8%) 33 (8.0%)

Kidney 3 (5.9%) 24 (5.8%)

Uterus 3 (5.9%) 24 (5.8%)

Brain 2 (3.9%) 16 (3.9%)

Intestine 2 (3.9%) 16 (3.9%)

Melanoma 2 (3.9%) 16 (3.9%)

Bladder 1 (2.0%) 8 (1.9%)

Bone 1 (2.0%) 8 (1.9%)

Esophagus or Stomach 1 (2.0%) 8 (1.9%)

Gallbladder or Liver 1 (2.0%) 8 (1.9%)

Prostate 1 (2.0%) 8 (1.9%)

Thyroid 1 (2.0%) 8 (1.9%)

Cancer Stage, n(%)

Binet A 0 (0.0%) 18 (4.3%)

Binet B 0 (0.0%) 4 (1.0%)

Binet C 1 (2.0%) 2 (0.5%)

I 0 (0.0%) 42 (10.1%)

II 0 (0.0%) 59 (14.3%)

III 2 (3.9%) 31 (7.5%)

IV 43 (84.3%) 3 (0.7%)

NA 5 (9.8%) 225 (61.6%)

Vital Status, n(%)

Alive 47 (92.2%) 266 (64.3%)

Deceased 4 (7.8%) 126 (30.4%)

NA 22 (5.3%)

Years survived (censored), median (IQR) 12.77 [9.01,18.04] 2.89 [1.35,5.21]

Celiac

Hypothyroidism

IBD

Multiple_sclerosis

Psoriasis

Rheumatoid_arthritis

T1D

−2.5 0.0 2.5
Z_score

Cohorts

NEER

PCAWG

***

**

***

**

Fig. 1 | Distribution of PRS Scores in NEER and PCAWG across 7 autoimmune/
inflammatory-related disorders. The asterisks denote significance per the Wald
test. * signifies p < 0.05 **p < 0.01 ***p < 0.001.

Table 2 | Skew of distribution from normal in PRS of each
population

PRS Score Skew p value NEER PCAWG

Hypothyroidism 0.977 0.299

T1D 0.02 0.892

Multiple_sclerosis 0.788 0.21

Psoriasis 0.134 0.28

IBD 0.472 0.683

Rheumatoid_arthritis 0.079 0.001

Celiac 0.513 0.099
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Besides the effects of the single variants, we are interested in the dif-
ferences in co-occurrence patterns between NEER and PCAWG. The
heatmap shows the difference in the proportion of patients carrying the two
variants in the T1D PRSmodel between NEER and PCAWG, with the cells
in red indicating greater linkage of variants in NEER ERs. Variant
rs3087243, a protective variant of CTLA4, was more likely to occur simul-
taneouslywith other variants in PCAWG,with differences greater than 10%
in 22 variants (Fig. 4). As CTLA4 has been specifically implicated in cancer
immune and immune checkpoint inhibitor responses17, such differences in
co-occurrence may influence different immune responses in exceptional
responders. In addition, co-occurrence between the variant on CENPW
(rs2045258), identified as an indicator for cancer development and prog-
nosis indifferent cancer types18,19, andothervariants inNEERwere observed
(Fig. 4). Our findings in variant linkage begin to characterize the cumulative
effect of inherited genetic differences between typical cancer patients
and ERs.

Discussion
We collected germline WGS data from 53 ERs with different cancer types
and treatments and investigated the effect of common germline variants in
ERs by calculating their PRSs for key autoimmune diseases. Two NEER
patients were removed from the analysis because their common variant
profiles diverged from those of European origin, whichmost published PRS
profiles have been computed, although this is likely to change soon20,21. A
subset of patients from PCAWG, with matched population ancestry, sex,
and cancer types, was used as control.

Compared to typical cancer patients in thePCAWGdataset, the cohort
of NEER patients had significantly increased PRSs for T1D, hypothyroid-
ism, and psoriasis. The ERs were also found to have significantly lower IBD
PRSs. Similar results were observed when we stratified cancer patients by
breast cancer, the largest group of ERs with a specific cancer type. In
addition, stratifications were performed on both single therapy and com-
binations of therapies. Differences could be observed in risks of T1D,
hypothyroidism, IBD, and psoriasis, though the sample sizes are limited.

Divergence in risk profiles for the same commonvariants between IBD
and T1Dhas been noted in a study byWang22 atmultiple loci. For example,
protein tyrosine phosphatase non-receptor type 22 (PTPN22), a gene that
negatively regulates T cell activation, is associated with many autoimmune
diseases but in opposite directions. In those studies, divergence was with

respect to autoimmune disease, not cancer outcome. Whether the diver-
gence arises from a different immune set point or different (micro)envir-
onmental stimuli remains unknown. In addition, it was reported that the
autoimmune susceptibility variant on PTPN22, which inhibits phosphatase
activity, could improve cancer outcomes23.

A previous paper showed a link between germline higher risk of T1D
and lower risk of IBD and tumor interferon response14. Interestingly, 36 ERs
have a T1D PRS greater than the mean of typical cancer patients but with
low IBDPRS at the same time. Several SNPs on PTPN2 and IL21, two genes
involved in interferon signaling pathways, were included in the T1D PRS
model. Our findings suggest that genes associated with the risk of auto-
immune diseases, especially those involved in interferon response, might
explain in part cancer drug response and can be used as potential prognostic
markers.

The T1D PRS distribution of ERs is left-skewed. Understanding which
SNPs drive the high T1D risk in part of ERs can help to understand their
immune background. Thus, 51 ERs were stratified by T1D PRS > 0 (n = 42)
or T1D PRS < 0 (n = 9), where 0 indicates the mean of T1D PRS in typical
cancer patients, and the allele frequencies were compared. Two protective
and two susceptible variants associated with T1D are distributed differently
between T1D PRS high and T1D PRS low groups (Supplementary Table 5).
These variants are located ingenes reported tobeassociatedwith cancerdrug
responses suggesting a potential mechanism for heterogeneity among ERs.
For instance, MAGI3 degraded c-Myc and acts as a predictor for che-
motherapy response in colorectal cancer24 and BCL2L15/Bfk pro-apoptotic
factor was found selectively expressed in the 5-Fluorouracil responder CRC
cells25, which was one of the chemotherapy treatments for ERs.

Prior studies of the impact of elevated or decreased PRS scores have
focused on checkpoint inhibitors, specifically PD-1/PD-L1 blockage. The
results have consistently shown association with new-onset autoimmune
adverse events (e.g. hypothyroidism, colitis, hypophysitis) but have been less
consistent in relating these to outcomes. A study of non-small cell lung
cancer by Luo et al.13 did not reveal that a high PRS for hypothyroidism
resulted in a benefit to survival. In contrast, in a study by Khan et al.8 there
was a survival benefit for patients with triple-negative breast cancer.
Another study byKhan et al.26 showed long overall survival for patientswith
bladder cancer high PRS for psoriasis and low PRS for atopic dermatitis.

Unlike the aforementioned studies, in NEER ERs, there are only 4
patients who received checkpoint inhibitors, but all of them were treated

Celiac

Hypothyroidism

IBD

MS

Psoriasis

RA

T1D

−2 0 2 4
Z_score

Breast cancer

Celiac

Hypothyroidism

IBD

MS

Psoriasis

RA

T1D

−5.0 −2.5 0.0 2.5
Z_score

Lung cancer

NEER

PCAWG

Cohorts

P = 0.075

Celiac

IBD

MS

Psoriasis

RA

T1D

−4 −2 0 2 4
Z_score

Pancreatic cancer

P = 0.061

Hypothyroidism

Fig. 2 | PRS distributions in patients with breast cancer, pancreatic cancer and lung cancer. The asterisks denote significance per the Wald test. * signifies p < 0.05
** p < 0.01 *** p < 0.001.
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with other kinds of cancer therapies as well. Moreover, excluding those 4
patients does not change thePRSdistributionof ERs in the comparison. Yet,
over the NEER patients’ wide range of treatments and cancers, there were
still significant differences in the distribution of PRSs for hypothyroidism
and psoriasis. The ERs had significantly higher T1D PRSs and significantly
lower scores for IBD than typical PCAWGcancer patients. Survival analysis
for high and low PRS scores in these same autoimmune/inflammatory
diseases did not reveal any significant difference in survival times.

By design, this study focused on testing a hypothesis about germline
differences in common variants for autoimmune disease risk. Therefore, it
cannot account for differences in the somatic genome of the tumor, or rare
variants which individually might have a greater effect on treatment out-
comes. It also does not address differences in lifestyle and socioeconomic
statuswhich is documented forNEERpatients but not the large comparison
populations like PCAWG. The study has limitations, including a small
sample size and a retrospective design comparing the NEER registry to the
PCAWGdataset, whichmay introduce biases and potential confounders, as
well as the potential for survival bias in the comparison between the two
datasets. As the PCAWG dataset lacks clear and comprehensive regimen
data, unlike theNEERdataset, it is difficult tomatch controls perfectly based
on both tumor type and treatment regimen tominimize confounding from
varying survival rates. Nonetheless, our work demonstrates the

reproducibility of the PRS findings from earlier studies and presents sig-
nificant PRS findings for additional autoimmune diseases such as T1D in a
dataset containing various tumor types and cancer therapies other than
checkpoint inhibitors. These findings support the hypothesis of a
mechanistic link between more prevalent germline variants in NEER
patients and their exceptional response to cancer treatment.

Methods
Cancer exceptional responders sample collection
NEERERswere obtained from a group of US-based applicants aged at least
18 years old with an exceptional response to cancer therapies. Of 222
individuals who registered for the study, 82 were accepted based on their
eligibility. Eligibility was generally determined based on the most recently
available survival means within each cancer type, with eligible participants
exceeding 2 standard deviations greater than the survival rate or exhibiting
significant deviation from standard clinical treatment. There was a com-
bination of sources that we used to determine the current cancer survival
rates. The ones most frequently used were those available through the
American Cancer Society27. When these were not applicable, recent pub-
lications for listed survival rates or other well-known sources were used28.
Some of the participants were further evaluated by cancer-specific oncology
experts (see Acknowledgements) to ensure that the ER candidates were
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Fig. 3 | PRS distributions stratified by regimens. aOdds ratios (abbreviated as OR)
and confidence intervals were plotted, compared to 414 PCAWG typical cancer
patients. Different regimens, combinations of therapies, were labeled by different
colors. NEER_C (n = 7), NEER_RC (n = 10) and NEER_RCT (n = 7) refer to che-
motherapy only, a combination of radiation therapy and chemotherapy, and a
combination of radiation therapy, chemotherapy and targeted therapy respectively
amongNEERERs.NEER_Others refers to the group of ERswith other combinations
of therapies. Each specific combination has a sample size less than 7. b ERs in NEER

(n = 7) and patients in PCAWG (n = 52) treated only by chemotherapy were sub-
setted. Boxplots showed the distributions of their PRSs in different autoimmune
diseases. c ERs in NEER (n = 10) and patients in PCAWG (n = 11) treated by both
chemotherapy and radiation therapy were subsetted. Boxplots showed the dis-
tributions of their PRSs in different autoimmune diseases. The histological cancer
types were labeled through the shapes of dots. * signifies p < 0.05
**p < 0.01 ***p < 0.001.
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indeed outliers, based on their presentation and course, before they were
enrolled. The study inclusion reasons of those who were evaluated indivi-
dually can be found in the supplementary methods. Electronic health
records and blood samples were collected from 53 ERs at the time of this
analysis. The Institutional Review Board (IRB) of Harvard Faculty of
Medicine gave ethical approval for this work. Individuals consented to
participation using a written consent form that was signed digitally. All
relevant ethical regulations including the Declaration of Helsinki have been
compiled.All participants provided informedconsent for themselves–none
were deceased at the time of enrollment. The study was publicly posted on
the people-powered medicine website (https://peoplepoweredmedicine.
org/neer).Whole blood samples of participantswereused forwhole genome
sequencing (WGS) with 30X mean coverage at the Broad Institute. DNA
was extracted from aliquots of whole blood using the QIAsymphony DSP
DNA Kit in conjunction with the QIAsymphony SP instrument (Qiagen).
DNA was processed for PCR-Free library construction, sequenced with

150 bp paired-end reads, and sample identification QC check. A KAPA
HyperPrep library preparation was followed by qPCR quantification.

Data processing
WGS data was processed through the CGAP pipeline developed by Har-
vard’s Department of Biomedical Informatics and Brigham Genomic
Medicine. Variants were filtered through GQ > 20 and VQSR as quality
controls. The NEER dataset assembly is based on the GRCh38 genome but
most PRS models were from GRCh37. A liftover procedure29 was used to
convert datasets from one genome assembly to another to make them
comparable. Minimac4 1.5.7 genotype imputation30 was applied, based on
Haplotype Reference Consortium (HRC) panel, to increase power and
improve the PRS31,32. Variants from sex chromosomes were excluded and
among imputed SNPs, only those with R2 > 0.8 were retained. Furthermore,
we set the threshold for theP-value of theHardy–Weinberg test at 0.001 and
variants genotyped in <90% of the samples were removed. An ancestry
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Fig. 4 | Difference of variant co-occurrence in the T1DPRSmodel betweenNEER
and PCAWG. The values represent the co-occurrence score per variant pair in
NEERminus the one in PCAWG,where the co-occurrence score is the proportion of

patients carrying both variants in a given cohort. If values are positive, the linkage is
stronger in ERs. The data is not scaled when drawing the heatmap and is clustered by
both rows and columns.
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population checkwas performed through PCA based on all shared variants
between NEER ERs and PCAWG typical cancer patients after NEER data
went through the genomic liftover procedure and was imputed.

Two NEER participants (52 and 53) were found to be distant from a
cluster of the other 51 participants in principal component analyses based
on SNPs (Supplementary Fig. 4). They also carried the largest number of
variants and the largest number of homozygous variants andwere identified
as havinganon-Europeancontinent of origin. EarlierPRSmodels have been
shown to be brittle in their performance when applied to populations dif-
fering from those they were developed on10,12,33–35 even though recent
methods and data sources are resulting in greater robustness20,21. Asmost of
the PRS models were developed on European populations, only the 51
NEER ERs were included.

The germline jointly genotyped WGS dataset of PCAWG went
through the same quality control filter and only the population of European
originwas retained. After excluding PCAWGparticipants of non-European
genomic ancestry, the PCAWGdatasetwasmatchedwith theNEERdataset
to achieve equivalent diversity and proportion of cancer organ sites. To
accomplish this, the PCAWGdatasetwas randomly downsampleduntil the
proportions aligned (Table 1).

Polygenic risk score calculation
PRS is calculated as a sum of weighted effect alleles. The general mathe-
matical formula of the PRS is written as follows:

PRS ¼
Xn

i¼1

wiXi ð1Þ

where Xi denotes the effect allele count and wi denotes the weight of the ith
SNP for a specified outcome. The number of SNPs included in PRS varies,
depending on the trait/disease, andwas determined in the earlier studies8,9,11

(see Supplementary Table 2). When comparing PRSs between NEER and
PCAWG, only variants shared between the two cohorts were included. We
collected autoimmunediseaseswith publicly availablePRSmodels thatwere
reported to be associated with cancer risk or cancer drug response. The
model should be built or developed mostly by the European population.
Thirdly,most of the SNPs involved in themodels should be detected in both
NEERandPCAWGdata. ThePRSmodels implemented and the number of
SNPs in each model are listed in the Supplementary Table 2.

Survival analysis
AKaplan–Meier (KM)analysiswasperformedamongall PCAWGpatients.
Patients with missing data on vital status were excluded. Patients were
divided into high-risk groups and low-risk groups based on the 10% and
90% quantile of PRSs. A log-rank test was used to compare the difference in
survival time in the KM curve.

Logistic regression
Wald tests of logistic regression coefficients were used as statistical tests
between two groups of PRSs. The logistic regressionmodel does not include
covariates to adjust the confounding effects aswehave confirmed that all the
samples analyzedwere of the same ancestry group and similar demographic
background. The resultswere displayed byodds ratio per unit of normalized
PRS, confidence intervals, and p-values from the logistic regression. All tests
were two-tailed tests at α < 0.05 level. All statistical analysis was performed
using R 3.6.1.

Skew analysis
While the difference in distribution test above comparesPCAWGtoNEER,
it does not test whether the PRS scores are skewed within each population
individually. The estimate of skew is based on the sample skewness36 b1

where

b1 ¼
1
n

Pn
i¼1 xi � x

� �3

1
n�1

Pn
i¼1 xi � x

� �2h i3
2

ð2Þ

This estimate was calculated for PCAWG and NEER using the skewness.-
norm.test function in the normtest package in R.

Analysis on SNPs in T1D PRS model
The allele frequency of the given variant was first calculated based on the
sample size. Then, Fisher’s exact tests were applied to every single variant to
compare the different allele frequencies between different groups of indi-
viduals. Benjamini-Hochberg method was used for multiple testing cor-
rections.When analyzing the co-occurrence of variants, howmany patients
who carried the given two variants were counted in both cohorts. Differ-
ences in theproportionbetweenNEERandPCAWGwere thenvisualized in
the heatmap.

Data availability
Because submitting the data to a public repository was not allowed through
the original IRB protocol, the SNPs data that support the findings of this
study are available in DBMI Data Portal (https://portal.dbmi.hms.harvard.
edu/projects/ppm-neer) upon reasonable request. The PCAWGdata can be
obtained through the ICGC Data Portal (https://dcc.icgc.org/pcawg) upon
request.

Code availability
The codes were available through the github at https://github.com/dalcsy/
NEER-cancer-exceptional-responders-PRS-analysis.
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