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Abstract

A major challenge of precision oncology is the identification and prioritization of suitable treatment options based on molecular
biomarkers of the considered tumor. In pursuit of this goal, large cancer cell line panels have successfully been studied to elucidate
the relationship between cellular features and treatment response. Due to the high dimensionality of these datasets, machine learning
(ML) is commonly used for their analysis. However, choosing a suitable algorithm and set of input features can be challenging. We
performed a comprehensive benchmarking of ML methods and dimension reduction (DR) techniques for predicting drug response
metrics. Using the Genomics of Drug Sensitivity in Cancer cell line panel, we trained random forests, neural networks, boosting trees
and elastic nets for 179 anti-cancer compounds with feature sets derived from nine DR approaches. We compare the results regarding
statistical performance, runtime and interpretability. Additionally, we provide strategies for assessing model performance compared
with a simple baseline model and measuring the trade-off between models of different complexity. Lastly, we show that complex ML
models benefit from using an optimized DR strategy, and that standard models—even when using considerably fewer features—can
still be superior in performance.

Keywords: drug sensitivity prediction; machine learning; dimension reduction; feature selection; feature extraction; cancer cell lines

Introduction
Cancerous diseases are characterized by geno- and phenotypic
heterogeneity impacting the success of chemotherapeutic treat-
ments. Consequently, one major goal of precision oncology is to
identify the most efficient drug candidates and to detect biomark-
ers affecting treatment response.

Cancer cell line panels like the Genomics of Drug Sensitivity
in Cancer (GDSC) [1] and Cancer Cell Line Encyclopedia (CCLE) [2]
provide multi-omics measurements and drug response metrics
for various cancer types and can be used to study the relationship
between cellular features and treatment outcome. Due to the
high dimensionality of these datasets, machine learning (ML)
is often applied for their analysis [3–34]. This typically involves
the prediction of drug response measures and the inference of
sensitivity- or resistance-related biomarkers.

Increasingly complex models such as deep neural networks
with carefully constructed architectures [4, 19, 24, 26, 30, 32]
and advanced tree-based models [8, 16] have shown promising
results recently. However, Li et al. [35] found that many deep
learning approaches are not superior in performance to simple
feed-forward neural networks or random forests for drug sensi-
tivity prediction. Apart from that, keeping models as simple and
interpretable as possible is desirable for studying the relation

between cellular features and drug response and creating trust-
worthy, comprehensible predictions to enable ML use for clinical
decision support. This highlights the need to investigate how
complex models must be given the current data situation and
how even standard models can be elevated through hyperparam-
eter tuning and choosing informative inputs. Moreover, given the
availability of programming packages such as caret [36] and scikit-
learn [37], basic ML models can even be trained by non-experts,
rendering them a particularly attractive starting point for model
development.

When ML is used to investigate high-dimensional datasets such
as the GDSC or CCLE data, it is typically indispensable to perform
dimension reduction (DR) (i.e. to reduce the number of input
features) to counteract the curse of dimensionality, reduce runtime
and potentially increase model interpretability. Two groups of DR
algorithms can be distinguished: feature selection (FS) and feature
extraction (FE) techniques [38]. FS algorithms aim to choose a
subset of interesting features from a given feature set. They can be
grouped into filters, wrappers and embedded methods [38]. Filter
methods can be seen as a pre-processing step, where features are
chosen before applying any ML algorithm. In contrast, wrappers
train ML models using different feature sets and select the best
features based on model error. Lastly, embedding methods are ML
algorithms like elastic net (cf. Methods) where FS is integrated
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into the model training. In contrast to FS, FE aims to transform
a high-dimensional dataset into a lower dimensional representa-
tion, which still retains the properties of the original data space.
While FE does not require discarding potentially valuable features,
the resulting low-dimensional data representation is often not
easily interpretable, as each calculated feature is a combination
of features from the original feature space. Both FS and FE are
commonly used for drug sensitivity prediction (cf. Supplementary
Table 1 which lists the used DR methods used for 32 state-of-
the-art methods): one straightforward FS approach is choosing
features with strongest correlation to the response [23, 39]. Alter-
natively, many approaches only consider features of literature-
derived oncogenes as predictors [4, 5, 7, 11, 19, 22, 25, 26, 29], while
Su et al. [8] use randomly selected features.

Regarding FE, principal component analysis (PCA) was
employed by several contestants of the DREAM7 drug sensitivity
prediction challenge [39], while others utilize autoencoders [3,
25, 31, 33, 34] and Wang et al. [10] employ a matrix factorization
approach. A biologically more interpretable FE approach is to
summarize gene-level data into scores for the corresponding
molecular pathways, as done by Tang et al. [9] and Karagiannaki
et al. [40].

Given the plethora of available ML algorithms and DR tech-
niques, it is challenging to select the right combination of meth-
ods. Unfortunately, our literature research revealed that publi-
cations often do not report whether different approaches were
tested or how they performed in comparison (cf. Supplementary
Table 1) highlighting the need for a systematic assessment. There
exist several insightful reviews and evaluations on ML and DR in
drug sensitivity prediction [41–45]: Chen et al. [41] benchmarked
several state-of-the-art deep learning approaches but did not
investigate different DR methods. Jang et al. [42] analyzed the per-
formance of different input features and prediction algorithms.
However, they focused on inputs from varying omics-types rather
than different DR techniques. Koras et al. [43] compared sev-
eral FS methods but did not account for size differences in the
investigated feature sets, which might impact performance more
significantly than the actual features. Considering the goal of hav-
ing accurate but interpretable models, it is crucial to investigate
whether small feature sets are sufficient to train good predictors
and how they compare with larger sets.

In this paper, we discuss how the problem of drug sensitivity
prediction can be addressed using four different ML algorithms
in combination with nine DR techniques. Using gene expres-
sion values and drug response measures from the GDSC, we
trained more than 16 000 000 models for 179 compounds and
compared the results regarding prediction accuracy, runtime and
interpretability.

Our findings reveal that the choice of both the ML algorithm
and DR method have substantial impact on prediction perfor-
mance. For most drugs, elastic net models had the best perfor-
mance and lowest runtime, while neural networks performed
worst. The best-performing DR methods were PCA and a heuristic
by Kwak and Choi [46] that is based on the minimum-redundancy-
maximum-relevance principle. Overall, FS methods considering the
drug response performed better than methods using only expres-
sion values.

We also discuss how performance trade-offs between models
and for different numbers of input features can be assessed.
Furthermore, we show how cross-validation (CV) can be used to
bias models to improve predictions for the most sensitive cell
lines, which are typically highly underrepresented in drug screens
[5, 11, 16]. To account for the goal of interpretable models, we

characterize the four investigated ML algorithms in terms of
model transparency [47] and explainability [48]. We also show
how the selected features for each drug can already present
valuable insight into drug responses even without applying any
ML algorithm. Lastly, our analyses using a multi-omics multi-task
deep learning approach by Chiu et al. [3] prove that complex pre-
diction models (1) can benefit substantially from using different
DR methods and (2) can be outperformed by standard models
even with small feature numbers.

Methods
Dataset
Data for our analyses were obtained from the GDSC database
(Release 8.3). More specifically, we downloaded normalized
expression values (Affymetrix Human Genome U219 Array) for 17 419
genes and drug-screening data in the form of logarithmized IC50
values for all 198 drugs screened in the GDSC2 dataset (CellTiter-
Glo assay). Out of these 198 drugs, we only considered those 179
drugs for which sensitivity measures for at least 600 cell lines are
provided.

Note that the GDSC also provides AUC values as a measure of
drug response. However, we found that the concentration ranges
used to determine the AUC values do not correspond well to
clinically feasible treatment concentrations (cf. Supplementary
Figure 12). Consequently, we refrained from their analysis.

Model inputs and outputs
We trained drug-specific regression models that predict the loga-
rithmized IC50 values of cell lines from their gene expression data
using four ML algorithms (random forests, neural networks, boost-
ing trees and elastic net). Model inputs are generated using six FS
and three FE techniques that select/compute input features based
on normalized gene expression values. Some of the FS methods
additionally consider the IC50 values to determine the most infor-
mative features. To investigate how the number of input features
k affects the model performance, we generated input feature sets
for each k ∈ {1, 2, 3, ..., 25, 50, 100, 200, 300, 400, 500}.

In the following text, we will refer to one setting as one combina-
tion of ML algorithm, DR technique and number of inputs k used
to train a certain model. Details on the investigated ML algorithms
and DR techniques are presented below.

Model training and testing
For each drug, we divided the available cell lines into a train-
ing set (80% of cell lines) and a test set (20%). On the training
set, we performed a 5-fold CV to determine the best-performing
hyperparameters of the ML model (see Table 1) using the mean
squared error (MSE) as error measure. For each hyperparameter
combination, one final model is trained on the complete training
data and its performance is evaluated on the test set.

This procedure is performed for each setting (i.e. combination
of ML algorithm, DR method and number of inputs) separately. As
the training and test data (as well as the data in each CV fold)
are identical across all settings for one drug, the performance of
different settings can be compared directly.

Note that input features are selected/computed using only
samples in the training set (both for the CV and the training of the
final model), such that the test data do not influence the choice
of features.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
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Table 1. Overview of all ML algorithms investigated for the training of models, including the used R/Python packages and tuned
hyperparameters. The last column denotes the number of testes hyperparameter combinations. Unless stated otherwise, we employed
the default parameters of each algorithm in their respective package. Further information on the architecture and hyperparameters of
the trained neural networks can be found in Table 3 of the Supplement

Model Package Parameter Value(s) #Combinations

Elastic net glmnet, v. 4.1.3 (R) [49] alpha [0, 1] in steps of 0.1 11 · 20 = 220
lambda 10v, v: 20 equally spaced values ∈ [−2, 2]

Random forest ranger, v. 0.13.1 (R) [50] mtry [1, 25] in steps of 2 and up to 22
[40, 200] in steps of 20

Boosting trees gbm, v. 2.1.8 (R) [51] n.trees 1-20 20 · 5 = 100
interaction.depth 1-5

Neural network Tensorflow, v. 1.13.1 # Hidden layers 1, 2, 3 3 · 2 · 2 = 12
Keras API, v. 2.3.1 Activation function tanh, ELU (none in output layer)
(Python) [52, 53] Dropout 10%, 30%

ML algorithms
In the following text, we briefly summarize the four ML algo-
rithms that we compare in this publication. An overview of the
used R/Python packages and hyperparameters for each model can
be found in Table 1.

The predictor matrix for each model is defined as X ∈ R
n×k

where each entry xij corresponds to the value of input feature
j ∈ {1, ..., k} for cell line i ∈ {1, ..., n}. Furthermore, y ∈ R

n

denotes the response vector, where each entry yi corresponds to
the logarithmized IC50 value of cell line i.

Elastic net
Elastic net is a regression algorithm that estimates the response
yi ∈ R of a sample i as a linear combination of its input features
xi = (xi1, . . . , xik) ∈ R

k [54], i.e. the predicted response f̂ (xi) is given
as

f̂ (xi) = β0 +
k∑

j=1

βj · xij (1)

The vector β = (β1, ..., βk) ∈ R
k contains weights for each feature

and is determined such that the squared error between the actual
response yi and the predicted response f̂ (xi) is minimized over all
n training samples:

min
β0,β

n∑
i=1

(yi − f̂ (xi))
2 + λ ·

k∑
j=1

(
α · |βj| + (1 − α) · β2

j

)
(2)

The optimization includes two regularization penalties based on
the L1 and L2 norms that shrink feature weights toward zero. The
L1 norm allows weights to become exactly zero, such that the
respective features are excluded from the model. The parameter
λ controls how much the regularization impacts the optimization,
while α regulates the impact of each norm.

Random forests
Random forests are a regression/classification algorithm based on
decision trees [55]. They combine predictions of many trees into
one prediction through averaging/majority vote. To ensure that
the trees differ, they are decorrelated by (1) building each tree on a
subset of training samples drawn randomly with replacement and
(2) only considering a random subset of features for each decision
split in a tree.

Boosting trees
Similar to random forests, boosting tree models consist of
multiple decision trees. However, they combine predictions of

individual trees in an iterative rather than a parallel fashion
[56]: in model training, an initial prediction is made as the mean
response of all training samples. Next, trees are iteratively added
to correct the error of this prediction. Each new tree is trained to
estimate the residuals of the prediction obtained by adding up
predictions of all previously built trees.

Neural networks
Neural networks are prediction models loosely modeled after sig-
nal transmission mechanisms in human brains [57]. They consist
of multiple layers of nodes (artificial neurons) connected through
weighted directed edges. Each node receives information through
incoming edges, then processes the information, which typically
involves applying a non-linear activation function, and passes the
resulting value via outgoing edges. There exists a plethora of neu-
ral network architectures. Here, we only consider fully connected,
feed-forward networks, where each node is connected to all nodes
of the consecutive layer.

Dimensionality reduction techniques
The GDSC offers expression values for more than 17 000 genes
and around 1000 cell lines. This means that the number of fea-
tures that characterize each sample is considerably larger than
the number of samples itself. When performing ML on such a
dataset, performing a DR to counteract the curse of dimensionality is
usually indispensable. Additionally, reducing the input dimension
can notably shorten the runtime and computational resources
needed for training while increasing model interpretability. In the
following text, we introduce the six FS and three FE approaches
we investigated in this publication.

FS techniques
FS methods aim at choosing a subset of informative features from
a given feature set.

Randomized Feature Selection
We generated randomized feature sets by randomly sampling
gene sets of size k from all genes with expression values provided
in the GDSC. To get a more stable estimate of the prediction errors
for random features, we generated 10 random feature sets for
each k and averaged the error measures of the 10 corresponding
models.

Literature-based Feature Selection
For the literature-based FS, we retrieved a list of cancer driver
genes from the IntOGen website (Release 1 February 2020) [58]. We
only considered genes for which expression values are provided
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in the GDSC. Additionally, genes with warnings in the IntOGen
database (e.g. genes that are known artifacts) were removed. Next,
we sorted the remaining 476 genes according to their smallest
IntOGen tier from tier 1 (i.e. genes with the strongest evidence of
being cancer drivers) to tier 3. Within each tier, genes were sorted
descendingly according to the number of cohorts for which they
have been reported as a cancer driver. From the beginning of this
sorted gene list, the first k genes were chosen.

Variance-based Feature Selection
For this FS, we chose the k genes, for which the variance of
expression values was the largest.

Correlation-based Feature Selection
For this FS, we chose the k genes with the highest absolute Pearson
correlation coefficient between the expression values of each
gene and the IC50 values of the corresponding cell lines.

Enrichment-based Feature Selection
We developed this FS to identify genes whose up-/downregulation
is linked to sensitivity/resistance to a given drug. First, z-scores
are calculated for each gene separately, where the mean and
standard deviation of expression values were derived from the
training data. We then consider a gene upregulated (downregu-
lated) in a cell line if its z-score is larger (smaller) than 1.65, which
corresponds to the 95% (5%) percentile of a standard normal
distribution.

Our approach uses gene set enrichment analysis (GSEA) [59],
as implemented in the GeneTrail webserver [60]. GSEA tests for
the accumulation of a certain feature (e.g. up-/downregulation of
a gene) at either end of an ordered list of samples (e.g. cell lines):
First, cell lines are sorted by increasing IC50 for the drug of interest
to obtain a ranked list. Second, a Kolmogorov–Smirnov test [61,
62] is conducted twice per gene to determine whether cell lines
in which the gene is (1) up- or (2) downregulated are enriched
the top/bottom of the list, respectively. Each test yields a P-value
and a direction denoting whether the enrichment occurred at
the top or bottom of the list. We adjusted the P-values using the
Benjamini–Hochberg procedure [63] separately for all up- and all
downregulated genes. This procedure results in four lists of genes:
genes that are up-/downregulated among the most sensitive/re-
sistant cell lines, respectively. To obtain the k most important
features, we proceeded as follows: for each list, we order genes
from smallest to largest P-value and assign a rank to each gene,
starting at 1. If a gene occurs in multiple lists, we keep it only in
the list with the smallest rank. Next, we merge all lists by sorting
genes according to their rank, and P-values are used to break ties.
From the beginning of this merged list, we then select the first
k features.

MRMR Feature Selection
This FS is based on the minimum-redundancy-maximum-relevance
(MRMR) principle, which aims to select features with a strong
dependence on the response variable (i.e. large relevancy) but
weak dependence on each other (i.e. small redundancy). Our
implementation is based on a greedy heuristic by Kwak and Choi
[46] that iteratively selects features, starting with the most infor-
mative ones. As dependence-measure, the mutual information I is
employed. Let F denote the set of all potential input features (i.e.
genes) and C the response variable (i.e. ln(IC50) values for a given
drug). Here, both expression and ln(IC50) values were discretized
using an equal-width binning with six bins.

Let S be the list of selected features, which is initially empty.
In each iteration, the feature fi ∈ F that maximizes the following

term is added to S and removed from F:

max
fi∈F

I(C; fi) −
∑
fj∈S

I(C; fj)

H(fj)
· I(fi; fj) (3)

Here, H denotes the entropy and I denotes the mutual informa-
tion. This procedure is repeated until |S| = k. The result is a list of k
features ordered by importance. To keep the runtime manageable,
we limited F to the 1000 genes with the largest mutual information
to the IC50s.

As the presented approach is a greedy heuristic, the selected
features are not guaranteed to provide an optimal solution to the
MRMR problem for a given k. Hence, we additionally implemented
an MRMR-based FS as a quadratic optimization program (QP).
However, the high runtime of this approach only allowed us to
compute feature sets for k ≤ 5 in a reasonable time (< 500
s for a single k on a single training dataset). Additionally, we
found no improvement in test MSE when employing the features
selected by the QP instead of the heuristic to train ML models (see
Supplement). Consequently, the QP is not discussed further.

FE techniques
FE techniques transform a high-dimensional dataset into a
lower dimensional representation by generating new features as
(non-)linear combinations of the original features. Thereby,
information from potentially all features can be condensed into a
significantly lower dimension without discarding any features.
However, this generally comes with a loss of interpretability
regarding the generated features.

Principal Component Analysis
We performed a PCA (R package stats, v. 3.6.3) using the expression
values of all cell lines in the respective training set to extract
a lower dimensional representation of cell lines using the first
k principal components. We used the feature coefficients calcu-
lated on the training data to project the test set cell lines into the
same k-dimensional space.

PASL
PASL (Pathway Activity Score Learning) by Karagiannaki et al. [40]
is a DR approach that aims to produce (biologically) interpretable
features. Given a feature matrix (i.e. gene expression data) and
predefined feature sets (i.e. genes belonging to a certain pathway),
PASL projects the data into a latent space, where each newly
constructed feature is a linear combination of features from one
of the predefined feature sets. The computed features can be
interpreted as pathway activity scores for each sample. Just like
PCA, PASL computes features in an ordered manner, such that the
features explaining most of the variance in the data are computed
first. We applied PASL with default parameters to the training data
to generate k pathway features. As feature sets, we considered the
same data as Karagiannaki et al., namely pathways from KEGG
[64], Reactome [65] and BioCarta [66]. Analogously to PCA, we
applied the linear combinations computed by PASL to the test cell
lines to obtain their representation in the new feature space.

Autoencoder
An autoencoder is a type of neural network that encodes data
into a lower dimension. It consists of an encoding part, which
generates a lower dimensional representation of the input, and
a decoding part, trained to reconstruct the original inputs from
the encoded representation. After training the entire network,
only the encoder is used to generate the lower dimensional
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Figure 1. Average test MSEs. This figure depicts the test MSEs averaged over all drugs for each ML algorithm (A) and DR method (B). The x-axis denotes
the number of input features, the y-axis denotes the mean test MSE, and the coloring represents the different ML algorithms or DR techniques. Boosting
trees, elastic nets and random forests were trained for all 179 drugs in the GDSC2 dataset for which IC50s for more than 600 cell lines were available
were. For neural networks, models were only trained on the 50 drugs with most available cell lines due to their large runtime (cf. Supplementary Table 2
and Fig. 5). Additionally, no models could be trained for the following settings: for elastic net, no models for k = 1 exist since the used R package glmnet
only allows feature sets with k ≥ 2. For the IntOGen features, results for k = 500 do not exist since our filtered IntOGen list (cf. Methods) consists of
476 features only. For the PCA features, results for k = 500 do not exist since most CV training sets contain less than 500 samples, and the number of
principal components computed by the stats R package is limited by the number of input samples.

(here: k-dimensional) representation of the inputs for training
and test data. As one autoencoder has to be trained for each
drug, training dataset and k separately, the high runtime (on
average 4.5 min for a single model) did not permit us to perform
any hyperparameter tuning. Note that tuning would require an
additional CV nested inside the main CV described in the Methods
section. The used hyperparameters and network architecture can
be found in Supplementary Table 4.

Results
We trained drug-specific models that predict logarithmized IC50
values for 179 drugs of the GDSC2 dataset using the four ML
algorithms and nine DR techniques presented above. To investi-
gate how the number of input features k impacts performance, we
trained models for each k ∈ {1, 2, 3, ..., 25, 50, 100, 200, 300, 400, 500}.
The hyperparameters of each algorithm (cf. Table 1) were tuned
using a 5-fold CV on the training data.

Note that we only trained neural networks on the 50 drugs with
the most available cell lines due to their high runtime (cf. Fig. 5
and Supplementary Table 2). Additionally, for a small number of
settings, no models could be trained (see Fig. 1).

In the following text, we first analyze the statistical perfor-
mance of the investigated ML algorithms and DR techniques.
Then, we assess the trade-offs between models of different com-
plexity. Next, we show how the prediction of sensitive cell lines
can be improved using different error measures for hyperparam-
eter tuning. We then compare the four ML algorithms regarding
their runtime and interpretability and exemplarily investigate
features derived from the MRMR FS and their importance in elas-
tic nets. Lastly, we show that complex prediction models equally
benefit from DR by investigation of a deep learning method by
Chiu et al. [3].

Average test MSE
We first analyzed which ML method(s) and DR approach(es)
yield the smallest test error across all investigated drugs. Fig. 1A
compares the test MSE of all ML models averaged across drugs
and DR approaches, while Fig. 1B depicts the test MSE of all DR
approaches averaged across drugs and ML models. Overall, errors
decrease as k increases. The decrease is most drastic from k = 1
to k = 10 and again when k ≥ 50, especially for elastic net. For
k > 8, elastic net and random forest yield the smallest MSE, while

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
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neural networks consistently perform the worst. A comparison
of all algorithms using only the 50 drugs we used to train the
neural networks is provided in the Supplement and shows the
same trends.

Figure 1B shows that the MRMR and correlation-based FSs,
followed by PCA, yield the smallest test MSE. Interestingly, for
k > 200, the average error of PCA-based models increases. More
detailed figures that show results for each combination of ML
algorithm and DR method separately are provided in the Sup-
plement. There, it can be seen that using PCA with k > 200
only increases errors for boosting trees and random forests but
outperforms all other DR methods for elastic net and neural
networks.

Best-performing settings
In this section, we analyze which combinations of ML algorithm
and DR technique resulted in the smallest test MSE for each
drug and how often a certain combination performed best.
Figure 2 summarizes how often each combination resulted in
the best model for each drug. Sub-figures A to C depict the best-
performing combinations for each k and Sub-figures D to F show
the same statistics for the best-performing k only.

Figure 2A shows that random forest and elastic net are the
most prevalent ML models, with elastic net being more domi-
nant for large feature numbers. Larger feature sets likely contain
more redundant or uninformative features, which might be easily
ignored by elastic net but not by tree-based models since a ran-
dom subset of features is selected in each node.

Regarding the DR techniques (cf. Fig. 2B), PCA and MRMR are
the most successful, followed by the correlation-based FS. For
large k, PCA is the most dominant approach. Figure 2C shows how
often each combination of ML and DR was the best-performing.
In agreement with the previous results, elastic net and PCA are by
far the most successful combination.

Sub-figures 2D to F show the same results as A to C but limited
to only the k that resulted in the best performance for each drug.
For almost all drugs, large feature numbers ≥ 100 yielded the
best results. The combination of elastic net and PCA was the
best-performing for 76 of the 179 investigated drugs. However,
almost all DR techniques other than the random FS had the best
performance for at least some drugs.

As discussed previously, FE-based features are inherently diffi-
cult to interpret. Therefore, we performed the same analysis using
FS algorithms only. The results are presented in Supplementary
Figure 7 and show that among all FS approaches, MRMR is chosen
most often, followed by the correlation- and enrichment-based
approaches. Note that all of these methods utilize not only the
expression values but also the IC50 values to derive informative
features.

Baseline
The comparison of test MSEs in the previous sections allowed
us to identify the best-performing settings and hyperparameters.
However, we do not know whether a model is a good predictor
without a proper baseline error.

A straightforward approach to obtain a baseline is to use a
dummy model that always predicts the mean response (here: mean
ln(IC50)) of training samples. Figure 3A depicts the ratio between
the test MSE of the best-performing model for each drug and
k and the baseline MSE for the corresponding drug. All models
are an improvement over the baseline. For 80% of models, the
improvement is at least 20% ( MSE

Baseline ≤ 0.8), and for 18% of models,
the improvement is at least 40% ( MSE

Baseline ≤ 0.6).

In the same manner, models with different input sizes can be
compared: For most drugs, the best-performing feature number
was around k = 300 (cf. Fig. 2D) and smaller k resulted in larger
errors (cf. Fig. 1). In Fig. 3B, we compare the test MSE of the best-
performing model for each drug using k = 300 features to models
with smaller k. For most models (63%), the increase in MSE when
using k < 300 features is rather small (< 10%). For k = 100,
only 3% of models show an error increase of > 10%. For k = 15,
this number rises to 27%, but the model complexity is reduced
drastically.

Figure 2 shows that PCA was the best-performing DR method.
However, features obtained through FE approaches like PCA are
not easily interpretable. In contrast, the correlation-based FS
is easy to interpret and implement. In Fig. 3C, we compare the
performance of the best-performing models using PCA- and
correlation-based features, respectively. For 37% of models, the
correlation-based features even performed better than the PCA-
based features. For 52% of models, the increase in MSE from using
correlation-based features is < 10% and for only 0.4% of models,
the increase is > 20%.

In Fig. 3D, we compare the correlation-based FS to the
literature-based FS using the IntOGen cancer gene list. The
correlation-based features outperform the literature-based
ones for 93% of models. Among the 7% of models, where the
IntOGen features performed better, improvements were mostly
small (< 10% in 94% of models). In summary, these results
indicate that using the literature-based over correlation-based
FS is not recommended. However, the slight improvements
of PCA over correlation might warrant the loss of feature
interpretability.

Improving predictions for sensitive cell lines
A major goal of drug sensitivity prediction is to identify drugs
that are effective for a given sample. However, there is a signifi-
cant under-representation of sensitive samples (i.e. cell lines with
small IC50 for a given drug) in drug screening data [5, 11, 16, 21].
Consequently, ML models trained on these data often exhibit a low
prediction sensitivity (classification) and a large MSE (regression)
for sensitive cell lines [11, 16, 21]. In the following text, we show
that using an error measure for model tuning that increases
the importance of sensitive cell lines can notably improve their
predictions. This approach is similar to using sample weights
or upsampling of underrepresented samples (see [5, 11, 16, 21]).
To identify samples as sensitive or resistant, we binarized IC50s
for each cell line using drug-specific thresholds as described
in [5].

Figure 4 depicts the distribution of test MSEs of the best-
performing model for each drug selected through CV error. The
orange and purple box plots represent the resistant and sensitive
cell lines, respectively. The left side of Fig. 4 shows the results
when hyperparameters and settings are selected based on CV
MSE. For almost all drugs, the test MSE for sensitive cell lines is
considerably larger than for resistant ones. For the results shown
on the right side of Fig. 4, we did not use the conventional MSE to
select the best hyperparameters/setting but instead calculated
the MSE of sensitive and resistant cell lines separately and
averaged both values. Using this tuning measure, the MSE for
sensitive cell lines decreased considerably but remains larger
than the MSE for resistant ones.

While this approach increases the error of the resistant cell
lines, this trade-off might be warranted since predictions for
the samples of interest are improved. However, more advanced
ML algorithms explicitly focusing on sensitive cell lines, like our

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
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Figure 2. Best-performing models for each drug and number of input features. Sub-figure A and B, respectively, show how often each ML algorithm and
DR method yielded the smallest test MSE for each k. Sub-figure C shows how often a given combination of ML algorithm and DR method yielded the
best results summarized over all k. Sub-figures D–F depict the same results, but only the feature number k yielding the smallest test MSE for each drug
is shown.

previously published method SAURON-RF [16] or RWEN by Basu
et al. [21], can achieve even larger improvements.

Runtime
Boosting trees, random forests and elastic nets were trained
using 24 cores on an Intel Xeon Gold 6248 (2.50GHz) CPU. Neural
networks were initially trained using a Nvidia Tesla V100-SXM2
GPU since GPUs are known to effectively parallelize computations
needed in network training. However, for comparatively small
networks, the overhead of transferring calculations to the GPU
can outweigh the computational speedup, which we also observed

in our experiments (see Supplementary Figure 8). Hence, we
switched from GPU to CPU (Intel Xeon E5-2698 v4, 2.20GHz,
24 cores).

Figure 5A depicts the duration of training a single model using
each ML algorithm averaged over all trained models. The runtime
of neural networks is considerably larger than that of the other
algorithms, with elastic net being the fastest. Figure 5B depicts the
combined runtime of performing the complete CV and training of
final models on all hyperparameter combinations for a given set-
ting. Although we tested the most hyperparameter combinations
for elastic nets (cf. Table 1), they remain the fastest approach for
k > 10.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
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Figure 3. Performance comparison of different models and (numbers of) features. Each sub-figure depicts a comparison of test MSEs for different
scenarios, where the MSE for one scenario is divided by the MSE of the other: Sub-figure A compares the test MSE of the best-performing models for
each drug and k to the MSE of drug-specific baseline models that always predict the mean ln(IC50) of the training samples. Sub-figure B compares the
test MSE of the best-performing models with k < 300 features to those with k = 300 features. Sub-figures C and D compare the best-performing models
using correlation-based features and features derived from PCA or the IntOGen gene list, respectively.

Figure 4. Effect of different hyperparameter tuning measures. This fig-
ure compares the test MSEs for sensitive and resistant cell lines when
using the conventional MSE for hyperparameter tuning versus the mean
between the MSE of all sensitive and all resistant cell lines. To identify a
cell line as sensitive/resistant, we compare its ln(IC50) to a drug-specific
threshold derived through a procedure described by Knijnenburg et al. [5].

Model and feature interpretability
Drug sensitivity prediction aims to provide accurate models
but also to identify markers of treatment sensitivity/resistance.
However, not all models are equally interpretable. As discussed
above, inputs obtained through FS are more interpretable than
those obtained through FE. Additionally, ML algorithms exhibit
great differences regarding their inherent interpretability. In
Table 2, we assess the interpretability of the four investigated
ML algorithms based on model transparency and explainability as
described by Lipton [47] and Imrie et al. [48]. In an attempt to
make models more interpretable, biological knowledge is often
explicitly encoded into prediction models, e.g. using pathway-
layers in neural networks [4, 35, 67], exploiting known protein
interactions [22] or encoding information on known markers
of drug response [11]. Li et al. found, however, that the explicit
incorporation of biological knowledge may decrease model

performance and lead to false conclusions [35]. Hence, the
assumptions that are introduced by adding biological knowledge
to a model should be carefully investigated.

However, training an ML model is not always necessary to
identify features that impact drug response: Three of the inves-
tigated FS approaches (Correlation, Enrichment, MRMR) not only
consider the expression data but also the drug response values.
Consequently, the chosen features already provide information
on potential markers of sensitivity/resistance. Since we found
that MRMR is the best-performing FS method, we investigated the
selected features more closely: Figure 6A depicts how often each
gene was chosen by the MRMR FS for k = 25 across all drugs and
its average rank in the drug-specific MRMR lists. Features that are
chosen often, such as BCL2L1 and SLC27A5, might be interesting
biomarkers across drugs. Indeed, BCL2L1 expression was shown
to prevent apoptosis, thereby conferring multi-drug resistance to
cancer cell lines [68]. Increased apoptosis and drug sensitivity
were observed when BCL2L1 was silenced or inhibited [69–71].
Gao et al. [72] found that SLC27A5 deficiency was related to poor
prognosis, proliferation and drug resistance in hepatocellular car-
cinoma. Knockout of SLC27A5 activates the KEAP1/NRF2 pathway
[72], which is linked to chemoresistance in non-small cell lung
cancer patients [73] and different types of cancer cell lines [74]. In
contrast, features rarely chosen by MRMR but with a small rank
are likely important for specific drugs only and can be assessed
to study drug-specific mechanisms of treatment response.

We next investigated whether the features that are selected
often by MRMR are also the ones with the highest impact in elastic
net models trained with those features. We chose elastic nets for
this analysis due to the straightforward interpretation of their
coefficients (cf. β in Equation 1). Figure 6B depicts how often the
selected MRMR features had a nonzero contribution in the trained
elastic nets and their mean rank based on the absolute size of
assigned coefficients. Again, BCL2L1 and SLC27A5 were impactful
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Figure 5. Runtime comparison of ML algorithms. Sub-figure A depicts the mean training duration for a single model (i.e. one hyperparameter
combination) for increasing feature numbers. Sub-figure B depicts the duration of performing the 5-fold CV plus fitting of models on the whole training
data accumulated over all hyperparameter combinations.

Table 2. Interpretability of ML models. We assess the abstract concept of interpretability using the terms transparency and explainability,
as introduced by Lipton [47] and Imrie et al. [48], respectively. Transparency describes the inherent complexity of an ML model, including
the model size in terms of its parameters and the human intelligibility of its computations. Explainability focuses on deriving
explanations for why certain predictions are obtained for certain inputs. This includes feature importance, the identification of
training samples that are similar to a given input, the effect of altering certain inputs and the examination of how certain (human)
concepts are interpreted by the model. Notably, inherently non-transparent models (e.g. deep neural networks) can still provide good
explainability. However, extracting knowledge from the model might require applying additional tools, which can be challenging,
especially for non-ML experts. Here, we only list the explainability methods that are readily available in the used R/Python packages
(cf. Table 1). Imrie et al. provide a good overview of further tools for different applications and ML algorithms [48]

Model Transparency Explainability

Elastic net + easily interpretable feature coefficients • feature importance: absolute value of coefficients;
sign of coefficient denotes impact direction

Random forest + easily interpretable decision splits
– typically large number of trees

• feature importance: error improvement obtained from
splits using certain feature;
error increase when feature is randomly perturbed

• samples similar to given input: training samples reaching
same leaf nodes

Boosting trees + easily interpretable decision splits
– typically large number of trees
– trees affect predictions to varying degree

• feature importance: error improvement obtained from
splits using certain feature;
error increase when feature is randomly perturbed

Neural network – typically thousands of model parameters
– complex, multi-layered computations to

offset inputs against each other

Figure 6. Feature importance of MRMR features. Sub-figure A shows the importance of features selected by the MRMR FS with k = 25 for all drugs. The
x-axis denotes the mean rank of each gene in the feature lists of all drugs, and the y-axis denotes the number of drug-lists in which the gene occurs.
Sub-figure B shows the importance of the MRMR features in the best-performing elastic net models trained on these features. The x-axis denotes the
mean rank of each gene according to the absolute size of feature coefficients derived from the trained models, and the y-axis denotes the number of
models in which the feature had a non-zero coefficient. The color denotes whether the genes have a negative/positive coefficient (cf. βj in Equation 1)
in the trained models, indicating their tendency to de-/increase predicted IC50s.

features for a large number of drugs (55 and 46 drugs each). The
sign of the coefficients indicates whether increasing the expres-
sion of a gene positively or negatively affects the predicted IC50s.
For 98% of genes, their contribution was either always positive or
always negative for at least 99% of drugs, indicating that features
generally have a consistent impact on drug response.

Impact of DR on a multi-omics multi-drug deep
learning model
Our benchmarking mainly focuses on predicting drug response
based on gene expression features using standard ML algorithms.
However, state-of-the-art prediction models exhibit increasingly
complex architectures and are often based on multi-omics
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characterizations of cell lines, sometimes including also molec-
ular characterizations of drugs [75]. Hence, we investigated the
effect of different DR methods on a multi-omics multi-drug deep
learning model by Chiu et al. [3] and compared its performance
with that of elastic nets and random forests. Their approach uses
gene expression and mutation data as input, which are projected
into a lower dimension (k = 64, each) using autoencoders. The
encoders are connected to a deep neural network, with drug-
specific output nodes predicting each drug’s IC50. To conform
to our analysis setup, we slightly modified the autoencoder
pre-training. For an in-depth description of the model and our
performed analyses, please refer to the Supplement. The results
can be summarized as follows:

• The model by Chiu et al. is outperformed by both drug-
specific elastic net and random forest models using k = 64
correlation-based expression features for all 170 investigated
drugs (cf. Supplementary Figure 10A, B).

• Even when the autoencoders by Chiu et al. are trained to
generate larger feature embeddings of as many as k = 500
features for each omics type, they are outperformed by drug-
specific elastic net and random forest models using only k ≤
10 features for 95% and 90% of drugs, respectively.

• When replacing the autoencoders in Chiu et al.’s approach
with PCA or correlation-based features, the performance
is improved for 83% and 76% of models, respectively (cf.
Supplementary Figures 10C, D).

• Expression features outperformed mutation features for
almost all investigated models and feature numbers (cf.
Supplementary Figures 9 and 11).

In summary, this exemplary analysis highlights that single-
drug models with small feature numbers can outperform more
complex multi-drug and multi-omics approaches. It also proves
again that the choice of ML/DR method substantially impacts
predictions.

Conclusion
We performed a comprehensive analysis of the prediction of IC50
values using four ML algorithms in combination with six FS and
three FE techniques. Our evaluations on the GDSC2 dataset show
that elastic nets using features obtained through PCA yielded
the smallest test MSE for 76 of 179 investigated drugs. Elastic
nets also showed the lowest runtime and allow a straightforward
identification of features with a strong impact on predictions. In
contrast, neural networks including the more sophisticated deep
learning approach by Chiu et al. [3] had the worst performance.
This aligns well with findings by Li et al. [35].

Among the FS methods, the MRMR-based approach performed
best. In general, FS methods considering the drug response per-
formed better than methods using only expression values. Meth-
ods that do not consider either drug response or gene expression,
like the literature-based or random FS, performed worst. However,
on a dataset other than the GDSC, features like known cancer
genes might yield more robust predictions than features tailored
to a specific dataset.

Our analyses focused mainly on gene expression data since
it was shown to be the most informative data type for drug
sensitivity prediction [3, 39, 42]. Our analyses using mutation data
(cf. Supplementary Figure 11) agree with these findings. However,
combining different omics data types might prove beneficial,
especially when small feature sets are desired. There are also
several ML approaches that employ not only cell line features but

also drug features in the form of molecular fingerprints [7, 9, 10,
15, 19, 20, 24, 27, 29, 31, 33] (see also [75] for a thorough review).
Here, FS could provide insight into which drug properties impact
treatment response.

Our analyses primarily focused on training models for each
drug separately. However, multi-drug models such as the multi-
task network by Chiu et al. [3] enjoy popularity. Our analyses show
that single-drug models can outperform multi-drug models and
might, thus, be preferred when predicting the drug response for
an unknown sample (cell line) to a known drug. For an unknown
drug, some multi-drug models can directly be applied given that
a representation of the drug of interest, e.g. a molecular fin-
gerprint, is available. In contrast, single-drug models are not
directly applicable. Nevertheless, molecular fingerprints could be
used to identify drugs with available models that are structurally
similar to the unknown drug (cf. [13]). The corresponding single-
drug models could then be combined into an ensemble model.
Whether such an ensemble model would outperform conven-
tional multi-drug models for unknown drugs has yet to be deter-
mined. However, we would like to emphasize specific challenges
that occur when training any model that should predict responses
for multiple drugs:

• It must be ensured that predictions are not primarily driven
by drugs with the most available training data.

• The used sensitivity measure should be comparable across
drugs, which does not apply to common measures such as
IC50 or AUC (cf. Lenhof and Eckhart et al. [17], where we
suggest a novel measure with across drug comparability).
Otherwise, evaluation metrics will be artificially inflated/de-
flated.

• The training and test sets must be generated so that data
leakage is prevented, i.e. no cell line is in the training set of
one drug while being in the test set of another drug.

While we focused on monotherapy prediction, drug synergies are
increasingly studied using ML to predict the efficacy of drug com-
binations [76] since combination therapy is common in cancer
treatment. In this context, FS could identify features that enhance
or impede the interplay between compounds.

Interpretability and trust in predictions are crucial when ML
models should eventually be used for clinical decision support.
Through performance comparisons with the deep learning multi-
omics multi-drug approach by Chiu et al. [3], we showed that inter-
pretable models with small feature numbers can substantially
outperform complex prediction algorithms. Moreover, our results
indicate that complex models equally benefit from using simple
DR methods.

Overall, we believe that the methods and evaluation strategies
we discussed are helpful tools for the development and assess-
ment of both simple and advanced models for drug sensitivity
prediction, independent of the specific algorithms and features
at hand.

Key Points

• We conducted a large-scale performance comparison
and runtime benchmarking of four ML methods and
nine DR techniques applied to 179 anti-cancer drugs
from the GDSC database resulting in over 16 million
investigated models.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae242#supplementary-data
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• The choice of ML/DR methods strongly impacts predic-
tion performance for both basic and complex ML models.

• Standard models with small feature numbers can sub-
stantially outperform complex models.

• Elastic net models result in the best predictions for most
drugs while exhibiting the lowest runtime and being
easy to interpret.

• PCA performs best among the investigated DR
approaches, but correlation-based feature selection
is competitive and yields more interpretable features.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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