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ABSTRACT
Background: Novel influenza viruses pose a potential pandemic risk, and rapid detection of infections in humans is critical to 
characterizing the virus and facilitating the implementation of public health response measures.
Methods: We use a probabilistic framework to estimate the likelihood that novel influenza virus cases would be detected 
through testing in different community and healthcare settings (urgent care, emergency department, hospital, and intensive care 
unit [ICU]) while at low frequencies in the United States. Parameters were informed by data on seasonal influenza virus activity 
and existing testing practices.
Results: In a baseline scenario reflecting the presence of 100 novel virus infections with similar severity to seasonal influenza 
viruses, the median probability of detecting at least one infection per month was highest in urgent care settings (72%) and when 
community testing was conducted at random among the general population (77%). However, urgent care testing was over 15 
times more efficient (estimated as the number of cases detected per 100,000 tests) due to the larger number of tests required for 
community testing. In scenarios that assumed increased clinical severity of novel virus infection, median detection probabilities 
increased across all healthcare settings, particularly in hospitals and ICUs (up to 100%) where testing also became more efficient.
Conclusions: Our results suggest that novel influenza virus circulation is likely to be detected through existing healthcare sur-
veillance, with the most efficient testing setting impacted by the disease severity profile. These analyses can help inform future 
testing strategies to maximize the likelihood of novel influenza detection.

1   |   Introduction

Novel influenza viruses are different from the seasonal influenza 
viruses currently circulating in humans (A/H3N2, A/H1N1, 
and B/Victoria). Human infections with novel influenza viruses 
are generally rare and isolated events that occur through expo-
sure to infected animals (such as livestock) during recreational 

or occupational activities. At the time of writing (May 10, 2024), 
widespread avian influenza A(H5N1) virus outbreaks occur-
ring among wild and commercial birds since January 2022 have 
been associated with just two detected human cases of H5N1 in 
the United States: one individual who was exposed to infected 
poultry and one who was exposed to infected dairy cattle [1, 2]. 
The H5N1 viruses associated with these outbreaks do not eas-
ily bind to receptors in the human upper respiratory tract, and 
the risk to the general public is currently low [1]. However, a 
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novel influenza virus that transmits efficiently between humans 
could pose a pandemic risk. Rapid detection of human infection 
with a novel influenza virus is critical to characterizing the 
virus causing the infection and facilitating a rapid public health 
response [3].

Testing is particularly important to distinguish novel influenza 
virus infection from seasonal influenza or other respiratory 
virus infections with similar symptom profiles  [4]. Although 
active monitoring and testing of individuals with exposure to 
infected animals can identify new spillover infections [2], such 
measures are not designed to detect cases in the wider commu-
nity following sustained human-to-human transmission. Public 
health surveillance systems must be equipped to detect novel in-
fluenza cases through testing in the community or in healthcare 
settings where infected individuals might seek care.

We use a probabilistic framework to estimate the likelihood of 
detection of novel influenza virus cases once sustained human-
to-human transmission is occurring at low frequencies within 
the United States (i.e., 1000 total cases or less). We consider 
testing of individuals presenting to different healthcare set-
tings with no known previous exposure to infected animals or 
humans and use information on testing for seasonal influenza 
viruses to develop assumptions about plausible testing proba-
bilities. Our findings can help inform testing strategies to im-
prove detection of novel influenza virus cases occurring at low 
frequencies.

2   |   Methods

2.1   |   Model

We adapted an existing framework to estimate detection proba-
bilities for a novel influenza virus in the United States [5]. For a 
given case of novel influenza virus infection, the probability of 
detection in a particular healthcare setting can be expressed as

where P(test |case) is the probability that someone is tested in 
that setting given that they are a case; pd is the probability that 
testing occurs while virus is still detectable; tsn is the test sen-
sitivity; and pf  is the probability a positive test is forwarded to 
a public health laboratory for further testing. Most commercial 
assays currently used for human influenza virus testing cannot 
distinguish novel influenza A viruses from seasonal influenza 
A viruses. Thus, further testing at a public health laboratory is 
required for a positive specimen to be identified as a novel virus 
(until tests specific for that virus become more widely available). 
We initially assumed 50% of positive specimens are forwarded 
(i.e., pf  = 50%). This was informed by the average percentage of 
influenza A hospitalizations that were subtyped between 2010 
and 2019 [6]. However, we considered a range of forwarding lev-
els (25%, 50%, 75%, and 100%) in sensitivity analyses. All speci-
mens forwarded for further testing were assumed to be correctly 
identified as a novel influenza virus.

The per case probability of being tested is the combined prob-
ability that a case will develop symptoms (psymp), seek care for 

those symptoms in a particular healthcare setting (pseek), and be 
tested in that setting (ptest), that is,

For a certain incidence of novel cases each month, I, in a popu-
lation of size N (where I is the fraction of the population infected 
with the novel influenza virus), we estimate the probability of 
detecting at least one novel case as 1 − the probability of detect-
ing no cases among the entire population, or

(see the supporting information for further details). The ex-
pected number of clinical tests used per month, E(T), is the 
combined number of tests conducted among cases and non-
cases. Noncases represent individuals presenting at healthcare 
settings with respiratory illness symptoms that are not due to 
novel influenza virus infection. The expected number of tests 
can be expressed as

where P(test |not case) is the probability that someone without 
novel influenza virus infection is tested. The latter quantity is 
estimated as the background rate of presentation with respi-
ratory illness symptoms to a given healthcare setting among 
the general population (bseek) multiplied by the probability 
of being tested in that setting (ptest). To compare testing effi-
ciency in different settings, we estimated the expected num-
ber of detected cases per 100,000 clinical tests conducted as (
I × N × pdetect ∕E(T)

)
× 100,000.

Finally, we considered random testing in the general commu-
nity as a supplemental strategy that could be deployed in addi-
tion to healthcare testing. Given that community testing does 
not depend on symptom presentation or care-seeking behav-
ior, P(test |case) was simply the frequency of community tests 
conducted per month, and the expected number of tests was 
N × P(test |case). Similarly, pd was the approximate time (in 
months) that virus would remain detectable and was parameter-
ized to capture individual variation in virus shedding dynamics. 
Since community testing would be initiated to seek out novel 
influenza virus infection, we did not adjust for specimen for-
warding (i.e., we assumed all specimens would be tested to dis-
tinguish novel influenza virus from seasonal influenza viruses).

For each healthcare and community setting, we drew 10,000 
parameter combinations from data-informed distributions 
(outlined below) and calculated the quantities described above. 
All analyses and visualizations were generated in R version 
4.0.3 using the data.table, truncnorm, here, scales, 
patchwork, colorspace, and tidyverse packages [7–14].

2.2   |   Healthcare Settings and Model 
Parameterization

We considered three distinct healthcare settings to reflect 
different care-seeking behaviors and testing practices: (i) out-
patient urgent care and emergency departments (UC/ED); (ii) 

pdetect = P(test |case) × pd × tsn × pf ,

P(test |case) = psymp × pseek × ptest

1 −
(
1− I×pdetect

)N

E(T) = I × N × P(test |case) + (1 − I) × N × P(test |not case),
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inpatient hospital settings; and (iii) intensive care units (ICU). 
Each setting was assumed independent such that a person pre-
senting to both (for example, a hospital admission followed by a 
subsequent ICU admission) could be tested in both, according 
to the corresponding testing probabilities. Data were collated 
from various existing influenza surveillance platforms to in-
form parameters for each setting (Table 1). We defined N = 330 
million to approximate the US population [25] and considered 
incidence values that corresponded to 100 and 1000 total novel 
influenza cases.

Our baseline scenario reflected a novel influenza virus with 
similar severity to seasonal influenza. However, we also consid-
ered increased severity scenarios that ranged from severity that 
was similar to COVID-19, to the severity of recent H5N1 virus 
infections in humans (Table 2). For these scenarios, we assumed 
similar or increased probabilities of developing symptoms and 

seeking care in each healthcare setting, while ensuring that 
the combined percentages did not exceed 100%. We initially 
assumed testing probabilities were fixed (Table 1) but explored 
alternative scenarios with increased testing (ptest mean = 90%) to 
compare the effect of enhanced surveillance across healthcare 
settings.

We also considered scenarios in which testing practices changed 
according to seasonal influenza activity. For example, clinicians 
may be less likely to test for influenza viruses during summer 
months when background respiratory virus activity is low. To 
explore this, we first defined distinct probability distributions 
for the background rates of presentation to each healthcare 
setting, bseek, during peak (November–February) and off-peak 
(May–August) time periods (Table  3). We then simulated the 
model for each time period and healthcare setting, assuming the 
care-seeking behavior of novel influenza cases did not change 

TABLE 1    |    Baseline care-seeking and testing parameters.

Parameter Assumed distribution
Source and available 

timeframe (if applicable)
Proportion of novel cases developing 

symptoms, psymp
Uniform with range:

40–80%
[15]

Care-seeking and presentation of novel 
symptomatic cases at specific sites, pseek:

Uniform with range:

UC/ED 10%–20% of symptomatic cases FNY, ONM: 2018–2023
Hospital 1%–2% of symptomatic cases CDC burden estimates: 

2010–2021 [16]
ICU 15%–20% of hospitalizations VISION: 2020–2021; 

FluSurv-Net: 2022–2023
Testing of individuals with ARI, ptest: Truncated normal with mean/SD/range: VISION: December 

2021–May 2022
UC/ED 50%/10%/10%–90%
Hospital 53%/10%/20%–95%
ICU 46%/10%/1%–95%

Community testing as a proportion of the 
general population, regardless of symptoms

3%–6% of general population per month Assumption following [17]

Tests that occur while virus is detectable, pd Uniform with range:
Healthcare settings 50%–85% Proportion seeking care ≤ 7 days 

after symptom onset [18]
Community settings 25%–50% Proportion of month that 

virus is detectable [19]
Test sensitivity, tsn Uniform with range 80%–100% [20]
Proportion of positive specimens that are 

forwarded to a public health laboratory, pf
50% Assumption following [6]

Background occurrence in the general 
population, bseek, of:

Uniform with range:

ILIa 0.6%–6% FNY, ONM: 2019, 2022
Hospital ARI admissions 0.03%–0.1% MarketScan: 2015–2021
ICU ARI admissions 0.02%–0.03% MarketScan: 2015–2021

Note: Surveillance platforms are Flu Near You (FNY), Outbreaks Near Me (ONM), VISION Vaccine Effectiveness Network, FluSurv-Net, and IBM MarketScan 
Commercial Claims and Encounters Database (MarketScan) [21–24]. Further details of each platform are provided in the supporting information.
Abbreviations: ARI = acute respiratory illness, ED = emergency department, ICU = intensive care unit, ILI = influenza-like-illness, SD = standard deviation, 
UC = urgent care.
aBackground ILI occurrence is multiplied by care-seeking probabilities in urgent care or emergency departments (pseek) to estimate the rate of presentation to urgent 
care or emergency departments with influenza symptoms in the general population. We omitted data from 2020 and 2021 due to atypically low levels of respiratory 
virus circulation.
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but that testing in off-peak periods was either equal to, or 50% 
of, testing in peak periods.

3   |   Results

We first simulated the model with baseline severity assump-
tions and no distinction between peak and off-peak time 
periods. At the lowest incidence (100 novel cases in the pop-
ulation), the median probability of detecting at least one 
case was highest in community and UC/ED settings, at 77% 
(95th percentile: 56%–91%) and 72% (44%–92%), respectively 
(Figure 1C; Baseline scenario). In comparison, median detec-
tion probabilities in hospital and ICU settings were less than 
15%. The probability of detection increased across all settings 
when there were 1000 assumed novel cases in the population, 
to 100% (100%–100%) in UC/EDs and the community, 74% 
(47%–94%) in hospitals, and 19% (9%–35%) in ICUs. Testing 
in UC/ED settings was always most efficient and detected 
more cases per 100,000 tests than other settings (Figure 1E). 
Notably, community testing was least efficient due to the 
greater number of tests required (more than 10 million per 
month; Figure 1D), and no setting detected more than 3% of 
all novel cases under our assumptions (Figure 1F). Increasing 
the percentage of influenza positive specimens forwarded to 
public health laboratories to 75% or 100% increased detection 
probabilities and test efficiency across all healthcare settings 
(Figure S1). For example, the median detection probability in 

UC/EDs increased to 85% (58%–98%) and 92% (69%–99%) at 
the lowest incidence, respectively. Conversely, a decrease in 
the percentage forwarded to 25% decreased detection prob-
abilities and test efficiencies, although the relative ordering 
of setting efficiency was preserved. Thus, for a novel influ-
enza virus with similar severity to seasonal influenza, UC/ED 
settings are likely to provide greatest opportunities for case 
detection.

Given uncertainty in the potential severity of a novel influenza 
virus, we explored additional scenarios in which cases were 
more likely to develop symptoms and/or present to a particular 
healthcare setting than the baseline severity scenario (Table 2 
and Figure 1A). As severity increased, the probability of de-
tection also increased across all healthcare settings due to the 
greater probability of requiring medical attention (Figure 1C). 
The difference between detection probabilities in UC/ED 
compared with hospital and ICU settings also decreased as 
cases were more likely to be severe and require admission 
to the latter. For example, median detection probabilities for 
ICU settings increased from 2% (1%–4%) and 19% (9%–35%) 
at baseline with 100 and 1000 novel cases, respectively, to 
100% (98%–100%) and 100% (100%–100%) in the “Recent-H5” 
scenario. There were also substantial increases in testing effi-
ciency in hospital and ICU settings (Figure 1E) and increases 
in the percent of novel cases detected (for example, from a 
maximum of 0.3% in hospital settings at baseline to 16% in the 
Recent H5 scenario; Figure 1F). Test usage is driven primarily 

TABLE 2    |    Scenarios for increased symptom severity.

Scenario Symptomatic UC/EDa Hospital ICUb Source(s)
Baseline 40%–80% 10%–20% 1%–2% CHRa 15%–20% [15, 16]
COVID-like 40%–80% 10%–20% 1%–2% IHRc 20%–30% [17, 26]
Intermediate 1 25% > baselined 25% > baselined 4.5%–5.5% IHRc 30%–40% [17]
Intermediate 2 50% > baselined 50% > baselined 9.5%–10.5% IHRc 45%–55% [17]
Recent H5-like 50% > baselined 50% > baselined 60%–70% IHRc 75%–85% [1]

Note: All parameters are assumed to follow a Uniform distribution with the reported range.
Abbreviations: CHR = case-hospitalization ratio, ED = emergency department, ICU = intensive care unit, IHR = infection-hospitalization ratio, UC = urgent care.
aExpressed as a percentage of symptomatic individuals.
bExpressed as a percentage of hospitalizations.
cExpressed as a percentage of infected individuals.
dUp to a maximum of 100%.

TABLE 3    |    Baseline occurrence of ILI or ARI symptoms partitioned by peak versus off-peak activity.

Parameter Range of uniform distribution Period Source and available timeframe
Occurrence of:

ILIa 1.0–6.0% Peak FNY, ONM: 2019, 2022
0.6%–2.5% Off-peak

Hospital ARI admission 0.04%–0.10% of general population Peak MarketScan: 2015–2021
0.03%–0.09% of general population Off-peak

ICU ARI admission 0.014%–0.035% of general population Peak MarketScan: 2015–2021
0.010%–0.030% of general population Off-peak

Abbreviations: ARI = acute respiratory illness, ICU = intensive care unit, ILI = influenza-like-illness, FNY = Flu Near You, ONM = Outbreaks Near Me.
aBackground ILI occurrence is multiplied by care-seeking probabilities in urgent care or emergency departments (pseek) to estimate the rate of presentation to urgent 
care or emergency departments in the general population. We omitted data from 2020 and 2021 due to atypically low levels of respiratory virus circulation.
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by background seasonal influenza virus testing and thus did 
not change across severity scenarios (Figure 1D). Simulating 
an increase in clinical testing probabilities (ptest mean = 90%) 

substantially increased detection probabilities and test usage 
for all healthcare settings but did not impact the relative per-
formance among settings (Figure S2).

FIGURE 1    |    Probabilities of detection and test usage under different severity scenarios. (A) Assumed probabilities of presentation to a particular 
setting, calculated as psymp × pseek for UC/ED, hospital, and ICU settings. All cases are assumed to be in the community, resulting in a probability of 
one for that setting (not shown). (B) Assumed proportion of individuals with ILI or ARI tested in UC/ED, hospital and ICU settings, or proportion of 
all individuals tested in the community. (C) Estimated probability of detecting at least one novel case per month. Panels indicate different assumed 
levels of incidence (100 and 1000 novel cases). (D) Expected number of clinical tests used per month. (E) Estimated test efficiency, calculated as the 
number of detected novel cases per 100,000 tests. (F) Percent of all novel cases detected per month. In all panels, points represent median values 
across 10,000 simulations, inner shaded bands show 50th percentiles, and outer shaded bands show 95th percentiles. ARI = acute respiratory illness; 
ED = emergency department; H = hospital; ICU = intensive care unit; ILI = influenza-like illness; Int 1 = Intermediate 1; Int 2 = Intermediate 2; 
UC = urgent care.
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Finally, we assessed how seasonal changes in background 
activity could impact probabilities of case detection and test-
ing efficiency. Assuming testing practices did not change 
seasonally led to equal probabilities of detection in peak and 
off-peak periods, although testing efficiencies were increased 
in off-peak periods due to the lower number of background 
tests conducted (Figure S3). Conversely, assuming a 50% re-
duction in testing across all healthcare settings in off-peak pe-
riods (Figure 2B) reduced the corresponding probabilities of 
detection (Figure 2C). However, for the most severe scenarios 
(Intermediate 1, Intermediate 2, and Recent H5), there was 
always at least one healthcare setting with a median detection 
probability greater than 60% in off-peak periods at the lowest 
incidence.

4   |   Discussion

We modeled the likelihood of detection of novel influenza 
virus cases occurring at low incidence in the United States. We 
adapted a simple probabilistic framework that accounted for 
symptom severity, care-seeking behavior, and testing practices 
in different healthcare settings, and used care-seeking and test-
ing information from recent influenza seasons to inform model 
parameters. We found that the most efficient setting for detec-
tion depends on the severity profile of the novel influenza virus. 
Although the percent of total novel influenza cases detected was 
relatively low, the probabilities of detecting at least one case, and 
thus identifying novel influenza virus circulation, were high in 
at least one setting across a range of different testing, severity, 
and specimen forwarding assumptions.

The high probabilities of detecting at least one case that we 
have estimated here are relevant for public health pandemic 
preparedness. The detection of one case would facilitate the 
implementation of public health actions including increased 
testing strategies, further virus characterization, vaccine de-
velopment (if warranted), the implementation of appropriate 
public health control measures, and updated recommenda-
tions for the use of influenza antiviral medications. One key 
parameter influencing the detection probability was the prob-
ability of testing in each healthcare setting. We found that 
detection probabilities could decrease if influenza testing is 
substantially reduced below in-season values (for example, 
during off-peak months). However, it is also possible that clus-
ters of cases and outbreaks could be more likely to be detected 
and tested during off-peak months if clinicians remain vigilant 
for evidence of atypical respiratory virus signs or symptoms. 
The detection probability was also influenced by assump-
tions about the forwarding of clinical specimens. Our baseline 
value of 50% was informed by subtyping information from 
hospitalized influenza infections between 2010 and 2019 [6]. 
However, we included a lower bound of 25% to reflect recent 
post–COVID-19 pandemic trends and potentially reduced for-
warding in UC/ED outpatient settings [23]. We also included 
higher values up to 100% to explore maximum attainable de-
tection probabilities if all tests were forwarded and found a 
substantial improvement in our estimates. Therefore, during 
the current H5N1 situation, it is critical that clinicians main-
tain high testing frequencies and forward influenza A posi-
tive specimens to public health laboratories for further testing 

when recommended. Finally, given the severity of prior H5N1 
cases (for example, there has been a 50% case-fatality propor-
tion in cases identified since 1997 [1]), additional strategies to 
increase testing in ICU settings may help increase the likeli-
hood of detection and testing efficiency, particularly during 
summer months when background acute respiratory illness 
rates are low.

Although the probability of detecting one case was generally 
high, the percent of total cases detected was low, especially in 
the lower severity scenarios. This finding assumes there are no 
immediate changes to testing or healthcare seeking behavior 
once the first case is detected and arises because detection of 
influenza through clinical settings requires someone to become 
symptomatic, seek care, be tested in a timely manner, and have 
a positive specimen forwarded for further characterization. 
Although community testing removes these barriers to identi-
fication, it is resource intensive and would need to occur even 
in the absence of perceived novel influenza virus spread to be 
effective, potentially requiring over 100 million tests per year 
at the level modeled in this analysis. Similarly, at-home or self-
administered tests could alleviate issues associated with care-
seeking and clinical testing practices. However, such tests would 
need to be specific to the novel influenza virus and undergo 
potentially lengthy development and authorization procedures 
before being available for widespread use. Pandemic planning 
efforts should therefore include strategies to rapidly increase 
testing of acute respiratory illness cases in clinical settings once 
human-to-human spread of a novel influenza virus has been 
identified or is likely. Such strategies should account for the 
possibility that many cases may not be detected, even with in-
creased testing.

There are several caveats to our modeling framework. First, as 
our primary aim was to estimate detection capabilities once sus-
tained human-to-human transmission is occurring within the 
United States, we did not consider surveillance for earlier events 
that might spark such transmission, such as spillover from in-
fected animals or introductions from outside the United States. 
It is possible that these events would be associated with a greater 
probability of testing due to relevant exposure histories and thus 
have a greater likelihood of being detected compared with our 
estimates. Second, we did not stratify detection probabilities by 
age. The severity of seasonal influenza can vary substantially 
among different age groups [27], and age patterns of severity 
may differ for a novel influenza virus compared to seasonal 
influenza viruses due to immunological imprinting and age-
related exposures to previous circulating viruses [28, 29]. Age 
may also impact testing probabilities and healthcare seeking 
behavior [30, 31], although mean testing probabilities for chil-
dren < 18 years were similar to those of adults ≥ 18 years in the 
VISION data used to parameterize ptest (for example, 55% vs. 
50% in UC/ED for children and adults, respectively). Including 
age in the current framework would require additional as-
sumptions regarding the cross-reactivity of the novel influenza 
virus with seasonal influenza viruses to infer age-specific se-
verity distributions and thus reduce the generalizability of our 
results. Third, we did not explicitly incorporate delays in case 
admission to hospital or ICU that could reduce the window for 
viable virus detection relative to other settings. These delays are 
likely on the order of several days and are captured within our 
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conservative range for the proportion of care-seekers who are 
tested while virus is still detectable [32]. Fourth, we modeled the 
United States as a single population and did not explicitly con-
sider spatial or other heterogeneities in care-seeking and testing 

practices. If such data were available, our analysis could be rep-
licated at finer resolution to assess local response and detection 
capabilities. Fifth, data were not available to fully inform our 
test forwarding assumptions. Although we considered a range 

FIGURE 2    |    Probabilities of detection and test usage in healthcare settings assuming reduced testing probabilities during periods of off-peak 
seasonal activity. Incidence is fixed at 100 novel cases in the population. (A) Assumed probabilities of presentation to a particular setting, calculated 
as psymp × pseek. Ranges are constant in peak and off-peak periods. (B) Assumed proportion of individuals with ILI or ARI tested in peak and off-peak 
periods. Ranges are constant across severity scenarios. (C) Estimated probability of detecting at least one novel case per month. (D) Expected number 
of clinical tests used per month. (E) Estimated test efficiency, calculated as the number of detected novel cases per 100,000 tests. (F) Percent of all 
novel cases detected per month. In all panels, points represent median values across 10,000 simulations, inner shaded bands are the 50th percentiles, 
and outer shaded bands are the 95th percentiles. ARI = acute respiratory illness; ED = emergency department; H = hospital; ICU = intensive care 
unit; ILI = influenza-like illness; Int 1 = Intermediate 1; Int 2 = Intermediate 2; UC = urgent care.
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in sensitivity analyses, further information would increase 
the accuracy of our detection probability estimates. We also 
assumed perfect sensitivity and specificity for all forwarded 
tests in line with evaluation of real-time RT-PCR tests for novel 
H1N1 variant influenza viruses [33]. Although minor reduc-
tions in sensitivity should not substantially impact our detec-
tion probability estimates, reductions in specificity could lead 
to false positive results that we have not considered. However, 
the number of false positive results is likely to be small unless 
testing reaches extremely high levels, such as considered here in 
the community setting.

Finally, our assumed inputs for baseline testing and back-
ground activity were informed by previous influenza seasons 
and may not reflect future changes to these values. Where pos-
sible, we developed parameter distributions based on data from 
multiple influenza seasons, before and after the COVID-19 
pandemic, to account for broad fluctuations in care-seeking 
behavior, testing practices, and seasonal influenza dynamics. 
We also explored scenarios with increased testing to capture 
the potential impacts of changes to healthcare surveillance 
following additional policy recommendations. More generally, 
our estimates of detection probabilities and test efficiency re-
flect the combined uncertainty in each underlying parameter 
value and should thus be robust to small changes in any single 
parameter.

Novel influenza viruses pose a potential pandemic risk, and 
prompt detection is critical to characterizing the virus causing 
the infection and facilitating a rapid public health response. 
Here we demonstrate how a simple probabilistic framework 
can be used to estimate novel influenza virus detection prob-
abilities through testing in different community and health-
care settings, and can help inform the targeting of future 
testing efforts. Our work was motivated by the 2022–2024 
H5N1 situation in the United States but could be applied more 
broadly to other locations and/or other potential novel influ-
enza viruses.
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