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ABSTRACT: Atomic partial charges are crucial parameters in molecular dynamics simulation, dictating the electrostatic
contributions to intermolecular energies and thereby the potential energy landscape. Traditionally, the assignment of partial charges
has relied on surrogates of ab initio semiempirical quantum chemical methods such as AM1-BCC and is expensive for large systems
or large numbers of molecules. We propose a hybrid physical/graph neural network-based approximation to the widely popular
AM1-BCC charge model that is orders of magnitude faster while maintaining accuracy comparable to differences in AM1-BCC
implementations. Our hybrid approach couples a graph neural network to a streamlined charge equilibration approach in order to
predict molecule-specific atomic electronegativity and hardness parameters, followed by analytical determination of optimal charge-
equilibrated parameters that preserve total molecular charge. This hybrid approach scales linearly with the number of atoms,
enabling for the first time the use of fully consistent charge models for small molecules and biopolymers for the construction of next-
generation self-consistent biomolecular force fields. Implemented in the free and open source package EspalomaCharge, this
approach provides drop-in replacements for both AmberTools antechamber and the Open Force Field Toolkit charging
workflows, in addition to stand-alone charge generation interfaces. Source code is available at https://github.com/choderalab/
espaloma-charge.

■ INTRODUCTION
Molecular mechanics (MM) force fields abstract atoms as
point charge-carrying particles, with their electrostatic energy
(Ue) calculated by some Coulomb’s law6

=U r k
q q

r
( )ij

i j

ij
e e

(1)

(or some modified form), where ke is Coulomb constant
(energy * distance2/charge2) and rij the interatomic distance.
In fixed-charge MMs force fields, the partial charges qi are
treated as constant, static parameters, independent of
instantaneous geometry. As such, partial charge assign-
ment�the manner in which partial charges are assigned to

each atom in a given system based on their chemical
environments�plays a crucial role in molecular dynamics
(MD) simulation, determining the electrostatic energy (Ue) at
every step and shaping the energy landscape.
Traditionally, Partial Charges Have Been Derived

from Expensive Ab Initio or Semiempirical Quantum
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Chemical Approaches. In the early stages of development of
molecule mechanics (MM) force fields, ab initio methods were
used to generate electrostatic potentials (ESP) on molecular
surfaces from which restrained ESP (RESP) charge fits were
derived.2 This process proved to be expensive, especially for
large molecules or large numbers of molecules (e.g., in virtual
screening, where data sets now approach 109 molecules11).
This led to the development of the AM1-bond charge
correction (BCC) charge scheme16,17�a method for approx-
imating RESP fits at the HF/6-31G* level of theory, by first
calculating population charges using the much less expensive
AM1 semiempirical level of theory and subsequently correcting
charges via BCCs. As a result, this approach has been widely
adopted by the MMs community utilizing force fields such as
GAFF28 and the open force fields.26

Despite this progress, there are still multiple drawbacks with
AM1-BCC. First, the computation is dependent on the
generation of one or more conformers, which contributes to
the discrepancy among the results of different chemo-
informatics toolkits. While conformer ensemble selection
methods such as ELF10a attempt to minimize these
geometry-dependent effects, they do not fully eliminate
them, and significant discrepancies between toolkits can
remain.

Second, the speed is still a bottleneck (especially when it
comes to the virtual screening of large libraries) as it still
requires QM calculation for the parametrization. Moreover, the
runtime complexity of AM1-BCC scales N( )2 in the number
of atoms N. In particular, the poor runtime complexity
necessitates using a different charging model for biopolymers
(such as proteins and nucleic acids), making the process of
extending these polymeric force fields to accommodate post-
translational modifications, nonstandard residues, covalent
ligands, and other chemical modifications both complex and
likely to require a third charging strategy within the same
simulation.
Machine Learning Approaches to Charge Assign-

ment Have Recently Been Proposed but Face Chal-
lenges in Balancing Generalization with the Ability to
Preserve Total Molecular Charge. The rising popularity of
machine learning has led to a desire to exploit new approaches
to rapidly predict partial atomic charges. For example, recent
work from Bleiziffer et al.4 employed a random forest approach

to assign charges based on atomic features but faced the issue
of needing to preserve total molecular charge while making
predictions on an atomic basis�they distribute the difference
between predicted and reference charge evenly among atoms.
Similarly, Metcalf et al.22 preserve the total charge by allowing
only charge transfer in message-passing form resulting in zero
net-charge change. A more classical approach by Gilson et al.10

tackles the charge constraint problem in a clever manner:
instead of directly predicting charges, by predicting atomic
electronegativity and electronic hardness, a simple constrained
optimization problem inspired by physical charge equilibration
(QEq)27 can be solved analytically to yield partial charges that
satisfy total molecular charge constraints. In spite of its
experimental success, its ability to reproduce quantum-
chemistry-based charges is heavily dependent upon the discrete
atom typing scheme to classify and group atoms by their
chemical environments. Additionally, charges have been
considered in new deep machine learning potential models,20

and machine learning has also been employed to come up with
electrostatic parameters for Drude oscillator force fields.21

Recently, Wang29 and Wang et al.31 designed a graph neural
networks-based atom typing scheme, termed Espaloma
(extensible surrogate potential optimized by message-passing
algorithms), to replace the human expert-derived, discrete
atom types with continuous atom embeddings (Figure 1). This
allows atoms with subtle chemical environment differences to
be distinguished by the model without the need to
painstakingly specify heuristics.

EspalomaCharge Generates AM1-BCC ELF10 Quality
Charges in an Ultrafast Manner Using Machine
Learning. In this paper, we use the continuous embedding
atom representation scheme from Espaloma in conjunction
with analytical constrained charge assignment inspired by QEq
to come up with an ultrafast machine learning surrogate for
partial charge assignment (EspalomaCharge). We train
EspalomaCharge on an expanded set of protonation states
and tautomers of representative biomolecules and drug-like
molecules (the SPICE data set8) to assign high-quality AM1-

Figure 1. Schematic overview of EspalomaCharge: a hybrid physical/GNN model for fast charge assignment. First, the graph node representation h
assigned by a GNN is used to compute unconstrained electronegativity ei and hardness si to each atom. Second, the charge potential energy is
minimized analytically to yield predicted partial charges qi that satisfy the total molecular charge constraint Q.
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BCC ELF10 charges.17 The resulting EspalomaCharge model
accurately reproduces AM1-BCC ELF10 charges to an error
well within the discrepancy between AmberTools sqm and
OpenEye oequacpac implementations on average 2000
times faster than AmberTools on the SPICE data set, can
utilize either CPU or GPU, and scales as N( ) with a number
of atoms, allowing even entire proteins to be assigned AM1-
BCC equivalent charges. We implement this approach in the
Python package EspalomaCharge, which is distributed
open source under an MIT license and pip-installable
(Listing 1).

■ THEORY: ESPALOMA GRAPH NEURAL NETWORKS
FOR CHEMICAL ENVIRONMENT PERCEPTION,
QEQ, AND ESPALOMACHARGE
Espaloma Uses Graph Neural Networks to Perceive

Atomic Chemical Environments. Espaloma31 uses graph
neural networks (GNNs)1,9,14,19,30,34 to assign continuous
latent representations of chemical environments to atoms that
replace human expert-derived discrete atom types. These
continuous atom representations are subsequently used to
assign symmetry-preserving parameters for atomic, bond,
angle, torsion, and improper force terms.

When GNNs are employed in chemical modeling, the atoms
are abstracted as nodes (v) and bonds as edges (e) of a graph
. hv

(0), the initial features associated with node v are
determined based on resonance-independent atomic chemical
features from a cheminformatics toolkit (see Supporting
Information section). Following the framework from Battaglia
et al.,1 Gilmer et al.,9 and Xu et al.,34 for a node v with
neighbors u v( ), in a graph , with hv

(k) denoting the
feature of node v at the k-th layer (or k-th round of message-
passing) and hv

0 C the initial node feature on the
embedding space, the k-th message-passing step of a GNN
can be written as three steps: first, an edge update

=+h h h h( , , )e
k k k

e
k( 1) e

u
( )

v
( ) ( )

uv uv (2)

where the feature embeddings hu of two connected nodes u
and v update their edge feature embedding heuv

, followed by
neighborhood aggregation

= { }+a h u v( , ( ) )k
e

k
v
( 1) e v ( )

uv (3)

where edges incident to a node v pool their embeddings to
form aggregated neighbor embedding av, and finally, a node
update

=+ +h a h( , )k k k
v
( 1) v

v
( 1)

v
( ) (4)

where ·( ) denotes the operation to return the multiset of
neighbors of a node and ϕe and ϕv are implemented as feed-
forward neural networks. Since the neighborhood aggregation
functions ρe→v are always chosen to be indexing-invariant
functions, namely, SUM or MEAN operator, eq 3, and thereby
the entire scheme, is permutationally invariant. In practice,
choices such as the dimensionality of node and edge vectors,
number of layers, layer width, activation function, aggregation
operators, and initial conditions for training are treated as
hyperparameters and optimized during training to produce
robust, near-optimal models on a held-out validation set
separate from a test set.

QEq Is a Physically Inspired Model for Computing
Partial Charges while Maintaining Total Molecular
Charge. This Espaloma framework can be used to predict
atomic parameters that can be fed into subsequent neural
modules that predict MMs parameters. For partial charges,
however, the constraint that the predicted partial charges qi
should sum up to the total charge Q�the sum of all formal
charges or total molecular charge�is nontrivial to satisfy were
the charges to be predicted directly.

= =q q Qi i (5)

We adopt the method proposed by Gilson et al.10 where we
predict the electronegativity ei and hardness si of each atom i,
which are defined as the first- and second-order derivative of
the potential energy in QEq approaches27

e
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Next, we minimize the second-order Taylor expansion of the
charging potential energy contributed by these terms,
neglecting interatomic electrostatic interactions

i
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which, as it turns out, has an analytical solution given by
Lagrange multipliers
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+
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(8)

We thus use the Espaloma framework to predict the
unconstrained atomic electronegativity (e) and hardness (s)
parameters used in eq 8 to assign partial charges in a manner
that ensures that total molecular charge sums to Q. It is worth
noting that, by the equivalence analysis proposed in Wang et
al.,31 the tabulated atom typing scheme Gilson et al.10 uses
amounts to a model working analogously to a Weisfeiler-
Lehman test33 with hand-written kernel, whereas here we
replace this with an end-to-end differentiable GNN model to
greatly expand its resolution and ability to optimize based on
reference charges.
EspalomaCharge Has N( ) Time Complexity in the

Number of Atoms. One of the primary advantages of spatial
GNNs that pass messages among local neighborhoods is their

E( ) complexity, where E is the number of edges. In chemical
modeling, since the sparsity of the graph is roughly fixed (the
number of edges is 3 to 4 times that of number of nodes), it is
safe to write the runtime complexity as N( ), with N being the
number of nodes (atoms). The QEq step with its linear
operator does not alter the complexity nor is it the bottleneck
of EspalomaCharge. Therefore, unlike with ab initio or
semiempirical methods, the runtime complexity of Espaloma-
Charge is N( ).

■ EXPERIMENTS: ESPALOMACHARGE ACCURATELY
REPRODUCES AM1-BCC CHARGES AT A
FRACTION OF ITS COST

We show, in this section, that the discrepancy between
EspalomaCharge and the OpenEye toolkit is comparable to or
smaller than that between AmberTools5 and OpenEye.
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EspalomaCharge is fast and scalable to larger systems, taking
seconds to parameterize a biopolymer with 100 residues on
CPU.
SPICE Data Set Covers Biochemically and Biophysi-

cally Interesting Chemical Space. To curate a data set
representing the chemical space of interest for biophysical
modeling of biomolecules and drug-like small molecules, we
use the SPICE8 data set, enumerating reasonable protonation
and tautomeric states with the OpenEye Toolkit. We generated
AM1-BCC ELF10 charges for each of these molecules using
the OpenEye Toolkit and trained EspalomaCharge (Figure 1)
to reproduce the partial atomic charges with a squared loss
function. This model, with its parameters distributed with the
code, is used in all of the characterization results hereafter.
EspalomaCharge Is Accurate, Especially on Chemical

Spaces Where Training Data Is Abundant. First, upon
training on the 80% training set of SPICE, we test on the 10%
held-out test set to benchmark the in-distribution (similar
chemical species) performance of EspalomaCharge (Table 1,
first half). Notably, the discrepancy [measured by charge root-
mean-square error (RMSE)] between EspalomaCharge and
OpenEye is comparable with or smaller than that between
AmberTools5 and OpenEye�two popular chemoinformatics
toolkits for assigning AM1-BCC charges to small molecules.
Since it is a common practice in the community to use these

two toolkits essentially interchangeably, we argue that the
discrepancy between these could be established as a baseline
below which the error is no longer meaningful.

We prepare several out-of-distribution external data sets to
test the generalizability of EspalomaCharge to other molecules
of significance to chemical and biophysical modeling, including
a filtered list of FDA-approved drugs, a subset of the ZINC12,15

purchasable chemical space, and finally the FreeSolv23 data set
consisting of molecules with experimental and computationally
estimated solvation free energy. The discrepancy between
EspalomaCharge and OpenEye is lower than or comparable
with that between AmberTools and OpenEye, demonstrating
that the high performance of EspalomaCharge is generalizable,
at least within chemical spaces frequently used in chemical
modeling and drug discovery.

To pinpoint the source of the error for EspalomaCharge, we
stratified the molecules by the number of atoms and total
molecular charge, computing the errors on each subset (Figure
2). Compared to the error baseline, EspalomaCharge is most
accurate where there was abundant data in the training set.
This is especially true when it comes to stratification by net
molecular charge since the extrapolation from small systems to
larger systems is encoded in the inductive biases of GNNs.
Given the performance of well-sampled charge bins, it seems
likely the poor performance for molecules with more exotic −4

Table 1. EspalomaCharge Accurately and Efficiently Reproduces AM1-BCC Charges for a Wide Variety of Chemical Spacesa

average RMSE (e) average walltime (s)

data set Nmol avg. Natoms

|EspalomaCharge−
OpenEye| |AmberTools−OpenEye| EspalomaCharge AmberTools OpenEye

SPICE8 test set 29079 39.36 0.0435 0.0438 0.0623 0.0628 0.05 93.10 3.79
0.0432 0.0618

FDA approved 1019 34.80 0.0266 0.0255 0.0244 0.0263 0.03 46.15 1.87
0.0281 0.0227

ZINC250 K12 220250 42.70 0.0187 0.0187 0.0197 0.0198 0.05 124.89 3.63
0.0187 0.0197

FreeSolv7 641 18.10 0.0110 0.0117 0.0067 0.0077 0.03 9.62 0.43
0.0104 0.0057

PDB expo3 23399 35.94 0.0186 0.0188 0.0232 0.0236 0.04 88.86 3.63
0.0184 0.0229

aHere, Nmol denotes the number of molecules in the data set; avg. Natoms denote the average number of atoms in molecules for the corresponding
data set; average RMSE is the charge RMS deviation between AM1-BCC implementations averaged over all molecules in the data set, with sub- and
superscripts denoting the 95%-confidence interval of the mean (computed by bootstrapping over molecules in the data set with replacement);
average wall time denotes the average wall time for the respective toolkit to assign partial charges for a molecule in the data set. Boldface statistics
denote the best (most accurate or fastest) model or models (in case confidence intervals are indistinguishable) for each statistic.

Figure 2. EspalomaCharge shows smaller average charge RMSE than AmberTools on well-represented regions of chemical space. SPICE data set
test set performance stratified by total charge (left panel) and molecule size (right panel). To better illustrate the effects of limited training data on
stratified performance, the number of test (upper number) and training (lower number) molecules falling into respective categories are also
annotated with test set distribution plotted as histogram.
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and −5 net charges will be resolved once the data set is
enriched with more examples of these states.

It is worth mentioning that unified application programming
interfaces (API) (Listing 3) integrated in Open Force Field
toolkits are responsible for generating the performance
benchmark experiments above. Additionally, a command−
line interface (CLI) is also provided for seamless integration of
EspalomaCharge into Amber workflows (Listing 4).
EspalomaCharge Is Fast, Even on Large Biomolecular

Systems. Apart from the accurate performance, the drastic
difference in the speed of parametrization is also observed in
the benchmarking experiments. For the small molecule data
sets in Table 1, EspalomaCharge is 300−3000 times faster than
AmberTools and 15−75 times faster than OpenEye.

We closely examine the dependence of parametrization time
on the size of the (biopolymer) system in Figure 3, where we
choose the peptide system ACE-ALAn-NME while varying n =

1, ..., 100. The parameterization wall time for AmberTools and
OpenEye rapidly increases w.r.t. the size of the system (the
theoretical runtime complexity for semiempirical methods are

N( )2 ) and exceeds 1000 s at n = 18 and n = 30, respectively.
This scenario explains the infeasibility of employing AM1-BCC
charges in parameterizing large systems. EspalomaCharge, on
the other hand, has N( ) complexity and is capable of
parameterizing peptides of a few hundred residues within
seconds. This process can be further accelerated by distributing
calculations on the GPU hardware.

Batching many molecules into a single charging calculation
can provide significant speed benefits when parameterizing
large virtual libraries by making maximum use of hardware
parallelism. EspalomaCharge provides a seamless way to
achieve these speedups when providing a sequence of
molecules, rather than single molecules at a time, as the input
to the charge function in the API (Listing 5). In this case,
the molecular graphs are batched with their adjacency matrix
concatenated diagonally, processed by GNN and QEq models,
and subsequently unbatched to yield the result. For instance,

Figure 3. EspalomaCharge is fast, even for large systems. Wall time required to assign charges to ACE-ALAn-NME peptides with different toolkits is
shown on a log plot, illustrating that EspalomaCharge on the CPU or GPU is orders of magnitude faster than semiempirical-based charging
methods for larger molecules or biopolymers and is practical even for assigning charges to proteins of practical size. Fluctuation in traces is due to
the stochasticity in timing trials.

Figure 4. EspalomaCharge introduces little error to explicit hydation free energy prediction. Calculated-vs-experimental explicit solvent hydration
free energies computed with AM1-BCC charges provided by EspalomaCharge, AmberTools, and the OpenEye Toolkit, respectively. Simulations
used the GAFF 2.11 small molecule force field28 and TIP3P water18 with particle mesh Ewald electrostatics (see Detailed Methods section in
Supporting Information). Annotated are RMSE and R2 score there between and bootstrapped 95% confidence interval. See also Appendix Figure
S3 for comparison among computed hydration free energies.
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the wall time needed to parameterize all 100 ACE-ALAn-NME
molecules from n = 1, ..., 100 depicted in Figure 3 at once, in
batch mode, is 7.11 s with CPU�only marginally longer than
the time required to parameterize the largest molecule in the
data set, indicating that hardware resources are barely being
saturated at this point.
Error from Experiment in Explicit Solvent Hydration

Free Energies Is Not Statistically Significantly Different
between EspalomaCharge, AmberTools, and OpenEye
Implemnetations of AM1-BCC.While the charge deviations
between EspalomaCharge and other toolkit implementations
of AM1-BCC are comparable to the deviation between
toolkits, it is unclear how the magnitude of these charge
deviations translates into deviations of observable condensed-
phase properties (such as free energies) from the experiment.
To assess this, we carried out explicit solvent hydration free
energy calculations, which serve as an excellent gauge of the
impact of parameter perturbations,24 as the result is heavily
dependent upon the small-molecule charges. We use each set
of charges in calculating the hydration free energies for the
molecules in FreeSolv7 (see Detailed Methods section in
Supporting Information), a standard curated data set of
experimental hydration free energies. In Figure 4, we compare
the computed explicit solvent hydration free energies with
experimental measurements and quantify the impact of the
charge model on both deviation statistics (RMSE) and
correlation statistics (R2) with the experiment. We note that
EspalomaCharge provides statistically indistinguishable per-
formance compared to AmberTools5 and the OpenEye toolkit
on both metrics, RMSE and R2. This encouraging result
suggests that any discrepancy introduced by EspalomaCharge
is unlikely to significantly alter the qualitative behavior of MD
simulations in terms of ensemble averages or free energies.

■ DISCUSSION
EspalomaCharge Assigns High-Quality Conforma-

tion-Independent AM1-BCC Charges Using a Modern
Machine Learning Infrastructure That Supports Accel-
erated Hardware. Composing the Espaloma graph neural
networks framework31,32 for producing continuous, vectorial
representations of the chemical environment of individual
atoms with a conformation-independent QEq scheme10 for
assigning partial atomic charges that satisfy total molecular
charge constraints, EspalomaCharge provides a robust
approach for assigning conformer-agnostic AM1-BCC charges
to biomolecular systems. Because EspalomaCharge is built on
PyTorch,25 a fast, modern, Python-based machine learning
framework, it supports multiple optimized compute backends,
including both CPUs and GPUs. Unlike AM1-BCC
implementations based on traditional semiempirical quantum
chemical codes, EspalomaCharge has N( ) runtime complex-
ity with respect to the number of atoms N (Figure 3) and
introduces only small discrepancies to high-quality AM1-BCC
reference implementations comparable to the discrepancies
among popular AM1-BCC implementations (Table 1).
Ability to Assign Topology-Driven Conformation-

Independent Self-Consistent Charges to Small Mole-
cules and Biopolymers Prepares the Community for
Next-Generation Unified Force Fields. EspalomaCharge,
thanks to its N( ) runtime complexity, can assign charges to
biopolymers with hundreds of residues�including proteins
with exotic post-translational modifications or covalent ligands,

nucleic acids, or complex conjugates of multiple kinds�within
seconds. For the first time, rather than using multiple distinct
methodologies to parametrize various components in a system
(e.g., RESP-derived charges for amino acids and AM1-BCC
charges for noncovalent ligands), it is feasible to simulta-
neously and self-consistently parametrize small molecules and
biopolymers (and more complex covalent modifications of
biopolymers) with a high-quality self-consistent scheme. This
would be compatible with the next generation of unified force
fields for small molecules and biopolymers, namely, Wang et
al.31 Note that, although EspalmoaCharge can be employed to
fit any atomic charges, in this paper, we only consider charge
assignment schemes that are geometry-agnostic.
EspalomaCharge Provides a Simple API and CLI for

Facile Integration into Popular Workflows. Espaloma-
Charge is a pip-installable (Listing 1) open software package
(see the Detailed Methods section in Supporting Information),
making it easy to integrate into existing workflows with
minimal complexity. Assigning charges to molecules using the
EspalomaCharge Python API is simple and straightforward
(Listing 2). A GPU can be used automatically, and entire
libraries can be rapidly parameterized in batch mode (Listing
5). EspalomaCharge provides both a Python API and a
convenient CLI, allowing EspalomaCharge to be effortlessly
integrated into popular MM and MD workflows such as the
OpenForceField toolkit (Listing 3) and Amber (Listing 4).
One-Hot Embedding Cannot Generalize to Rare or

Unseen Elements. One-hot element encoding is used in the
architecture, making the model unable to perceive elemental
similarities. This would compromise per-node performance for
rare elements and prevent the model from being applied on
unseen elements. Possible ways to mitigate this limitation
include encoding the elemental physical properties as the node
input.
Future Expansions of the Training Set Could Further

Mitigate Errors. As shown in Figure 2, the generalization
error is heavily dependent on the data abundance within the
relevant stratification of the training set�bins containing more
training data show higher accuracy. Future work could aim to
systematically identify underrepresented regions of chemical
space and expand training data sets to reduce error for
uncommon chemistries and exotic charge states, either with
larger static training sets or using active learning techniques.
Multiobjective Fitting Could Enhance Generalizabil-

ity. Though EspalomaCharge produces an accurate surrogate
for AM1-BCC charges, these small errors in charges can
translate to larger deviations in ESP (see Supporting
Information Figure S2). Since the function mapping charges
(together with conformations) to ESPs are simple and
differentiable, one can easily incorporate ESP as a target in
the training process, using ESPs derived either from reference
charges or (as in the original RESP2) to quantum chemical
ESPs. A multiobjective strategy that includes multiple targets
(such as charges and ESPs), potentially with additional charge
regularization terms (as in RESP2), could result in more
generalizable models with lower ESP discrepancies. Further-
more, similar observables can be incorporated into the training
process to improve the utility of the model in modeling of real
condensed-phase systems. For instance, condensed-phase
properties, such as densities or dielectric constants, other
quantum chemical properties, or even experimentally measured
binding free energies.
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■ ADDITIONAL NOTE
aELF10 denotes that the ELF (“electrostatically least-
interacting functional groups”) conformer selection process
was used to generate 10 diverse conformations from the lowest
energy 2% of conformers. Electrostatic energies are assessed by
computing the sum of all Coulomb interactions in vacuum
using the absolute values of MMFF charges assigned to each
atom.13 AM1-BCC charges are generated for each conformer
and then averaged.
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magnet́isme. Nineteenth Century Collections Online (NCCO): Science,
Technology, and Medicine: 1780−1925; Acadeḿie Royale des sciences,
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