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BACKGROUND: Metabolic syndrome (MetS) is associated with premature aging, but whether this association is driven by genetic
or lifestyle factors remains unclear.
METHODS: Two independent discovery cohorts, consisting of twins and unrelated individuals, were examined (N= 268, aged
23–69 years). The findings were replicated in two cohorts from the same base population. One consisted of unrelated individuals
(N= 1 564), and the other of twins (N= 293). Participants’ epigenetic age, estimated using blood DNA methylation data, was
determined using the epigenetic clocks GrimAge and DunedinPACE. The individual-level linear regression models for investigating
the associations of MetS and its components with epigenetic aging were followed by within-twin-pair analyses using fixed-effects
regression models to account for genetic factors.
RESULTS: In individual-level analyses, GrimAge age acceleration was higher among participants with MetS (N= 56) compared to
participants without MetS (N= 212) (mean 2.078 [95% CI= 0.996,3.160] years vs. −0.549 [−1.053,−0.045] years, between-group
p= 3.5E-5). Likewise, the DunedinPACE estimate was higher among the participants with MetS compared to the participants
without MetS (1.032 [1.002,1.063] years/calendar year vs. 0.911 [0.896,0.927] years/calendar year, p= 4.8E-11). An adverse profile in
terms of specific MetS components was associated with accelerated aging. However, adjustments for lifestyle attenuated these
associations; nevertheless, for DunedinPACE, they remained statistically significant. The within-twin-pair analyses suggested that
genetics explains these associations fully for GrimAge and partly for DunedinPACE. The replication analyses provided additional
evidence that the association between MetS components and accelerated aging is independent of the lifestyle factors considered
in this study, however, suggesting that genetics is a significant confounder in this association.
CONCLUSIONS: The results of this study suggests that MetS is associated with accelerated epigenetic aging, independent of
physical activity, smoking or alcohol consumption, and that the association may be explained by genetics.
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INTRODUCTION
Metabolic syndrome (MetS) is a significant precursor to cardio-
vascular diseases and type 2 diabetes [1]. MetS refers to the co-
occurrence of several known cardiovascular risk factors that
typically increase with age, such as insulin resistance, obesity,
atherogenic dyslipidemia, and hypertension [2, 3]. The worldwide
prevalence of adulthood MetS is approximately 30–40% [4, 5].
MetS is strongly linked to a lifestyle characterized by an unhealthy
diet and physical inactivity [6], and it may lead to premature aging
[7–9]. However, it is unclear whether the accumulation of MetS
components increase the likelihood of developing diseases that

shorten lifespan or if the accumulation of MetS components itself
accelerates the aging process.
Epigenetics, particularly age-related changes in DNA methyla-

tion (DNAm), constitute the primary hallmark of biological aging
[10, 11]. Epigenetic mechanisms regulate gene expression and
help us adapt to different environments and lifestyles, including
unhealthy diet and physical inactivity, which are associated with
the increasing prevalence of MetS. Genome-wide DNAm data can
be used to construct composite scores, i.e. epigenetic clocks,
which provide an estimate of an individual’s biological age.
Epigenetic clocks are algorithms that aim to quantify biological
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aging using DNAm levels at specific CpG sites. Epigenetic clocks
summarize the effects of genetic susceptibility, as well as the
cumulative effect of lifestyle and environmental factors, on
physiological aging over the life course [12, 13].
The epigenetic clock GrimAge was developed to predict

mortality [14]. Compared to previously developed clocks, GrimAge
may best capture the DNAm changes associated with MetS and its
components [9, 15]. The recently developed DunedinPACE
estimator differs from GrimAge and other predecessors because
it has been developed to predict the pace of aging measured over
a 20-year follow-up. DunedinPACE operationalizes aging as a
decline in physiological integrity over the years [16] and may,
therefore, be a particularly good marker for assessing the effects
of the age-related accumulation of MetS risk factors on
epigenetic aging.
The epigenome is an intriguing target for both MetS and age-

related physiological changes because it is a major determinant of
gene expression that is modifiable by the environment and
lifestyle. A more adverse metabolic risk profile, or MetS, is
associated with accelerated epigenetic aging [8, 9, 15, 17–19].
However, the results vary by epigenetic clock, and to the best of
our knowledge, no previous study has investigated the association
of MetS with the most recent clock, DunedinPACE, and/or
considered the effects of genetic factors. Genotype has an
important effect on both the components of MetS and the
epigenome [20], which means genetic confounding is possible
when assessing the association between MetS and epigenetic
aging. Thus, our objective was to investigate the cross-sectional
association of MetS and its components with epigenetic aging. We
employed two recent epigenetic clocks, GrimAge and Dunedin-
PACE, in our analyses. To control for genotype and sex, age, and
early childhood environmental factors shared by twin siblings, we
employed within-twin-pair comparisons.

METHODS
Study populations
The data (N= 268, 57% female) for the primary, discovery-oriented
analyses of this study were drawn from two Finnish population-based
cohort studies: the Finnish Twin Cohort (FTC) [21–24] and the Estrogenic
Regulation of Muscle Apoptosis (ERMA) study [25] (for details see
Supplement 1). The age range of the pooled study population covered
most adulthood, from 23 to 69 years. Those who fulfilled the criteria for
having MetS constituted 21% of the participants.

Replication analyses
To validate our primary results, we replicated the analyses using two
cohorts (Supplement 1). The individual-level analyses were replicated in a
large, independent Finnish cohort study, The Young Finns Study (YFS)
[26, 27], which consisted of 1 564 unrelated individuals (55% female) aged
34–49 years and of which 22% had MetS. The within-twin-pair analyses
were replicated in a dataset of Essential Hypertension Epigenetics Study
(EH-Epi) [23, 28], which consisted of 293 twins (61% female) aged 56–69
years and of which 32% had MetS.

Research ethics
Previously given consents covered our study (Supplement 2).

Epigenetic aging
Blood-based DNAm profiles were obtained using Illumina’s Infinium
HumanMethylation450 BeadChip or the Infinium MethylationEPIC Bead-
Chip (Illumina, San Diego, CA, USA). In our previous articles, we described
the generation, preprocessing, and normalization of DNAm data [13, 29]. In
this study’s analyses, we used the epigenetic clocks GrimAge [14] and
DunedinPACE [16]. Recently, epigenetic clocks based on principal
components (PCs) have been developed to bolster the reliability and
validity of the clocks [30]. We produced PC-based GrimAge estimates using
an R package (https://github.com/MorganLevineLab/PC-Clocks). Age accel-
eration in years (GrimAgeAA) was defined as the residual obtained from

regressing the estimated epigenetic age on chronological age. In addition,
we obtained PC-based GrimAge components (adjusted for age), including
DNAm smoking pack–years, DNAm ADM, DNAm B2M, DNAm cystatin C,
DNAm GDF15, DNAm leptin, DNAm PAI-1, and DNAm TIMP-1. Dunedin-
PACE provided an estimate of the pace of aging in years per calendar year
[16]. DunedinPACE was calculated using a publicly available R package
(https://github.com/danbelsky/DunedinPACE).

Metabolic syndrome
MetS was determined according to the National Cholesterol Education
Program (NCEP) Adult Treatment Panel III (ATP III) [31], which was updated
by the American Heart Association and the National Heart Lung and Blood
Institute in 2005 [32].

Components of metabolic syndrome
Waist circumference was measured at the midpoint between the lowest rib
and the iliac crest by trained research nurses. Fasting high density
lipoprotein (HDL) cholesterol, triglyceride, and fasting glucose levels were
measured via blood samples taken from the participants after an overnight
fast. Blood pressure was measured with a sphygmomanometer. Systolic and
diastolic blood pressure were measured three or two times (for the FTC
and ERMA, respectively), and the mean of these measurements was used
in our analysis. More detailed information about the measurement
methods used has been presented previously for the FTC [21–23] and
ERMA [25, 33]. The use of cholesterol- and glucose-lowering medications as
well as of antihypertensives was self-reported with brand names and
confirmed by a physician or a nurse during a medical examination.

Other covariates
Alcohol consumption was calculated as the number of alcoholic drinks (1
drink = 12 g ethanol) consumed per week. Smoking was classified
according to the following three categories: never, former, and current
smoker. Current smokers included both daily and occasional smokers.
Physical activity. In the FTC, the Baecke questionnaire was used to assess

physical activity [34]. Following three indexes; the work index, the sport
index, and the leisure-time index, were calculated using 16 items. All
responses were given on a five-point scale except for questions regarding
the main occupation and the types of two main sports. In the original
publication, the test–retest reliability scores of the work, sport, and leisure-
time indices were 0.88, 0.81, and 0.74, respectively [34]. The Baecke
questionnaire has been validated for cardiorespiratory fitness among
Finnish twins [35]. For the analysis, the participants were divided into the
following three groups of physical activity according to the sport
index: low (Groups 1–2), medium (Group 3), and high physical activity
(Groups 4–5).
For the ERMA study, the participants’ self-reported physical activity was

measured using a single-question scale that included seven physical-
activity-level categories ranging from necessary daily activities and
routines to participation in competitive sports [36]. For the analysis, the
participants were further divided into the groups of low (Groups 1–2),
medium (Groups 3–4), and high physical activity (Groups 5–7). The
test–retest reliability, concurrent validity against accelerometer-measured
physical activity, and associations with several physical performance
measurements have been reported previously [37].

Statistical analysis
We analyzed differences in epigenetic aging (age acceleration/pace of
aging) between the participants with and without MetS using linear
regression analyses adjusted for the within-pair dependency of twins
(family relatedness), age, and sex (including the interaction term age*sex)
(Release 16; Stata Corporation, College Station, TX, USA). In addition, we
employed a linear regression analysis to assess the association between
specific MetS components and epigenetic aging. The dependent variable
was age acceleration/pace of aging, while the independent variable was
one of the MetS components (waist circumference, HDL cholesterol,
triglycerides, fasting glucose, systolic blood pressure, and diastolic blood
pressure). For triglycerides and fasting glucose, a natural log transforma-
tion was performed due to the skewed distribution of the variables. Model
1 included an adjustment for the family relatedness, age, and sex
(including an interaction term age*sex). Then, we carried out the analyses
with multivariable adjustments. We adjusted Model 1 for smoking status,
alcohol consumption, and physical activity level (Model 2). Finally, we
adjusted Model 2 for medications (cholesterol, blood pressure, and blood
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glucose; Model 2 + medications). After the individual-level analyses, fixed-
effects within-twin-pair regression models were conducted for all twin
pairs, as well as separately for the monozygotic (MZ) and dizygotic (DZ)
pairs. If an association between MetS components and accelerated
epigenetic aging is observed in the co-twin control design, particularly
in the MZ pairs, this provides strong evidence for an association between
MetS and epigenetic aging, independent of the genetic and other shared
effects. We present exact two-sided p values and set the nominal level of
significance at p ≤ .05.

RESULTS
Participant characteristics
The mean age of the participants was 40.0 years (SD 14.6). The
correlation between chronological age and DNAm GrimAge (mean
53.1, SD 12.5) was 0.95, while the correlation with DunedinPACE
was 0.40. Furthermore, age acceleration (GrimAgeAA) exhibited a
correlation of 0.61 with the pace of aging (DunedinPACE). The
characteristics of the study participants, stratified by MetS status,
are presented in Table 1. In total, 56 participants (21%) met the
criteria for having MetS, with 59% being women. The mean age of
the participants with MetS was 52.6 years (SD 15.6), ranging from
23 to 69 years.

Differences in epigenetic aging according to MetS status:
individual-level analyses
Figure 1 presents the differences in age acceleration/pace of aging
by MetS status for all participants. GrimAgeAA was higher among
participants with MetS (n= 56) compared to participants without
MetS (n= 212) (mean 2.078 [95% CI= 0.996, 3.160] years vs.
−0.549 [−1.053, −0.045] years, between-group p= 3.5E-5). Like-
wise, the DunedinPACE estimate was higher among the partici-
pants with MetS compared to the participants without MetS (1.032
[1.002, 1.063] years/calendar year vs. 0.911 [0.896, 0.927] years/
calendar year, p= 4.8E-11) (Supplementary Table 1).

Association between MetS components and epigenetic aging:
individual-level analyses
An adverse profile of MetS components was associated with
accelerated epigenetic aging. In Model 1 (adjusted for age and
sex), all MetS components except for blood pressure were
associated with GrimAgeAA. More specifically, greater waist
circumference (standardized regression coefficient β= 0.235,
p= 2.6E-4), higher levels of triglycerides (0.218, p= 2.6E-4) and
fasting glucose (0.163, p= .027), and a lower level of HDL
cholesterol (−0.231, p= .001) were associated with higher
GrimAgeAA. Further adjustments for lifestyle factors (Model 2)
and medication (Model 2 + medication) attenuated these
associations to nonsignificant levels (Table 2).
In Model 1, all MetS components except for systolic blood

pressure were associated with the DunedinPACE estimate. Greater
waist circumference (0.349, p= 1.0E-7), higher levels of triglycer-
ides (0.255, p= 3.1E-5), fasting glucose (0.264, p= 2.5E-4), and
diastolic blood pressure (0.171, p= .017), and a lower level of HDL
cholesterol (−0.296, p= 1.3E-6) were associated with higher
DunedinPACE estimates. Further adjustments for lifestyle factors
(Model 2) and medication (Model 2 + medication) attenuated
these associations, which, however, remained statistically signifi-
cant (Table 3).

Association between MetS components and epigenetic aging:
within-twin-pair analyses
The results of the fixed-effects within-twin-pair regression analyses
are presented in Table 4 for GrimAge and in Table 5 for
DunedinPACE. For all twin pairs (Table 4a), the specific MetS
components were not associated with GrimAgeAA. However, an
adverse profile in terms of MetS components (except for fasting
glucose and systolic blood pressure) was associated with an

Table 1. Descriptive characteristics of the participants by MetS status:
Presentation of MetS component characteristics separately for all,
female, and male participants.

Characteristic Participants
without MetS
(N= 212)

Participants with
MetS (N= 56)

Sex, N (%) of participants

Female 121 (57.1) 33 (58.9)

Male 91 (42.9) 23 (41.1)

Age, mean (SD) range,
years

36.7 (12.3) 23–69 52.6 (15.6) 23–69

Cigarette smoking, N (%) of participants

Never smokers 108 (50.9) 23 (41.1)

Former smokers 43 (20.3) 18 (32.1)

Current smokers 60 (28.3) 14 (25.0)

Alcohol, mean (SD),
drinks per week∞

4.6 (6.1) 5.1 (6.9)

Level of physical activity, N (%) of participants

Low 60 (28.3) 25 (44.6)

Medium 63 (29.7) 19 (33.9)

High 79 (37.3) 7 (12.5)

Body mass index, mean
(SD), kg/m2

26.1 (5.1) 31.9 (5.3)

Components of MetS, mean (SD)

Waist Circumference (cm)

All 88.0 (12.5) 106.7 (12.7)

Female 85.2 (13.1) 103.4 (12.9)

Male 91.4 (11.2) 111.4 (11.3)

HDL cholesterol (mmol/l)

All 1.7 (0.4) 1.4 (0.5)

Female 1.8 (0.5) 1.5 (0.5)

Male 1.5 (0.4) 1.2 (0.4)

Triglycerides (mmol/l)

All 0.9 (0.5) 1.6 (1.0)

Female 0.9 (0.5) 1.4 (0.6)

Male 0.9 (0.5) 1.8 (1.3)

Fasting glucose (mmol/l)

All 5.0 (0.5) 6.2 (1.6)

Female 5.0 (0.5) 6.0 (1.0)

Male 5.1 (0.5) 6.5 (2.2)

Blood pressure (mmHg)

Systolic

All 128.0 (17.2) 143.5 (18.1)

Female 126.5 (19.0) 142.7 (19.7)

Male 130.5 (14.4) 145.5 (17.1)

Diastolic

All 74.6 (12.1) 86.0 (9.6)

Female 75.7 (12.1) 86.0 (10.2)

Male 73.8 (12.5) 87.6 (8.4)

Medication, N (%) of participants

Cholestero 0 (0) 7 (12.5)

Hypertension 14 (6.6) 17 (30.4)

Glucose 0 (0) 4 (7.1)
∞one drink = 12 g/100% alcohol.
DNAm, DNA methylation; HDL high-density lipoprotein; MetS metabolic
syndrome.
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accelerated pace of aging (DunedinPACE) (Table 5a). More
specifically, in the base model (naturally adjusted for age and
sex), greater waist circumference (unstandardized regression
coefficient β= 0.002, p= .004), higher levels of triglycerides
(0.048, p= .007), diastolic blood pressure (0.003, p= .005), and a
lower level of HDL cholesterol (−0.064, p= .007) were associated
with a higher DunedinPACE estimate. After further adjustments for
lifestyle factors and medication, these associations were attenu-
ated to nonsignificant levels (except for triglycerides).
The fixed-effects within-twin-pair regression analyses were

conducted separately for the MZ and DZ twin pairs. Greater waist
circumference (0.001, p= .046) and higher levels of triglycerides
(0.045, p= .037) were associated with higher DunedinPACE
estimates among the MZ twin pairs (Table 5b). Lower levels of
HDL cholesterol were associated with higher DunedinPACE
estimates among the DZ twin pairs (Table 5c). After further
adjustments for lifestyle factors and medication, these associa-
tions were attenuated to nonsignificant levels.

Replication analysis
The results of the replication analysis are presented as supple-
mentary material (Supplement 3 and 4). The individual-level
results derived from the YFS data (Supplement 3) were apparently
similar to those derived from the two discovery cohorts, providing
additional evidence that the association between MetS compo-
nents and accelerated aging is independent of lifestyle factors
considered in this study. The within-twin-pair results derived from
the EH-Epi data (Supplement 4) suggest that genetics fully explain
these associations not only for GrimAge but also for DunedinPACE.
When using DunedinPACE, these results consistently showed
weaker associations between MetS components and accelerated
aging among MZ pairs, who share all their genetic variation,
compared to DZ pairs, who share only 50%. This suggests that
genetics is a significant confounding factor in this association.

DISCUSSION
This study investigated the association between MetS and
epigenetic aging using two epigenetic clocks, GrimAge and
DunedinPACE, in a study population that covered the adult
lifespan. We employed a co-twin control study design, which is a
powerful setting for controlling for genetic and familial confound-
ing. The analyses were replicated in two cohorts from the same
base population. To the best of our knowledge, this is the first
study to report the association between MetS and novel
epigenetic clock DunedinPACE, and/or considering the effects of
genetic factors. Our pioneering findings suggest that MetS is
associated with an accelerated pace of aging, as measured with

DunedinPACE. This study demonstrates for the first time that the
link between MetS and premature aging may be explained by
genetics.
Our individual-level analyses revealed that epigenetic aging was

accelerated among participants with MetS compared to those
without MetS, irrespective of age and sex, which indicates that
biological aging accelerates even before the onset of MetS-related
chronic diseases. More precisely, epigenetic aging was accelerated
by 2.6 years (GrimAge) and 0.12 years/calendar year (Dunedin-
PACE) among participants with MetS compared to those without
MetS. In addition, we found that an adverse profile in terms of
individual MetS components was associated with accelerated
aging, with waist circumference exhibiting the strongest associa-
tion. Our results suggest that the association between accelerated
aging and blood pressure is weaker compared to other MetS
components. This may be explained by the relatively high number
(11.2%) of participants taking antihypertensive medications. The
results derived from the replication of the individual-level analyses
in a large Finnish cohort study were apparently similar to those
derived from the primary analyses, providing additional evidence
that also high blood pressure is associated with accelerated aging.
These findings are in line with previous research related to the
association between MetS and epigenetic aging [8,
9, 15, 17–19, 38].
Based on our preliminary analyses using older generation

clocks (data not shown) and prior literature, we opted to utilize
epigenetic clocks, GrimAge and DunedinPACE, in our research.
Previous studies using both older generation clocks and the
GrimAge clock have suggested that GrimAge may best capture
the DNAm changes associated with MetS and its components
[9, 15]. It is noteworthy that the GrimAge clock is estimated
based on seven DNAm surrogate markers, including leptin,
which is associated with obesity [39], and may thus be more
suitable than older generation clocks for estimating the
association between age acceleration and metabolic features.
However, in this study, we found stronger associations using
DunedinPACE, which was trained to predict the pace of aging
using longitudinal data based on physiological aging measures.
Therefore, DunedinPACE can be a particularly good marker for
assessing the effects of the age-related accumulation of risk
factors for MetS on epigenetic aging.
The exact mechanisms through which MetS may accelerate

aging remain unclear, but they are likely related to physiolo-
gical responses to excess fat accumulation [6, 40]. Obesity is
considered pro-aging because it is associated with increased
oxidative stress and a proinflammatory state, which, in turn,
enhance white blood cell turnover [41]. It has been suggested
that excess reactive oxygen species may contribute to

Fig. 1 Differences in epigenetic aging according to the status of metabolic syndrome (MetS).Means and 95% confidence intervals of A age
acceleration (GrimAgeAA) and B the pace of aging (DunedinPACE). Note: Adjusted for family relatedness, age, sex, and age*sex interaction.
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metabolic dysregulation, cell damage, and consequently aging
[42]. Meanwhile, HDL cholesterol may modulate epigenetic
aging processes due to its antiatherogenic effects, such as the
removal of lipid deposits, which are accompanied by a
reduction in cytotoxic effects [43]. Furthermore, HDL reduces
oxidative stress in plasma and cellular compartments, and the
signaling pathways in which it participates are interconnected
with stress response and survival pathways [43]. The effects of
oxidative stress on the metabolic dysregulation seen in MetS
may be partially mediated by DNAm [44]. Although our study
did not demonstrate a clear association between high blood
pressure and epigenetic aging, it is well known that high blood
pressure has numerous unfavorable effects on biological aging
[45]. Several key mechanisms, such as inflammation and
oxidative stress, are common to both biological aging and the
development of high blood pressure.
In this study, we investigated the association between MetS

components and different DNAm-based surrogate biomarkers
for health-related plasma proteins to gain more precise
information about the underlying mechanisms explaining the
associations (see Supplementary Table 2). DNAm pack-years
and DNAm plasminogen activator inhibitor, PAI-1, exhibited the
strongest associations with MetS components. Smoking beha-
vior is a significantly stronger predictor of DNAm age than other
lifestyle factors, particularly when using the GrimAge algorithm
for estimation [28, 46]. Furthermore, it is well documented that
smoking is associated with metabolic abnormalities and
increases the risk of MetS [47]. Our findings are in line with
previous research [9, 19] supporting the role of DNAm PAI-1 as a
major driver in the association of the GrimAge clock with MetS
and its features. This is reasonable, as MetS-related increases in
cytokines and free fatty acids increase the production of PAI-1
by the liver, which complements the overproduction of PAI-1 by
adipose tissue [6].
Previous literature suggests that the rising prevalence of MetS

can be explained by the obesogenic environment; therefore, it is
urgent that researchers identify the epigenetic mechanisms
mediating the environmental impact on MetS etiology to
recommend appropriate therapies and intervention strategies
[20]. In our study, in addition to age and sex, we were able to
acknowledge the effects of smoking, alcohol consumption, and
physical activity level, which are known to affect both DNAm and
MetS etiology [6, 13, 47–49]. Interestingly, in the primary
individual-level analyses of the study, these lifestyle factors
explained the associations of MetS components with the GrimAge
clock but not with DunedinPACE. However, in the replication of
the individual-level analyses, the associations, which were
stronger for DunedinPACE compared to GrimAge, were significant
for both clocks independent of the influence of lifestyle factors.
This provides additional evidence that the association between
MetS components and accelerated aging is independent of the
lifestyle factors considered in this study.
A major strength of the present study was its co-twin control

design, which naturally controls for age, sex, year of birth, and
familial factors (both genetic and nongenetic) that are shared
within twin pairs and may affect both exposure and outcome. To
the best of our knowledge, no previous study has acknowledged
the effect of genetics in estimating the associations between
epigenetic aging and MetS, even though genotype has an
important influence on both MetS components and the epigen-
ome [20]. Our approach allows to control for genetic confounding
when assessing the association between MetS and epigenetic
aging. The results derived from the primary within-twin-pair
analyses suggested that of the MetS components, waist circum-
ference and triglycerides are associated with the pace of aging
irrespective of genetics. In contrast, the results indicated that the
association between MetS and epigenetic aging measured using
the GrimAge algorithm might be more influenced by genetic

confounding. The within-twin-pair replication analyses indicated
that genetics fully explain these associations for both GrimAge
and DunedinPACE, providing additional evidence that genetics is
a major confounder in the association between MetS and
epigenetic aging.
In addition, one strength of our study was that the study

population covered the age range from young adulthood to older
individuals. In the primary analysis, we investigated the associa-
tion between MetS and epigenetic aging among a study
population aged 23–69 years. The results of the replication
analyses, which included middle-aged (YFS study) or older (EH-Epi)
participants representing the general population with a narrow
age range, were similar to those of the primary analysis.
Because of the cross-sectional study design, we could not draw

any causal conclusions. The findings of this study concern the
Finnish population, which is representative of high-income
populations of European ancestry. We cannot draw any firm
conclusions on how our findings apply to different ethnic groups
and socioeconomic circumstances. The lifestyle factors acknowl-
edged in the study did not include, for example, the effects of diet
or work-related stress factors, such as shift work, on the
association between MetS and accelerated epigenetic aging.
Given the complex and partially unclear pathogenesis of MetS and
its components, it is reasonable to use blood-based clocks, which
assess systemic age acceleration, in investigating the association
between MetS and epigenetic age acceleration. However, it
should be noted that we cannot draw conclusions regarding
whether MetS is associated with tissue- or cell-specific age
acceleration.
In conclusion, this study demonstrates for the first time that

genetic factors play a significant role in influencing the relation-
ship between MetS components and epigenetic aging. More
research is needed to determine which lifestyle factors may
potentially mediate or moderate the association between MetS
and epigenetic aging. Understanding the effects of different MetS
components on epigenetic aging may lead to interventions that
can slow down the aging process and prevent age-related
diseases.
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