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Abstract
Artificial Intelligence (AI) has emerged as a transformative force within medical imaging, making significant strides within 
emergency radiology. Presently, there is a strong reliance on radiologists to accurately diagnose and characterize foreign 
bodies in a timely fashion, a task that can be readily augmented with AI tools. This article will first explore the most common 
clinical scenarios involving foreign bodies, such as retained surgical instruments, open and penetrating injuries, catheter and 
tube malposition, and foreign body ingestion and aspiration. By initially exploring the existing imaging techniques employed 
for diagnosing these conditions, the potential role of AI in detecting non-biological materials can be better elucidated. Yet, 
the heterogeneous nature of foreign bodies and limited data availability complicates the development of computer-aided 
detection models. Despite these challenges, integrating AI can potentially decrease radiologist workload, enhance diagnostic 
accuracy, and improve patient outcomes.

Keywords Artificial intelligence · Deep learning · Retained Surgical bodies · Penetrating Injuries, foreign body ingestion · 
Tube malposition

Introduction

Over the past decade, artificial intelligence (AI) has ushered 
in a new age of radiology and is poised to revolutionize 
medical imaging. The concept behind AI involves creating 
systems to perform tasks that typically require human 
intelligence. As the number and type of radiological imaging 
studies increase, so does the workload on radiologists 
globally. By automating routine tasks and providing rapid 
insights, AI can be a valuable tool in alleviating radiologist 
workloads.

Ultimately, AI holds great promise in the field of 
emergency radiology, particularly in the detection of foreign 
bodies. The ability of AI models to process vast amounts 
of imaging data quickly and accurately may enhance 
diagnostic accuracy in the imaging of non-biological 

materials. However, there is a paucity of literature describing 
the use of AI for this application, as well as a variety of 
other challenges. This review will delve into the various 
applications of AI in detecting non-biological materials, 
including retained surgical bodies, open and penetrating 
injuries, catheter and tube malposition, and foreign body 
ingestion and aspiration.

Overview of artificial intelligence techniques

Within AI, machine learning (ML) techniques craft statistical 
models and algorithms to perform specific user-defined tasks 
[1]. This technique relies on expert knowledge to define and 
quantify radiographic features, which are then presented to 
the machine. Thus, machine learning trains itself to identify 
radiologic features based on patterns extrapolated from 
human-engineered data and algorithms [2]. Recent strides in 
AI have leaned heavily towards deep learning (DL), a subset 
of traditional machine learning techniques. Deep learning 
differs from traditional machine learning approaches as it 
uses a larger data set and doesn’t rely on human-engineered 
algorithms. Instead, it uses artificial neural networks (ANN) 
with hidden layers, such as convolutional neural networks 
(CNN), that permit a machine to train itself to perform a 
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task [3]. Ultimately, DL systems can autonomously extract 
radiologic data from images, removing the human interface, 
manual image processing, and the risk of operator biases 
[4]. Thus, deep learning can outperform traditional machine 
learning when the data set is larger and more complex. The 
following sections will discuss the applications of deep 
learning techniques in detecting retained surgical bodies, 
open and penetrating injuries, catheter and tube malposition, 
and foreign body ingestion and aspiration.

Retained surgical bodies

Retained surgical bodies (RSB), such as sponges, sutures, 
needles, and other instruments, can engender dire 
consequences for patients and cause severe financial and 
legal ramifications for the involved medical institution. 
These reportable “never events” are rare, with certain 
studies estimating an incidence of 1 in every 5,500–7,000 
procedures, with higher rates with abdominal surgeries of 
up to 1 RSB per 1000 surgeries [5, 6]. The actual number 
of cases with RSB is most likely underestimated due to 
low reporting rates of these incidents, and patients can be 
asymptomatic and, thus, unaware of their occurrence. Many 
authors note that the risk of this complication decreases 
if institutions follow the recommended perioperative and 
postoperative checklists and guidelines [7]. Yet over 80% of 
operations noted to have RSB reported correct counts at the 
end of the case [8]. As most RSB have standardized shapes 
and sizes, computer-aided detection (CAD) systems can be 
highly effective for identification.

Regarding the current imaging techniques to evaluate 
RSB, plain radiographs represent the gold standard 
imaging modality. On X-ray, retained objects often present 
as radiopacities with associated mass effect, mottled air, or 
density over surrounding soft tissues [9]. One benefit of this 
modality is that most sponges have radiopaque markers that 
make them detectable on X-ray [10]. However, these markers 
can become disfigured within the patient’s body, so they are 
not a reliable detection source [11]. Sponges without these 
markers are often visualized through cross-sectional imaging 
or radiographic visualization of radiolucency secondary to 
air trapping [10]. Yet it is essential to note that false-negative 
radiographs can exist, with certain authors reporting that 
intraoperative radiographs can miss up to one-third of RSB 
(Fig. 1) [12]. Further, obtaining and reading a radiograph 
can be time-consuming, particularly after a surgical case. 
Thus, AI techniques can play a prominent role in quickly 
and accurately detecting RSB.

Other imaging modalities such as ultrasound, CT, 
and magnetic resonance imaging (MRI) have also been 
proposed to identify RSB. On ultrasound, the most common 

presentation of retained surgical bodies such as sponges and 
gauze are hyperechogenic masses with hypoechoic rims [13]. 
Notably, ultrasound is minimally effective in identifying 
retained surgical bodies. In a study by Modrzejewski 
et al., the authors reported that ultrasound could detect one 
in 25 RSB cases, thus yielding a sensitivity of 4% [14]. 
Conversely, CT is the most sensitive detection method and 
is usually obtained if an X-ray returns negative and there is 
high clinical suspicion [15]. On CT, RSB often presents as 
either a heterogeneous mass in a spongiform pattern with 
an associated radio-dense linear structure and entrapped gas 
bubbles or, if the RSB is long-lasting, a reticular mass with a 
peripheral rind of calcification [9, 16]. MRI is not commonly 
utilized to identify RSB due to the risk of metallic fragment 
migration due to magnetic fields and the risk of internal 
tissue damage from the heat produced by radiofrequency 
fields [17].

Though limited in its extent, certain authors have 
explored the use of AI in RSB detection and recognized its 
potential to support human workflows (Table 1). In a study 
by Yamaguchi et al., the authors developed and validated 
a deep learning CAD system for detecting retained surgi-
cal sponges, the item found to be by far the most common 
RSB according to one report studying 191,168 operations 
at a tertiary care center [12, 18]. The software demonstrated 
strong performance across tests with phantom radiographs 
(100% sensitivity; 100% specificity), composite radiographs 
(97.9% sensitivity; 83.8% specificity), cadaver radiographs 
(97.7% sensitivity; 90.4% specificity), and normal postop-
erative radiographs (86.6% specificity) [18]. The software 
even detected sponges overlapping with bone or normal 
surgical matter like drains, monitor leads, and staples. Yet, 
these authors note that a limitation of the study was that the 
software only identified specific surgical sponges and could 

Fig. 1  72-year-old male undergoing renal transplantation. Due to an 
incorrect count, an intraoperative X-ray was performed (A), which 
was negative for any retained metallic device. The optimal protocol in 
these clinical scenarios involves providing the interpreting radiologist 
an image of the missing foreign body (B).
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not recognize other retained surgical objects [18]. Kawakubo 
et al. also developed a DL model to detect retained surgical 
items by post-processing fused images of surgical sponges 
and unremarkable postoperative X-rays [19]. The authors 
subsequently compared the model to two experienced radi-
ologists identifying retained surgical sponges [19]. The deep 
learning model had higher sensitivity and lower specific-
ity for sponge detection compared to both human observ-
ers, suggesting its potential to support diagnostic ability by 
reducing the rate of missed RSBs.

AI has also been employed to detect other less common 
RSBs, such as retained surgical needles. Accurately 
diagnosing retained surgical needles remains a significant 
issue, as certain studies report that conventional radiographs 
detect radiopaque needles less than 1 cm (cm) in diameter 
with a sensitivity of only 30% [20]. Further, surgical needles 
are one of the most incorrectly counted instruments [21]. In 
a proof-of-concept study by Asiyanbola et al., the authors 
generated a map-seeking circuit and a modified map-
seeking circuit algorithm to detect needles in abdominal 
X-rays [22]. The model in this study was deployed with 
two detection threshold settings to analyze two sets of 
images and their corresponding sub-images, one set from 
a cassette-based X-ray machine and another from a C-arm 
(digital) machine [22]. The authors set these thresholds to 
determine when the algorithm should classify an image as 
containing a retained needle. The modified map-seeking 
circuit algorithm outperformed its unmodified counterparts 
with reduced computing times and higher detection rates. 
For the cassette-based X-ray machine, this algorithm had a 
detection rate of 85.19% and a false positive rate of 9.98% at 
the lower detection threshold and rates of 53.70% and 0.00%, 
respectively, at the higher threshold. For the digital machine 
images, the algorithm had a detection rate of 72.73% and a 

false positive rate of 15.67% at the lower threshold and rates 
of 50.91% and 6.67%, respectively, at the higher threshold 
[22]. Sengupta et al. also developed a series of four CAD 
models with rule-based, random forest, linear discriminant 
analysis (LDA), and neural network classifiers to detect 
retained surgical needles on postoperative radiographs [23]. 
The model was run with two modes with different decision 
thresholds: mode I with higher specificity and mode II 
with higher sensitivity. Ultimately, the authors found that 
the mode with high specificity yielded a neural network 
sensitivity and false positive (FP) rate of 75.4% and 0.23 
FPs/image, respectively, and mode II with higher sensitivity 
had a neural network sensitivity and FP rate of 86.0% and 
0.57 FPs/image, respectively [23]. Such results not only 
suggest AI’s ability to detect surgical needles specifically, 
but also can help clinicians identify what threshold can 
maximize algorithm sensitivity and specificity. Figure 2 
demonstrates needles detected by the CAD system. In 
contrast, Fig. 3 showcases needles missed by this system 
due to overlapping structures such as bone distorting the 
shape of the needle.

Within RSB imaging, additional physical technological 
innovations can be used in conjunction with AI to enhance 
the effectiveness of detection furthe r[24]. In a study by Mar-
entis et al., the authors demonstrated the efficacy of CAD in 
detecting radiopaque micro-tags, which can be attached to 
sponges and other surgical instruments [25]. In the detection 
of these micro-tags, the high-specificity CAD system had 
a sensitivity of 79.5% and a specificity of 99.7%, and after 
the use of this CAD system in conjunction with one of five 
radiologists, sensitivity ranged from 98.5–100% and speci-
ficity from 99.0–99.7% [25]. This data ultimately shows the 
high utility of combining a CAD system with a radiologist 
to complement one another in detecting RSB.

Fig. 2  Needles of various shapes and orientations with differ-
ent backgrounds that were detected by the CAD system. Figure 
reproduced with permission from Sengupta A, Hadjiiski L, Chan 

HP, Cha K, Chronis N, Marentis TC. Computer-aided detection of 
retained surgical needles from postoperative radiographs. Med Phys. 
2017;44(1):180–191.https:// doi. org/ 10. 1002/ mp. 12011

https://doi.org/10.1002/mp.12011
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Penetrating and open injuries

Another application of AI that will be discussed involves 
imaging of penetrating wounds. This class of injuries 
is caused by objects that pierce and penetrate the skin to 
create an open wound [26]. Firearms and sharp objects 
are among the most common causes of these injuries 
[26]. One report estimated that in the United States alone, 
from 2009–2017, an annual average of more than 85,000 
emergency department visits annually were attributable to 
nonfatal firearm injury in addition to 34,538 deaths [27]. 
Additionally, the CDC estimates that annually in the United 
States, cut or pierce wounds are responsible for over 1.8 
million nonfatal injuries, along with over 3,000 deaths 
[28]. Prompt diagnosis of penetrating wounds is crucial to 
facilitate effective management and intervention.

While large, superficial foreign objects are often detected 
by palpation, imaging plays a role when detecting smaller 
foreign bodies in patients with open wounds or penetrating 
injuries. Ultrasound, for instance, can be highly useful 
in identifying a radiolucent foreign body and assisting 
with object removal [29]. On ultrasound, foreign bodies 
disrupt the homogenous echogenicity inherent in soft 
tissue and thus often present hyperechoic compared to 
surrounding tissue [30]. Over time, hypoechoic rings 
can form around the foreign object, which indicates the 

development of inflammatory processes. Some advantages 
of ultrasonography include its ability to image dynamically 
and provide timely access compared to other modalities 
[31]. In superficial tissues, US may even offer higher 
resolution than X-ray or CT. However, its effectiveness can 
be minimized when imaging deeper tissue, as ultrasound’s 
acoustic waves only penetrate to a certain depth. This may 
be further limited by bone or air obfuscation of the region 
of interest [32]. Yet, US is restricted by its dependence on 
operator skill and its limitations in detecting foreign bodies 
of smaller sizes [33]. Certain authors reported a decline in 
foreign body identification by almost 20% when the size of 
the foreign object decreased from 2 to 1 mm [31]

Conventional radiography can also detect foreign bodies 
from penetrating injuries, but the advent of more advanced 
imaging modalities makes it less commonly utilized [34]. 
This technique remains limited because its detectability 
depends on the density contrast with surrounding tissue, 
making it difficult to detect objects such as wood or plastic 
due to density similarities with soft tissue and graphite 
and gravel due to density similarities with bone [32, 35]. 
However, radiographs can still be used to identify retained 
metal, such as metallic bullet fragments (Fig. 4).

Conversely, CT is the first-line modality in imaging 
penetrating injuries due to its high specificity and sensitivity 
and its ability to acquire multiplanar images relatively 

Fig. 3  Example of needle missed by both the rule-based and the neu-
ral network-based CAD systems. Figure reproduced with permission 
from Sengupta A, Hadjiiski L, Chan HP, Cha K, Chronis N, Marentis 

TC. Computer-aided detection of retained surgical needles from post-
operative radiographs. Med Phys. 2017;44(1):180–191. https:// doi. 
org/ 10. 1002/ mp. 12011

https://doi.org/10.1002/mp.12011
https://doi.org/10.1002/mp.12011
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quickly [36, 37]. CT angiography (CTA) is also often 
utilized to detect suspected vascular injury. Ultimately, the 
multiplanar nature and re-constructability of CT and CTA 
aid in the detection of injuries within the tissue, as well 
as help predict probabilistic injuries [38]. While CT and 
CTA excel in imaging penetrating injuries, AI introduces 
a promising avenue for further enhancing accuracy and 
efficiency in detecting such injuries.

Presently, there is limited literature regarding the use 
of AI in imaging penetrating wounds. A series of models, 
TraumaSCAN and TraumaSCAN-Web, have employed 
three-dimensional (3D) anatomical models in conjunction 
with patient signs, symptoms, and imaging findings to esti-
mate the likelihood of injury to anatomic structures as well 
as the probability of subsequent conditions using Bayesian 
networks [39–41]. However, these models do not use AI to 

evaluate the images themselves; instead, they rely on human 
assessment to output a variable, which serves as an input 
for the model [42]. Thus, it is evident that further develop-
ment of AI models is necessary before CAD systems are 
implemented within clinical practice. Yet, integrating AI 
with other clinical variables presents the potential for rapid, 
streamlined clinical evaluation in urgent, high-acuity cases 
of penetrating wounds.

Before AI can be confidently utilized for the imaging 
of penetrating wounds, a number of challenges must be 
addressed. First, different models must be developed for each 
existing imaging modality. Second, the diversity of objects 
causing penetrating injuries, coupled with the multitude of 
potential locations on the body that an object can penetrate, 
require large, standardized datasets to train a potential model 
[43]. Furthermore, some penetrating objects may splinter 
within the body or may induce bone fragments, which can 
have varied trajectories as secondary projectiles [43]. Other 
challenges involve cases where penetrating objects have 
left the body. Thus, it is difficult for AI models to ascer-
tain the penetrating object’s tract within the body and the 
subsequently injured tissues [43]. However, even if not 
directly involved in the identification of the object’s track 
or injured tissues, AI models still have the potential to aug-
ment such clinical workflows through image enhancement 
or reconstruction.

Catheter/tube malposition

Endotracheal tubes (ETT), enteric tubes, and central venous 
catheters (CVCs) are devices commonly employed in emer-
gency or intensive care settings to provide and deliver care. 
However, malpositioning of these devices can result in 
adverse outcomes, either through direct harm from improper 
insertion or the inability to provide treatment. The malposi-
tion of endotracheal tubes, enteric tubes, and central venous 
catheters is estimated to occur in 5–28%, 3–20%, and 2–7% 
of cases, respectively [44]. Ultimately, an automated method 
to interpret catheter and tube malposition may allow for ear-
lier identification and reduce the detrimental effects of an 
improperly placed tube.

Chest radiography is the preferred imaging technique to 
confirm the proper positioning of these devices after place-
ment, mainly due to its low cost and wide availability [45]. 
Portable X-rays are often employed in emergency depart-
ments or intensive care units (ICU), although these often 
result in images with low contrast and high noise [45]. 
Radiographs should also be obtained after any positioning 
changes in support devices, after bedside procedures, and if 
a patient experiences an acute change in clinical status [46]. 
In addition to X-ray, ultrasound has emerged as another rapid 
and viable alternative with high diagnostic accuracy [47]. 

Fig. 4  23-year-old male who presented with a gunshot wound to the 
left hand. Other than the amputation of the fourth finger and multiple 
fractures, the X-ray demonstrates small retained metallic bullet frag-
ments about the 3rd proximal interphalangeal joint and ulnar styloid 
process
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However, ultrasound has limitations in cases with unusual 
airway anatomy, cervical collars, neck edema, subcutaneous 
emphysema, or neck masses [48].

Currently, substantial research is occurring regarding the 
use of AI in tube/catheter malposition, particularly endotra-
cheal tube detection and position localization [49]. While 
the data regarding endotracheal tube detection and critical 
tube malpositions (ETT-carina distance < 1 cm) is strong 
across studies, the models identifying subtle malpositions 
are weaker. In a model developed by An et al., the sensitivity 
and specificity for detection of critical tube position (ETT-
carina distance < 1 cm) amongst ICU images was 100% and 
99.2%-100%, respectively, whereas detection of less critical 
malpositions resulted in sensitivities and specificities of just 
72.5%-83.7% and 92.0%-100% [50]. Lakani et al. reported 
similar findings with a sensitivity of 93.9% and specific-
ity of 97.7% for differentiating ETT-carina distance of less 
than 1 cm, but the sensitivity and specificity were 66.5% 
and 99.2%, respectively, for differentiating ETT-carina 
distance > 7 cm [51]. Such results indicate that a comple-
mentary rather than entirely independent role may be most 
appropriate for such models [52]. If AI models can alert ICU 
physicians and radiologists when the endotracheal tube is 
improperly positioned, clinicians can quickly evaluate the 
need for ETT repositioning and assess patient safety.

AI has also been used to detect central venous catheter 
malposition. A model developed by Rueckel et al. reported 
that chest radiographs with improperly positioned CVCs 
were identified with an area under the receiver operating 
characteristic curve (AUC) of > 0.93–0.96 [53]. Tang et al.’s 
model achieved an AUC of 0.8715 for detecting unsatisfac-
tory tube position [54]. However, the application of AI posi-
tion detection with this class of devices presents additional 
challenges compared to endotracheal tubes. For example, it 
is more difficult to define optimal CVC position, and CVC 
insertions may occur through different veins. Additionally, 
there are a variety of mimicking objects, such as pacemaker 
wires, electrocardiogram (ECG) electrodes, and sheaths 
[53]. In their analysis of various central venous catheter 
subgroups, Tang et al. also noted that their model found 
it more challenging to detect peripherally inserted CVCs 
when compared to other subtypes, including dialysis cath-
eters and jugular and subclavian lines [54]. This is likely 
a consequence of the thinner lines of peripherally inserted 
central catheters, as well as the more variable, peripherally 
located tips compared to other subtypes [54]. These results 
highlight the need for specific models to be developed for 
certain subtypes of catheters or tubes.

Research has also explored the use of AI in detecting 
enteric tubes, though the performance of these models leaves 
room for improvement (Table 1). Mallon et al.’s algorithm 
detected critically misplaced enteric tubes with sensitivities 
and specificities of 80% and 92%, respectively [55]. Other 

authors reported sensitivities of 100% and specificities of 
76%, respectively, in identifying enteric tube malposition 
[56]. When used in conjunction with human readers, one 
model tested by Drozdov et al. increased the confidence of 
junior emergency medicine physicians and their interpreta-
tive capabilities [57]. When junior physicians were given a 
second opinion from this AI model regarding enteric tube 
placement, sensitivity and specificity increased from 96 to 
100% and from 69 to 78%, respectively [57]. However, it 
is essential to address the elevated rate of false positives 
and negatives reported by these algorithms. Analysis of one 
model noted false positives due to ECG leads and endo-
bronchial barium and false negatives when multiple tubes 
were present [55]. Figure 5 showcases class activation maps 
utilized to conduct failure analysis for the false positives and 
negatives reported. Additionally, some models highlighted 
many irrelevant features, a frequent flaw of algorithms that 
analyze the whole image. Further, applying segmentation 
techniques to circumvent this issue adds complexity and 

Fig. 5  Failure analysis using class activation maps that highlight 
regions of interest within each radiograph. A. Correct classification of 
a safe enteric tube position shows maximum activation values along 
the course of the esophagus and stomach. B. Incorrectly classification 
of a safe enteric tube position (false positive), with high activation in 
the right lower zone caused by linear opacification due to aspiration 
of barium. C. Correct classification of an enteric tube that is mis-
placed within the right lower lobe airways. D. Incorrect classification 
of a misplaced enteric tube within the left lower lobe (false negative). 
Misclassification may be due to the presence of a safely positioned 
enteric tube that enters the stomach. Figure reproduced with permis-
sion from Mallon DH, McNamara CD, Rahmani GS, O'Regan DP, 
Amiras DG. Automated detection of enteric tubes misplaced in the 
respiratory tract on chest radiographs using deep learning with two-
centre validation. Clin Radiol. 2022;77(10):e758-e64
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room for other sources of error [55, 56]. At present, the high 
number of false positives and negatives associated with these 
models minimizes their efficacy but highlights their potential 
role as a complementary tool to human readers.

Foreign Body Ingestion/Aspiration

Foreign body ingestion represents a significant clinical prob-
lem that can manifest itself in a variety of forms. Ingestion 
of foreign bodies is particularly prominent among those 
with psychiatric or neurological disorders as well as young 
children, and it is estimated that between 1995 and 2015, 
795,074 patients under the age of six years old presented to 
the ED for foreign body ingestion [58–60]. Among the most 
commonly ingested items are coins, toys, jewelry, batteries, 
and bones, including fish bones [58]. One of the major con-
sequences of foreign body ingestion is aspiration, a compli-
cation often seen among young children [59]. Globally, it is 

estimated that from 1990–2019, foreign body aspiration had 
an incidence of 109.6 per 100,000 children under five years 
old[61]. Like foreign body ingestion, the most commonly 
aspirated objects include batteries, coins, and other inorganic 
objects, though organic objects and food items are far more 
frequent causes [62].

In order to detect foreign body ingestion, various imaging 
modalities can be utilized. Ultrasound is beneficial in the 
detection of radiolucent foreign bodies and for imaging in 
the pediatric population [63]. Radiographs are commonly 
used for initial diagnosis due to their widespread availabil-
ity and ability to detect foreign bodies cheaply and rapidly. 
Further, radiographs can help quickly rule out aspirated 
foreign objects [64]. This technique is often the first-line 
imaging modality to detect radiopaque objects, yet it is 
imperative to note that a negative X-ray can only rule out 
retained radiopaque materials but not retained radiolucent 
foreign bodies [65]. Figure 6 represents the X-ray findings 
of a patient who ingested multiple radiolucent plastic bags, 

Fig. 6  51-year-old male with past medical history of schizoaffective 
and schizotypal personality disorder and multiple prior foreign body 
ingestions. Abdominal radiograph shows multiple regular radiolu-
cencies projecting over the gastric fundus and body in the left upper 

abdominal quadrant (green arrows), concerning for a radiolucent for-
eign body. This was initially missed due to the small difference in den-
sity between soft tissue and plastic bags. Upper GI endoscopy found 
multiple plastic bags, which were successfully removed
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which were initially overlooked due to a small difference 
in density between the plastic bags and soft tissue. Some 
common radiolucent foreign bodies include chicken and fish 
bones, plastic, wood, and small metal objects [66]. There is 
also often a role for serial X-ray imaging if the object is most 
likely to pass without intervention.

Compared to X-ray, CT has a higher sensitivity in imag-
ing foreign objects. This technique allows for the detection 
of radiopaque objects such as metal, stone, and glass and can 
also detect objects, including plastics, wood, or other organic 
materials [32]. The 3D rendering of cross-sectional CT images 
also allows for enhanced localization and detection, which may 
aid in removing the foreign body [67]. Further, 3D models help 
prevent the obscuring of foreign objects by bone[33]. However, 
CT is often not the modality used for initial imaging due to 
the high level of radiation, its cost, and low sensitivity for the 
detection of radiolucent materials [33].

Lastly, MRI is typically the most expensive, timely, and least 
widely available of the major imaging modalities, leading to its 
limited use in foreign body detection [33]. Additionally, it can 
be challenging to ascertain an object’s ferromagnetic properties. 
Thus, significant safety concerns exist with the potential 
interaction between the magnetic field and ferromagnetic foreign 
bodies. However, MRI is vital in the imaging of radiolucent 
objects, as it can visualize tissues not apparent on ultrasound [32].

Despite the common occurrence of foreign body ingestion 
and aspiration, there is a dearth of literature regarding the 
use of AI for imaging in this capacity. The few articles pub-
lished on AI’s role in foreign body ingestion and aspiration 
emphasize the advantage of CAD systems in not only detect-
ing foreign objects but also classifying them. In a study by 
Rostad et al., the authors developed two AI models for analy-
sis of pediatric esophageal radiographs, one which aimed to 
detect discoid foreign bodies and a subsequent one which 
aimed to classify objects such as coins or button batteries 
[68]. As button batteries in the esophagus require emer-
gent endoscopic removal, the presence of coinlike objects 
on radiographs must be differentiated [69]. Ultimately, the 
authors reported that the object detector identified all for-
eign bodies with 100% specificity and 100% sensitivity. The 
image classifier also demonstrated strong performance, clas-
sifying 6/6 (100%) button batteries as such, 93/95 (97.9%) 
of the coins as such, and 2/95 (2.1%) of the coins as button 
batteries [69]. Outside of these instances, there were only 
two cases incorrectly classified as coins: a stacked button 
battery and coin (Fig. 7), as well as two stacked coins.

Limitations of AI imaging

Yet, these cases of incorrect object classification illustrate 
an essential limitation when applying AI to foreign body 
imaging. First, the model’s ability to detect objects relies 

on the images encountered during the training data set. 
Thus, the model will not be able to identify and classify 
foreign objects it has not previously encountered. This was 
particularly evident in the model developed by Kawakubo 
et  al., as the software only identified specific surgical 
sponges for which the model was trained and could not 

Fig. 7  An 11-month-old girl with a stacked button battery and coin 
in her proximal esophagus. A: An anteroposterior chest radiograph 
shows the stacked button battery and coin were detected but classified 
as a coin. B: The lateral radiograph view shows the stacked button 
battery and coin. Figure reproduced with permission from Rostad, B. 
S., E. J. Richer, E. L. Riedesel and A. L. Alazraki (2022). "Esopha-
geal discoid foreign body detection and classification using artificial 
intelligence." Pediatr Radiol 52(3): 477–482
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recognize other retained surgical objects [19]. Moreover, 
the breadth and variety of training datasets, encompassing 
objects in diverse orientations and forms, are crucial for AI's 
ability to detect foreign bodies. Further, gaining access to 
expansive datasets remains challenging given patient data 
and privacy concerns, though systems are being developed 
to circumvent this [70]. Complicating the matter is the 
fact that models must be developed and trained for each 
imaging modality, a particularly significant issue when 
the object composition is unknown and the most effective 
imaging technique is not immediately apparent. Lastly, 
there are challenges associated with training software to 
recognize and/or classify heterogeneous objects. Objects 
of uniform size and shape, such as surgical equipment or 
medical tubes and lines, are far easier to train models to 
recognize compared to commonly aspirated or ingested 
objects like fish bones, toys, or jewelry of varying size 
and composition. Thus, it is unsurprising that one of the 
first reports demonstrating AI’s utility in imaging ingested 
foreign bodies has been with coins and button batteries: 
objects of uniform shape and size.

Conclusion

Despite AI’s enormous potential in foreign body detection, 
current applications have thus far been in research settings, 
often training and validating models on devised images 
such as those with cadavers or fusion images. Before the 
widespread deployment of AI systems, these models must 
be trialed on natural datasets to ensure real-world clinical 
utility and performance. Though significant legal hurdles 
surrounding liability and tort law remain that may limit AI’s 
potential use, the ongoing advancements in the field augment 
its clinical utility and potential [71]. Despite these challenges, 
the advancements in AI technology, coupled with collective 
efforts to obtain diverse and comprehensive datasets, offer 
a promising trajectory for the future of medical imaging 
in foreign body analysis. Further, the integration of AI in 
clinical practice has the potential to alleviate radiologist 
workload, enhance their efficiency, and reduce diagnostic 
errors. As the field of medical imaging continues to progress, 
the collaboration between AI and radiology may ultimately 
enhance diagnostic precision and patient care.
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