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Triple negative breast cancer (TNBC) accounts for 15–20%of breast cancer cases in theUnitedStates.
Systemic neoadjuvant chemotherapy (NACT), with or without immunotherapy, is the current standard
of care for patients with early-stage TNBC. However, up to 70% of TNBC patients have significant
residual diseaseonceNACT is completed,which is associatedwith ahigh risk of developing recurrence
within two to three years of surgical resection. To identify targetable vulnerabilities in chemoresistant
TNBC, we generated longitudinal patient-derived xenograft (PDX) models from TNBC tumors before
and after patients received NACT. We then compiled transcriptomes and drug response profiles for all
models. Transcriptomicanalysis identified theenrichmentof aberrant protein homeostasispathways in
models from post-NACT tumors relative to pre-NACT tumors. This observation correlated with
increased sensitivity in vitro to inhibitors targeting the proteasome, heat shock proteins, and
neddylation pathways. Pevonedistat, a drug annotated as a NEDD8-activating enzyme (NAE) inhibitor,
wasprioritized for validation in vivo anddemonstrated efficacy as a single agent inmultiple PDXmodels
of TNBC. Pharmacotranscriptomic analysis identified a pathway-level correlation between
pevonedistat activity and post-translational modification (PTM) machinery, particularly involving
neddylation and sumoylation targets. Elevated levels of both NEDD8 and SUMO1 were observed in
models exhibiting a favorable response to pevonedistat compared to those with a less favorable
response in vivo. Moreover, a correlation emerged between the expression of neddylation-regulated
pathways and tumor response to pevonedistat, indicating that targeting these PTM pathways may
prove effective in combating chemoresistant TNBC.

TNBC is a subtype of breast cancer that lacks expression of the estrogen and
progesterone receptors and does not overproduce epidermal growth factor
receptor 2 (HER2)1. The current standard of care for patients with early-
stage TNBC consists of combinations of DNA-damaging agents (anthra-
cyclines, phosphoramide mustards, platinum salts) and mitotic inhibitors

(taxanes)1–3. Recently, immunotherapy has been approved for treating
TNBC in the neoadjuvant setting, and PARP inhibitors are increasingly
used for germline BRCA-mutant tumors, though still in the adjuvant
setting4–6. While approximately one-third to one-half of TNBC patients
receiving NACT achieve either a complete or partial response, the
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remainder of patients harbor significant residual cancer burden at the time
of surgery, and this is associated with a high risk of recurrence ormetastasis
within two years of surgical resection7. Thus, identifying targetable vul-
nerabilities in chemoresistant TNBC remains an unmet clinical need.

High throughput drug screening identifies therapeutic vulnerabilities
in cells derived from various tumor types. Large-scale high throughput
screens (HTS), such as the Cancer Cell Line Encyclopedia (CCLE)8, Cancer
Target Discovery and Development (CTD2), and the Genomics of Drug
Sensitivity in Cancer (GDSC)9, have historically identified multiple drug
targets and mechanisms associated with the development and progression
of cancer. The coupling of large-scale HTS with genomic, transcriptomic,
proteomic, and metabolomic information has refined the impact of
screening studies and has been effectively leveraged to identify drug-specific
biomarkers10, define mechanisms of action11, and develop predictive algo-
rithms for personalized medicine applications12. A limitation in some of
theseHTS studies has been their reliance on established cell lines that do not
fully recapitulate the extent of heterogeneity in patient-derived tumors. In
response to this limitation, pre-clinical analysis of tumor-specific ther-
apeutic vulnerabilities are increasinglyusingpatient-derived tumor cells and
model systems.

To identify therapeutic vulnerabilities, we developed a pipeline for
transcriptomicsandhigh throughputdrug susceptibilityprofilingusing cells
from orthotopic PDXmodels. Previously, we applied this approach to cells
isolated from sixteen treatment-naïve PDX models representing multiple
TNBC subtypes and identified both pan-active and subtype-specific drugs13.
This study interrogates cells derived from paired pre-, mid-, and post-
NACT PDXmodels to identify targetable vulnerabilities in chemoresistant
TNBC tumors. Our findings revealed that mid- and post-NACT tumors
exhibited heightened sensitivity in vitro to drugs targeting protein home-
ostasis pathways. Pre-clinical studies further confirmed the effectiveness of
pevonedistat as a single agent in treating TNBC.

Results
Generation of longitudinal TNBC PDX models
Aspart of the prospective neoadjuvantARTEMIS trial (NCT02276443)13–15,
we obtainedfine needle aspirates or core biopsies at critical clinical decision-
making time points (Fig. 1) including clinical presentation before NACT
(denoted as pre), from residual tumors after four cycles of Adriamycin
(doxorubicin) and cyclophosphamide (AC; timepoint denoted asmid), and

at surgical resection of residual tumors after paclitaxel ± targeted therapy
(denoted as post). The cohort consists of 34 PDX profiles, eighteen more
thanwepreviously reported13, andnow includes ten longitudinal sets (Fig. 1,
Supplementary Fig. 1). Six pre-NACT models from the initial publication
were expanded with longitudinal information, while four represent newly
screened sets. Molecular subtyping analysis16 of this cohort revealed a
representative sampling of TNBC subtypes with eight basal-like 1 (BL1), six
basal-like 2 (BL2), five luminal androgen receptor (LAR), six mesenchymal
(M), and nine unstable (UNS) when using the 4-class TNBCtype model16.
Four of the longitudinal models altered molecular subtypes with treatment,
two of which (TNBC283&TNBC047) switched to theM subtype following
NACT (Supplementary Fig. 1). An additional two sets (TNBC117 and
TNBC010) had an increasingly significant association with the M subtype
(Supplementary Fig. 2), but not to the extent of switching the overall
classification.

Curation of high throughput drug screening results
We performed unbiased high throughput drug viability screens on this
panel of 34 PDX models using a library of 618 mechanistically annotated
probes and oncology drugs (Supplementary Table 1). For these screens,
freshly isolated tumors were depleted ofmouse cells and transferred to 384-
well plates, where they were cultured in serum-free Mammocult media.
After 72 h of incubation with the drug libraries, viability was assessed using
CellTiterGlo (CTG).We calculated thepercent inhibition relative toDMSO
control and fit the concentration response across the tested range (0.1, 1.0,
and 10 μM) to derive area under the curve (AUC) values used during
downstreamanalysis.Next,we applied a series of subjectivefilters to remove
drugs that were either pan-active or pan-inactive by applying a threshold on
the observed range of AUC values (RANGE ≥ 0.5), followed by removing
potential growth-confounded drug responses (Growth index versus AUC
r2 > 0.25) (Supplementary Fig. 3). In total, 145 drugs demonstrated a het-
erogenous, non-growth correlated response and were appropriate for
downstream analysis.

Differential drug susceptibility of matched PDX sets
We then performed hierarchical clustering on the pharmacologic profiles
of PDX-derived cancer cells and found that they segregated by the patient
of origin (χ2 p value = 1.99 × 10–7, Fig. 2a), demonstrating that patient-
level heterogeneity drove drug response profiles to a greater degree than
therapy-induced changes. We observed two exceptions to patient-level
co-clustering where the pre-treatment tumors, PIM300 and PIM388,
separated from their corresponding mid-NACT and post-NACT treated
tumors, PIM328 and PIM393/PIM404, respectively. To better define
what drove these differences, we correlated the AUCs between matched
pairs and saw a high overall correlation in drug susceptibility (AUC)with
substantial variability in a small subset of drugs, as discussed below
(Supplementary Fig. 4a, d). A more granular analysis of the correlation
between technical replicates across assay plates (Supplementary Fig. 4b,
c, e–g) showed a low correlation in a subset of wells from an isolated
region of the assay plate for PIM328 (Supplementary Fig. 4c), when
compared to its pre-treatment pair PIM300 (Supplementary Fig. 4b).
Conversely, plate effects were not detected in the technical replicates of
pre-treatment model PIM388 (Supplementary Fig. 4e). Thus, we con-
clude that the separation of PIM328 from its paired model is more likely
driven by an experimental artifact, while the separation of PIM388
appears to be biologically driven.

Next, we looked for drugs with differential activity between the pre-
NACT and mid/post-NACT time points using a linear response model
that accounted for both the patient identifier and sample time point. An
initial unpaired analysis to evaluate differential drug effects did not
identify any significant changes. Accordingly, we moved to a paired
analysis that assessed the consistency in the direction and magnitude of
the ΔAUC between matched-pairs. From this analysis, we observed a
subset of therapeutic targets that were repeatedly more effective in the
mid/post-NACTmodel compared to their respective pre-NACTmodels

PIM014 PIM024 PIM051TNBC117
PIM025 PIM038TNBC231
PIM137 PIM172TNBC249
PIM190 PIM231TNBC283
PIM242 PIM269TNBC010
PIM254 PIM311TNBC139
PIM262 PIM284 PIM321TNBC047
PIM300 PIM328TNBC271
PIM387 PIM402 PIM407ATID099
PIM388 PIM393 PIM404ATID608
Multiple x10

PiD Pre Mid Post

Fig. 1 | Study design. Schematic representation of the ARTEMIS clinical trial
showing PDX models established at clinical presentation (Pre), after four cycles of
Adriamycin and cyclophosphamide (AC, Mid), and after completion of NACT
(Post). Patient IDs (PiD) and Patient in Mouse (PIM) IDs that were established at
each time point are shown below. Color code denotes matched patient/PDX serial
models.
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(Fig. 2b, c). These analyses demonstrate the power of longitudinal follow-
up when studying chemoresistance in the context of heterogeneous
patient populations.

Drug classes that tended to become less active in mid-NACT or post-
NACT versus pre-NACT PDX models included anthracyclines, taxanes,
and multiple serine/threonine and receptor tyrosine kinase inhibitors
(SupplementaryTable 2). Importantly,mid-NACTmodelswere established
from tumors that showedpoor responses toAC inpatients, andpost-NACT
models were established from tumors that showed poor response to both
AC (at mid-treatment) and the taxane paclitaxel ± additional therapies (at
post-treatment). Conversely, tumor cells isolated from PDX models estab-
lished from mid- and post-NACT tumors showed enhanced sensitivity

relative to pre-NACT tumors to distinct drug classes, including epigenetic
agents, DNA/RNA synthesis inhibitors, proteotoxic agents, and pro-
apoptotic signaling drugs (Fig. 2b, c). Some of the genes and pathways
targeted by these drug classes have been implicated in contributing to the
development of chemoresistance. For example, BCL-2 inhibitors have been
shown to re-sensitize TNBC cell lines to Adriamycin17, suggesting their
potential use as a combination therapy with NACT in TNBC. Aberrant
DNA methylation and histone acetylation have also been broadly impli-
cated with resistance to multiple classes of chemotherapy18,19, which was
consistent with our observation that DNA methyltransferase and histone
deacetylase inhibitors showed increased activity in mid/post-NACT PDX
models.

a

Epirubicin

Doxorubicin

Pevonedistat 
(MLN4924)

LBH589 (HDAC)

Clofarabine 
(DNA Synthesis)

b

c

ΔAUC

-lo
g(

p v
al
)

Fig. 2 | Longitudinal analysis of drug response profiles. a Heatmap showing the
pairwise-Pearson correlation of cell lines using the z-normalizedAUCs of thefiltered
drug profile. Top bar identifies the timepoint (Time) and Patient ID (PiD) using the
color code denoted in the figure. b Volcano plot of the mean difference in the AUC
(Timex-T0) by the log significance of the interaction determined from the linear
model. The top 5 drugs are highlighted, in addition to components of the NACT

regimen, which show an acquired resistance. Dotted lines show cut offs for
� log10 p� value

� �
≥ 1:3& absðmean ΔAUCð ÞÞ≥ 0:05) used to prioritize the top

compounds from the screen. cHeat map showing the shifts in AUC values for each
matched pair. Y-axis shows the Patient ID number grouped byMid-to-Pre and Post-
to-Pre comparisons. X-axis is grouped according to pre-established mechanistic
class and annotated by target.
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We next ranked drugs by their overall magnitude and statistical sig-
nificance in conferring differential drug activity (mid vs pre or post vs pre).
The top five drugs were pevonedistat and MLN4924, which are the same
drug from two different sub-libraries and commercial sources and are
annotated as anNAE1 inhibitor, followed by LBH589, a histone deacetylase
(HDAC) inhibitor, and clofarabine, a DNA synthesis inhibitor also repre-
sented in two sub-libraries (Fig. 2b). In addition to pevonedistat and
MLN4924, multiple additional proteotoxic agents (Proteasome: MG132,
Carfilzomib; HSP: Elesclomol, NVP-AUY922, 17 DMAG, AT-13387)
showed enhanced sensitivity in the mid/post-NACT models supporting a
potential indication for the use of this drug class in treating chemoresistant
TNBC. We prioritized pevonedistat for further investigation as it was the
highest-ranking compound among the proteotoxic agents.

Comparisons of longitudinal tumor transcriptomes
We performed a longitudinal analysis of gene expression profiles in parallel
with the drug studies. From hierarchical clustering analysis, we found that
pre- and post-treatment gene expression profiles from PDX tumors estab-
lished from the same patient clustered together (Fig. 3a), recapitulating the
clustering pattern seen in the drug response profiles (Fig. 2a). Next, we
performed a differential gene expression analysis and identified 341 genes
that were differentially expressed across time points (DEGs; Supplementary
Table 3)when tumors fromthe samepatientswerepaired, compared toonly
6 DEGs when unpaired. Gene-pathway enrichment of the DEGs from the
matched-pairs analysis identified an interconnected network that included
multiple signaling pathways regulating protein homeostasis, including the
KEGG20 spliceosome, proteasome, and ubiquitin-mediated proteolysis
pathways (Fig. 3b). These data are further supported by an analysis of
previously published RNA-seq data from a PDX model treated with AC
therapy21, which showed significant enrichment of genes in the KEGG
ubiquitin-mediated proteolysis and multiple sumoylation and neddylation
pathways in residual tumor cells after AC when compared to vehicle
(Supplementary Table 4). Thus, the transcriptomic data provide additional
support for targeting protein homeostasis pathways in the post-NACT
setting of chemoresistant TNBC.

Unbiased analysis of pevonedistat activity
To discern the potential mechanisms of action for pevonedistat in this
setting, we tested whether the association between protein modification
and pevonedistat activity could be seen in previously published drug
screening data sets (GDSC1 and CTD2), which we downloaded through
the DepMap data portal (https://depmap.org/portal/). We first modeled
the pevonedistat dose response using the AUCmetric and trained a series
of leave-one-out cross-validated (LOOCV) L1-penalized (lasso) linear
regression models22. Each model incorporated genes from an individual
C2 canonical pathway from the Molecular Signatures Database
(MSigDB)23. The cross-validated predictive performance was then eval-
uated byminimizing the rootmean squared error (RMSE) ormaximizing
the Pearson correlation to rank the predictive capability of individual
pathways. When this analysis was applied to the CTD2 dataset24,
“REACTOME_POST_TRANSLATIONAL_
PROTEIN_MODIFICATION” was identified as the most predictive
pathway (LOOCV Pearson R = 0.72, Supplementary Fig. 5a). Further
feature importance, calculated as the absolute value of the coefficients of
the tuned model, for genes within this pathway revealed enrichment of a
narrow set of genes involved in neddylation and the deubiquitination
machinery. This finding aligns well with established mechanisms of
action for pevonedistat and serves to validate our approach. The
“REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICA-
TION” pathway was also identified as the most predictive gene set
(LOOCV Pearson R = 0.69) when the lasso regression analysis was
applied to the GDSC1 dataset9 (Supplementary Fig. 5b). However, the
top-ranked genes prioritized by this dataset also identified additional
post-translational modifications including sumoylation. The fact that the
top-ranked genes vary across data sets, despite belonging to the same

pathway, underscores the ability of pathway analysis to provide a more
robust interpretation of the active biological processes25.

Next, we performed the lasso regression analysis using only breast
cancer data. Here, we identified “REACTOME_SUMOYLATIO-
N_OF_RNA_BINDING_PROTEINS”, “REACTOME_SUMOYLATIO-
N_OF_DNA_DAMAGE_RESPONSE_AND_REPAIR_PROTEINS”,
“REACTOME_SUMOYLATION_OF_CHROMATIN_ORGANIZA-
TION_PROTEINS”, and “KEGG_UBIQUITIN_MEDIATED_PROTEO-
LYSIS” using the CTD2 dataset (Supplementary Fig. 5c) and
“REACTOME_SUMOYLATION_OF_UBIQUITINYLATION_PRO-
TEINS”, “REACTOME_SUMOYLATION_OF_CHROMATIN_ORGA-
NIZATION_PROTEINS”, and “REACTOME_SUMOYLATION_OF_
DNA_REPLICATION_PROTEINS”, using the GDSC1 dataset (Supple-
mentary Fig. 5d). It is important to note that the C2 canonical pathway gene
set includes eighteen signatures associated with sumoylation, but only one
for neddylation. As neddylation remains understudied compared to
sumoylation, it is possible that we were not powered to capture additional
facets of neddylation transcriptomic signatures.

When the LOOCV lasso regression analysis was applied to our dataset,
we identified the closely related sub-pathway “REACTOME_SU-
MO_IS_CONJUGATED_TO_E_UBA2_SAE1” (LOOCV Pearson
R = 0.44) and “BIOCARTA_SUMO_PATHWAY” (LOOCV Pearson
R = 0.41) among the top 50 pathways that predicted pevonedistat activity
(Supplementary Fig. 5e). Feature importance analysis of both pathways
revealed a strong association between the expression levels of SAE1 and
SUMO1andpevonedistat activity in our dataset. A complete list of pathway
information and feature importance analysis for all studies can be found on
theGithub page listed in the data availability section. Collectively, these data
show an increasing relevance of the combined action of PTMs, including
neddylation and sumoylation, in the activity relationship of pevonedistat
response and TNBC. However, it should be noted that we were unable to
find features that could robustly predict response across all datasets.

Pevonedistat studies conducted in TNBC cell lines in vitro revealed
selective activity within a proteomic-defined TNBC subpopulation that
significantly overlaps with the transcriptionally-defined BL1 TNBC26. We
tested if the response to pevonedistat within our dataset correlated with
distinct TNBC subtypes. Following Lehman et al.16 we evaluated the cor-
relation between the continuous TNBCtype coefficients and drug response
and found an association between pevonedistat activity and the BL1 andM
TNBC subtypes (Supplementary Fig. 6).

Pre-clinical study of pevonedistat in paired tumors
Both the drug screen and transcriptomic data suggested that protein
homeostasis pathways represented a targetable vulnerability in TNBC fol-
lowing NACT. Based on these experimental observations, we prioritized
pevonedistat for pre-clinical studies. We chose three longitudinal pairs
(TNBC231: PIM025 and PIM038, TNBC283: PIM190 and PIM231,
TNBC139: PIM254 and PIM311) that showed strong enhancement of
pevonedistat response inmid- or post-NACT tumors relative to pre-NACT
tumors in vitro and one longitudinal pair that showed robust response in
both the pre-NACT and post-NACT settings (TNBC249: PIM137 and
PIM172) (Supplementary Fig. 7). Tumor-bearing mice were treated daily
with vehicle or 60mg/kg pevonedistat27. This drug regimen was well-
tolerated as there were no significant changes in activity or body weight
between vehicle and pevonedistat-treated animals (Supplementary Fig. 8).
Caliper measurements were taken twice weekly, and tumor volumes were
calculated to evaluate the effect of pevonedistat on tumor growth. Three
models had substantial responses to pevonedistat ranging from a two-thirds
reduction of tumor volume (PIM311), no increase in tumor volume
(PIM254), or a slowed increase in tumor volume (PIM137) relative to
controls (Fig. 4). The remaining models exhibited less robust responses to
pevonedistat, but in each case, slower increases in tumor volume on treat-
ment were observed compared with the respective vehicle-treated controls.
We continued pevonedistat treatment for up to three months in both
PIM254 andPIM311 to determine the durability of the response. Resistance
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Transcriptional misregulation
in cancer

Fig. 3 | Longitudinal analysis of transcriptomic profiles. a Heatmap of the
pairwise-Pearson correlation of cell lines using the z-normalized ComBat-adjusted
TPM. Top bar denotes the timepoint and Patient ID using the color code denoted in
the figure. bHeterogeneous network representation generated by performing gene-

pathway enrichment analysis using pathfindR. Significantly altered genes are
represented by circles, while pathway annotations are shown as squares, with con-
necting lines to member genes. Pathways and genes related to protein homeostasis
are highlighted in yellow, while those related to RNA homeostasis are in green.
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to pevonedistatwasnot observed inPIM254 tumors, but a subset of PIM311
tumors developed resistance within two months of treatment (Supple-
mentary Fig. 9).

Given the identification of both neddylation and sumoylation path-
ways in our transcriptomic analyses, we conducted immunohistochemistry
to assess levels of NEDD8 and SUMO1 in PDX tumor samples (Fig. 5a, b).
NEDD8andSUMO1 levelswere thehighest in those tumors that responded
to pevonedistat in vivo. Quantification of staining intensity via H-score
similarly showed that the three models with the strongest response to
pevonedistat, PIM254, PIM311, and PIM137, also had the three highest
H-scores (Fig. 5c–e) and both NEDD8 and SUMO1 intensity was strongly
correlated with response (Fig. 5f). While we could appreciate heterogeneity
in the nuclear/cytoplasmic staining patterns within individual tumors, the
general high-to-low trends of NEDD8 and SUMO1 abundance were
maintained whether we quantified nuclear, cytoplasmic, or cellular staining

intensity (Supplementary Fig. 10). An exception to this trend was PIM172,
which showed comparable levels of NEDD8 and SUMO1 to those tumor
models that responded robustly to pevonedistat in vivo.

In vivo pharmacotranscriptomic analysis
To understand the relationship between gene expression and response in
vivo, we correlated gene expression to the tumor to control ratio (T/C),
described in methods, followed by gene set enrichment analysis on well-
correlated genes. These analyses identified multiple genes belonging to the
KEGG ubiquitin-mediated proteolysis pathway associated with pevonedi-
stat response. Importantly, this gene set captures multiple components of
post-translational modifications, including sumoylation and neddylation
machinery (Supplementary Fig. 11), which is consistent with what was
identified when analyzing the transcriptomes of the longitudinal PDX
models (Fig. 3b), providing further evidence of the connection between this
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Fig. 4 | In vivo efficacy study of pevonedistat. Tumor volume growth curves for
individual PDX models treated either with vehicle (black) or pevonedistat (red).
Statistical significance denoted under the PDX_ID, was determined using a two-way

ANOVA applied to the time series. Arrows connect paired models, with pre-NACT
models on the left and corresponding mid/post-NACT models on the right. Data
points and error bars show the mean and standard deviation respectively.

https://doi.org/10.1038/s41523-024-00644-4 Article

npj Breast Cancer |           (2024) 10:37 6



pathway and pevonedistat response in chemoresistant TNBC. Taken
together, these findings suggest that the efficacy of pevonedistat may be
attributed to inhibition of both the neddylation (NAE1) and sumoylation
(SAE1)28 activating enzymes and/or through disruption of the crosstalk that
occurs between neddylation and sumoylation pathways during a stress
response29.

Temporal analysis of in vivo pevonedistat response
To determine if downstream effectors of neddylation or sumoylation cor-
related with pevonedistat activity in vivo, we repeated our pre-clinical
pevonedistat studies and collected fine needle aspirates (FNAs) from indi-
vidual tumors as a functionof time throughout treatment for one responsive
pair of PDXmodels (PIM254 and PIM311) and one resistant pair (PIM025
and PIM038) (Fig. 6a). RNA sequencing was performed and subjected to
single sample gene set enrichment analysis (ssGSEA) using theC2 canonical
pathways from MSigDB. We then used a recursive feature elimination

support vector machine (SVM) analysis30 to identify pathways where
activity varied across the time series, and we identified multiple pathways
known to be regulated by neddylation and sumoylation. These included
upregulation of the NRF2 pathway, multiple cell cycle pathways, and
pathways describingTP53 regulation (Fig. 6b). Importantly, bothNRF2 and
Cdt1 stabilization are well-established responses to pevonedistat
treatment31,32. Pevonedistat responsive pairs (PIM254 and PIM311) but not
resistant pairs (PIM025 and PIM038) exhibited alterations in these path-
ways as a function of time following pevonedistat treatment.

Discussion
In this study, we leveraged a unique collection of longitudinal PDXmodels
to identify targetable vulnerabilities that emerge after neoadjuvant AC
treatment for potential use in the treatment of chemoresistant TNBC. It
should be noted that mice engrafted with patient tumors were never treated
with AC, thus transcriptional changes and drug sensitivities identified in
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mid- and post-NACT tumors emerged during patient treatment and
remained durable upon tumor engraftment and PDX establishment. From
the combined longitudinal analyses of these models, we identified multiple
tractable therapeutic targets for NACT-resistant TNBC. These included
targeted drug classes that have been previously implicated in contributing to
the development of chemoresistance. For example, BCL-2 inhibitors
showed elevated susceptibility in post/mid-NACTmodels when compared
to their pre-NACT counterparts in our data set. Consistently, BCL-2 inhi-
bitors have also been shown to re-sensitizeTNBC cell lines toAdriamycin17,
suggesting their potential use as a combination therapy with NACT in
TNBC. Similarly, aberrant DNA methylation and histone acetylation have
been broadly implicated across multiple cancers with resistance to
chemotherapy18,19. This is recapitulated in our dataset with the observation
that DNA methyltransferase and histone deacetylase inhibitors showed
increased activity in mid/post-NACT PDX models. We also made more
novel observations with the identification of specific pathways that con-
verged on protein homeostasis as consistently dysregulated after NACT.
Here, we demonstrated the efficacy of pevonedistat as a single agent in a
subset of PDXmodels, setting the stage for further validation of neddylation
inhibition, along with exploration of sumoylation inhibition, in chemore-
sistant TNBC. Interestingly, others have found the NEDD8 pathway to be
enriched in basal A breast cancer cell lines, and these cell lines were sensitive
to NEDD8 depletion and inhibition in vitro33. A multi-omic analysis of
TNBC patient tumor samples identified a vulnerability to pevonedistat in a
proteomic-defined subpopulation that shares many attributes with BL1
TNBCtype tumors, which heavily overlaps with the basal A group, indi-
cating a potential sensitivity in this particular subset of TNBC26,34.

Pevonedistat is a first-in-class drug that inhibits an enzymatic cascade
that appends NEDD8 to substrate proteins. Under normal physiological
circumstances, neddylation affects the stability, activity, and localization of a
wide array of substrates to maintain cellular homeostasis. The most pro-
minent substrates regulated by neddylation are the family of Cullin-RING
ligases, components of the ubiquitin-proteasome system that undergo a
conformational shift resulting in increased activity following neddylation.
More recently, neddylation has been shown to target a wider array of pro-
teins that are implicated in a broader range of cellular processes including
mitochondrial fission/fusion cycles, metabolic reprogramming, ribosomal

biogenesis, alternative splicing, and regulation of the tumor
microenvironment29,33,35–39. In our studies, we tested pevonedistat as a single
agent and found that it significantly reduced tumor volumes relative to
vehicle treatment in three of the eight PDX models tested. As pevonedistat
was identified through an emphasis on chemoresistant samples in our
analysis, clinical utilization of pevonedistat would likely start in the setting of
chemoresistant disease.Asweunderstandmore about the responsive patient
population, there may be an avenue to explore pevonedistat as a combina-
tion therapy in the neoadjuvant setting. In particular, chemotherapy has
been shown to induce proteotoxic stress in cancer cells40,41, while aberrant
neddylation patterns along with hybrid neddylation-sumoylation mod-
ifications also arise during conditions of proteotoxic stress29. This interplay
between neddylation and sumoylation could contribute to the identification
of signatures associated with both pathways throughout our analyses. For
any clinical development, it will be important to identify biomarkers pre-
dictive of response, which could start with further exploration of NEDD8
and SUMO1 protein levels in tumor tissues based on the results in our PDX
models, and to explore mechanisms of pevonedistat resistance. PTEN loss
has been implicated as a driver of pevonedistat resistance in breast cancer42.

By necessity, our PDX models were studied in immunocompromised
mice. However, there is a body of literature that implicates neddylation in the
function of various immune cell lineages. Studies have shown impaired pro-
liferation, survival, and activation of T cells when neddylation is inhibited43–46.
In other settings, neddylation abrogates the cytokine production and tumor
infiltration ofmacrophages andmyeloid-derived suppressor cells39,47–49. Given
the complex nature of these pleiotropic interactions, further studies of pevo-
nedistat in immune-competent models of TNBC are warranted to determine
if potentialmicroenvironmental effects could improveorhinderoverall tumor
responses. Taken together, our results show promise with pevonedistat in
chemoresistant TNBC PDX models, providing the basis for future investi-
gations to optimize therapeutic efficacy, better stratify responsive and resistant
tumors, and explore potential synergistic combinations.

Methods
Collection of patient-derived materials
All research conducted in human patients followed national guidelines
including the Common Rule (http://www.hhs.gov/ohrp/humansubjects/

Fig. 6 | Perturbational response to pevonedistat
in vivo. a Schematic of the FNA time series design.
bHeatmap of the top ssGSEA pathways that showed
a significant (p < 0.001) difference in the time series
of the responsive class but not (p > 0.05) in the
vehicle-treated controls. Top bar indicates class of
pevonedistat response (responsive, non-respon-
sive), PDX_ID, timepoint, and treatment.

b

a
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commonrule/), declaration of Helsinki (https://www.wma.net/policies-
post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-
involving-human-subjects/) and the Health Insurance Portability and
Accountability Act (HIPAA) privacy and security rules50. All patients from
whom samples were collected for the generation of PDX models gave
informed consent andwere enrolled in theARTEMIS trial (NCT02276443),
an MD Anderson IRB-approved protocol (2014-0185).

Animals
All experimental procedures were approved by the Institutional Animal
Care and Use Committee (IACUC) at MDAnderson Cancer Center under
IACUC protocol 00000978. Female NOD/SCID mice (NOD.CB17-
Prkdcscid/NcrCrl) were obtained from Charles River, National Cancer
Institute Colony. Endpoints for animal experiments were selected in
accordance with IACUC-approved criteria, generally when tumors were
1.0–1.5 cm in diameter. Animals were humanely euthanized according to
NIH and AAALAC guidelines, via carbon dioxide exposure followed by
cervical dislocation.

PDX cell preparation for drug screen
Cell preparation and quality control was performed as previously
described13. In brief, the fourth mammary fat pads of 4-to-8-week-old
female NOD/SCID mice were implanted with 500,000 PDX tumor cells,
while themicewere anesthetized via isoflurane.Tumor cellswere suspended
in 20 µL of a 50:50mixture ofDMEM/F12 (HyClone, Cat.No. SH30023.01)
media andMatrigel, (Corning, Cat.No. 354234) and thenmaintained on ice
until engraftment. Mice received analgesics in the form of a subcutaneous
50 µL injection of 0.5mg/mL extended-release buprenorphine (Zoo-
Pharm). Tumors were monitored weekly. When tumors reached about
1000mm3, they were harvested and dissociated into single cells and orga-
noids by mechanical mincing, followed by digestion with 3mg/mL col-
lagenase (Roche, Cat. No. 10103586001) and 0.6mg/mL hyaluronidase
(Sigma-Aldrich, Cat. No. H3506) supplemented with 2% bovine serum
albumin (Sigma-Aldrich, Cat. No. A9418) in DMEM/F12 containing
antibiotics (penicillin (100 U/mL), streptomycin (100 µg/mL), and
amphotericin B (0.25 µg/mL)). Tumor digests were incubated on a rotating
platform for 4 h at 37°C.DigestedPDXtumor cellswere re-suspended in red
blood cell lysis buffer (Sigma, Cat. No. R7757), then treated with 0.25%
Trypsin-EDTA (Corning, Cat. No. MT25053CI), followed by 5U/mL
Dispase (Stemcell Technologies, Cat. No. 07913) and 1mg/mL DNase I
solution (StemcellTechnologies,Cat.No. 07900). Finally, cellswent through
magnetic-activated cell sorting using the mouse cell depletion kit (Miltenyi
Biotec,Cat.No. 130-104-694) to removemouse cells.On average, 40million
PDX-derived tumor cells were isolated and subjected to the drug screening
process per PDX model.

Screening assays
Before plating, cell number and viability were determined by mixing
10 µL of culture media containing tumor cells with 10 µL trypan blue
solution in a disposable counting slide, whichwas then read using a TC10
automated cell counter (Bio-Rad). Next, 2,000 viable cells/well were
transferred into barcoded 384-well clear plates (Greiner, CatNo. 781091)
using a MultiDrop Combi Reagent dispenser (Thermo). All drug
libraries were diluted in DMSO and arrayed on Echo certified low dead
volume plates (LDV, Labcyte). Drugs were subsequently transferred
from the LDV source plate into assay plates using an Echo liquid
handling machine (Labcyte). Wells were treated such that the final
concentration of DMSO in media did not exceed 1% (v/v). Each assay
plate had eight vehicle (DMSO) treated negative control wells, eight
cytotoxic positive controls (10 μMAnisomycin), and an on-plate 8-point
(10 μM to 4.6 nM in technical duplicate) dose response curve of the
positive control. Screening assays were done in a single batch per PDX
model with at least two off-plate technical replicates for library com-
pounds, which were determined based on the availability and cellular
viability of the starting materials provided.

Screening rigor and reproducibility analysis
HTS are done in accordance with the NCATS assay guidancemanual51 and
as previously described13. In brief, we monitored the consistency and
robustness of the 72-h CTG read-out byfirst evaluating the robust Z’metric
defined as:

Z0 ¼ 1�
3 MADpos þMADneg

� �
eXPos�eXNeg

��� ��� ð1Þ

where MADpos;MADneg are the median absolute distance of the positive
(10 µM Anisomycin, N = 8) and negative (DMSO, N = 8) controls andeXPos; eXNeg are themedian of the positive and negative controls. A Z’ > 0.5 is
considered acceptable for continuous read-out assays. On-plate 8-point
concentration response curves of Anisomycin are used to monitor
reproducibility using the MSR statistic defined as:

MSR ¼ 102
ffiffi
22

p
σIC50 ð2Þ

Where σIC50 is the standard deviation in the IC50 values across assay plates.
An MSR < 3 is generally considered to have sufficient reproducibility to
perform quantitative activity-based analysis. All PDX models tested here
had a median robust Z’ greater than 0.5 (Supplementary Fig. 12A, C).
However, it was noted that PIM393 had markedly lower performance,
which was determined to be the result of a transfer failure of the control
compound. Similarly, we observed strong reproducibility with low MSR
values, with only three MSR values greater than three (Supplementary Fig.
12B, C). Collectively, these data showhigh levels of robustness and technical
reproducibility for screening assays.

Administration of pevonedistat in vivo
PDXcellswere implanted following the sameprotocol as for the drug screen
above. Mice were randomly assigned to treatment or control arms and
treatment was initiated when tumors reached ~100–150mm3. Pevonedistat
was formulated in 10% DMSO and 18% beta-cyclodextrin and dosed at
60mg/kg by intraperitoneal injection daily. Vehicle control was dosed on
the same schedule. Beta-cyclodextrin was made by adding 10 g (2-hydro-
xypropyl)-beta-cyclodextrin (Sigma, CatNo. C0926) to 50mL sterile saline.
(VWR, Cat No. 101320-574). Body weight and tumor size were measured
1–2 times per week. To make robust comparisons across heterogeneous
PDX models, we normalized the tumor size for each timepoint to the
starting tumor size for each individual mouse. Next, we fit the growth data
using a generalized additivemodel (GAM) across the time series, to provide
an outlier robust response metric. Finally, we numerically integrated the
GAM function and reported the response as a time-integrated tumor to
control ratio (T/C)52,53. Importantly, this approach leverages data from the
entire time series, accounts for heterogenous growth effects, and has pre-
viously been shown to be more sensitive than conventional endpoint
volumetric readouts52,53.

Immunohistochemistry
Tumors were collected and incubated in 10% formalin at 4 °C for
approximately 48–72 h for fixation, then embedded in paraffin. Formalin-
fixed, paraffin-embedded (FFPE) tissues were sectioned by the MD
Anderson Research Histology Core or the Center for Radiation Oncology
ResearchHistologyCore. FFPE slideswere baked at 65 °C for one hour, then
dewaxed and rehydrated by graded washes in xylene-to-ethanol. Heat-
mediated epitope retrieval was performed by incubating slides in Reveal
Decloaker (BiocareMedical, Cat.No. RV1000M), heated to 97 °C for 15min
using an EZ-Retriever microwave (BioGenex). Blocking of the slides used
Dual Endogenous Enzyme Block (Dako, Cat. No. S200389-2) for 10min,
Protein Block (Dako, Cat. No. X0909) overnight at 4°C, and normal serum
(Vector ImmPRESS, Cat. No. mp-7401) for 20min. Slides were incubated
with NEDD8 primary antibody (Cell Signaling, Cat. No. 2754, 1:250) or
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SUMO1primary antibody (Cell Signaling, Cat.No. 4930, 1:50) for 1 h atRT,
washed in PBS, then incubated with rabbit secondary antibody (Vector
ImmPRESS, Cat. No. mp-7401). To develop the immunostain, slides were
incubated with horse radish peroxidase substrate (HRP, VectorImmPACT,
Cat. No. sk-4105), then counterstained with hematoxylin QS (Vector, Cat.
No. H-3404), dehydrated through ethanol-to-xylene washes, and mounted
using permanent mounting medium (VectraMount, Cat. No. H-5000).

Immunohistochemistry analysis
Images were quantified using a custom workflow that leveraged a combi-
nation of ilastik54, Cell Pose55, and Pipeline Pilot (2023 Server Edition,
Biovia).Here, ilastikwas initially used to train a supervised stromavs. tumor
cell pixel classifier using expert-annotated images. The resulting model was
thendeployed to generate a probabilistic imagewith the samedimensions as
the input and used to computationally deplete stromal cells from the ana-
lysis. Next, the RGB color input image was temporarily desaturated,
inverted, and nuclear regions identified using the Cell Pose “nuclei”model
withdefault settings.Nuclear regionswere then expandedbya10-pixelfixed
radius to define rough cell boundaries. Xor logic was then used to generate
cytoplasmic regions from the nuclear and cell mask regions. A pre-trained
color space deconvolution algorithm from the advanced imaging collection
of Pipeline Pilotwas then used to separate purple/brown signal into pseudo-
fluorescent images. Signal densitometry analysis was then performed for
each regional boundary. Pipeline Pilot was used to integrate and automate
the inputs/outputs between ilastik and Cell Pose and to calculate the final
output metrics. Following quantification of staining intensity, cells were
assigned to one of four bins (0–3+ ) based on the range of intensity values.
H-scores were calculated using the formula 1*(%1cells)+ 2*(%2cells)+
3*(%3cells), where the maximal score is 300.

Collection of FNAs from PDX tumors
PDX cells were implanted, then tumors were assigned to treatment arms,
dosed, and measured as above. At the indicated timepoints, FNAs were
collected from the PDX tumors.Mice were anesthetized using isoflurane. A
23-gauge needle was inserted into the tumor through the skin and rapidly
moved back and forth through the tumor mass at least 40 times. The
material was then ejected from the needle into RNAlater (Invitrogen, Cat.
No. AM7022) and stored for future RNA isolation. To sample various
regions of each tumor, three separate passes were attempted for each tumor
at each timepoint, and then pooled for all analyses.

RNA isolation and sequencing
The collected FNA sample was placed into a 1.5ml vial of RNAlater
(Invitrogen, Cat. No. AM7022) at room temperature for up to one hour,
thenstored frozenat -80°Cuntil use.TheRNAwas extractedusingPicoPure
RNA isolation kit (ThermoFisher Scientific, Cat. No. KIT0214) and RNA
concentration was quantified by Nanodrop (Nanodrop Technologies).
Whole transcriptome RNA-seq libraries were prepared using RNA
HyperPrep kit with RiboErase (HMR) (Kapa Biosystems), following the
manufacturer’s instructions. 100 bp paired-end sequencing was performed
on NovaSeq 6000 using S4 Reagent Kit with 48 libraries pooled per lane.

Generation of gene expression profiles
We processed the next-generation sequencing data using the BETSY
system56. We called variants and estimated gene expression values as pre-
viously described57, except that we now identified contaminating mouse
host reads for subtraction using Xenome58. The overall quality of the gene
expression data was assessed using standardmetrics59 (e.g., total read count,
percent mapped reads; Supplementary Table 5). The gene expression data
was sequenced in six separate batches and preprocessed separately using the
same pipeline.We applied ComBat and PCA to normalize andmonitor the
presence of technical artifacts (Supplementary Fig. 13). Based on this
approach, we found that three batches of the data had distinct gene
expression profiles from the other three, and therefore normalized the three
outlier batches against the other ones as background.

Sample identity verification
We validated the identities of the RNA-seq profiles of the PDX samples
using the mutations seen in the RNA-seq reads. After mapping reads
according to the procedure above, we called mutations using the FreeBayes
algorithm60 and compared them using NGSCheckMate61. We verified that
the best matches (by correlation) of each tumor sample was against other
PDX, patient tumor, or patient germline samples from the same patient
(Supplementary Fig. 14).

Statistics and software
DEG analysis was performed using the limma62 and edgeR63 and pathway
enrichment analysis was performed using pathfindR64 R packages. Full
details of the R environment and package versions are summarized at the
end of Rmarkdown notebooks maintained on Github, see data availability
section. High throughput drug screening data was analyzed using an
automated screening tracking workflow developed in Pipeline Pilot (2023
Server, BIOVIA) and R statistics 4.1.2. The log concentration was fit to the
normalized response using a cascade model which leverages the iteratively
reweighted least squared method to fit the response surface to a four-
parameter logistic or linear model. AUC and IC50 values were generated
from the fitted dose response curve.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
RNA sequencing data is available through the gene expression omnibus
(https://www.ncbi.nlm.nih.gov/geo/) under the accession GSE264252.
Curateddata frames and additionalmetadata used togeneratefigures can be
found at https://github.com/ReidTPowell/TNBC-PGx.

Code availability
Open-source code, and interactive analytical outputs (e.g., networks) are
available without restriction at https://github.com/ReidTPowell/TNBC-PGx.
Code was developed using R 4.3.1 using RStudio. Specific package require-
ments and version can be found in the R markdown notebook on the listed
page. Analytical workflows generated in commercial/proprietary environ-
ments (BioVia Pipeline Pilot) are available upon request.
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