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A B S T R A C T  

Seque n tial m ultip le as si gnme n t ra ndomized trials ( SMARTs ) are the gold s ta nda rd for est imat ing opt im al dyn amic tr ea tme n t regimes ( DTRs ) , 
but a re cos tly a nd r equir e a l arge s amp le size. We in troduce the m ulti -s t age au gme n ted Q-lea rning es timat or ( MAQE ) t o improve efficiency of es- 
t imat ion of opt imal DTRs by augmenting S MART d ata with o bs erv ational d ata. Our motiv ating examp le comes from the B a ck Pain Con s ortium, 
where one of the o verarchin g aims is to le arn ho w to tailor tr ea tments for chronic low back pain to individual patie n t phe notypes, knowled ge 
which i s lack ing clinically. The Con s ortium-wide co ll aborative S MART and o bs erv ational studies within the Con s ortium co llect d ata on the 
sa me pa rticipa n t phe notypes, tr ea tme n ts, a nd outcomes at multiple time points, which can easily be int egrat ed. Previously published single- 
st age au gment ation methods for integration of trial and o bs erv ational study ( OS ) da ta wer e adapted to estimate optimal DTRs from SMARTs 
usin g Q-learnin g. S imulation studies show the MAQE, which int egrat es phenotype, tr ea tment, and outcome informa tion fr om multiple studies 
ove r m ult iple t ime points, mor e accura te ly e stimate s the optimal DTR, and has a hi ghe r ave rage value than a compa rable Q-lea rning es timator 
without augme n tation. We de mons trate this improve me n t is robus t to a wide range of trial and OS sample sizes, addition of nois e v ari ab les, and 

effe ct sizes . 

KEY W OR DS : augme n tation; B a ck Pain Con s ortium; d a ta integra tion; doubly r obust; pr e cision me dic ine; Q-lear ning. 
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1 I N T R O D U C T I O N 

atie n t hete roge neity ne c e ssit ate s approache s to clinical
edicine a nd patie n t ca r e tha t ar e tailor ed to pa tie n ts’ indi -

idual cha racte ris tics. The field of precision medicine seeks to
everage ne w dat a analysi s method s to improve treatme n t deci -
ions such that the ri gh t treatme n t is given to the right person at
he ri gh t time ( Kos oro k a nd Labe r, 2019 ) . Dyna mic tr ea tme n t
eg imes ( DTRs ) , al so known as adaptive tr ea tment stra tegies
r ind ividual ized in te rve n tions, a re seque nces of decision rules,
ne per interv ention, th at assign tr ea tments to patients based on

ndividual cha racte ris tics such as past tr ea tments and evolving
is eas e history ( Lavori et al., 2000 ; Lavori and Dawson, 2004 ;
 hakra borty and Murphy, 2014 ) . 
Just as the r andomiz e d c ontrolle d trial is the gold s ta nda rd

or efficacy trials, a seque n tial m ultiple assi gnme n t ra ndom-
zed tri al ( S MART ) design is be tt er suit ed for unbi as ed es ti -

at ion of opt imal DTRs than o bs erv ational studies ( Murp hy,
005 ) . Using S MART design s to addres s pre cision me dicine
ims has become increasingly common in fields such as men-
al and behavioral health, onco lo gy, o be sity, and s moking ce s-
ation, a mong othe rs . The se que n tial na tur e of SM ARTs al lows
he delayed effects of previous treatme n ts to be o bs erv e d ov er
ime, which can guide clinical care. How ev er, the limitation to
he seque n tial desi gn is that a l arge s amp le size is ne e de d to es ti -
e c eiv e d: March 6, 2023; Revised: April 17, 2024; Accepted: May 3, 2024 
The Author ( s ) 2024. P ublished b y Oxford Unive rsity Pre ss on be half of The In te rn ation al Bio

ommon s A t tribution-NonCommer c ial L icen s e ( https://creativ ec ommons .org/lic enses/by-
e dium, provide d the origin al w ork is properly cite d. For c ommer cial r e-us e, p leas e contact j o
 ate optim al DTRs, so m a ny SMARTs a re only powe red to ad -
ress primary aims such as comparison of initial tr ea tme n t op-

ions or comparison of se c ond stage tr ea tme n t options for non-
e sponders ( Murp hy e t al., 2007 ) . Other limitations to conduct-
ng SMARTs and other r andomiz ed trials are the cost of the trial
ts elf, the comp lexity of the desi gn a nd imple me n tation, a nd po-
e n tial for drop-out and non-comp li ance due to the length of
he study ( March et al., 2010 ) . Ther efor e, ther e is a ne e d to
mprov e an alysi s method s to more efficie n tly es t imate opt imal

TRs. 
Obs erv ational d ata, s uch as c ohort studies, me dical re c ords,

 nd patie n t d atabas es, h av e be en use d to estim ate optim al DTRs
 Moodie et al., 2012 ) . The adva n tage of using o bs erv ational d ata
s that it is less expe nsive a nd s tudies ca n e nroll ma ny more pa r-
icipa n ts tha n ra ndomize d trials . Inclusion and exclusion cr iter ia
 re ge ne rally less s trict tha n tri als, s o the p articip ant population
ay be mor e r epr ese n tative of the true patie n t population, a nd

e tero geneity of tr ea tments can be better r epr ese n te d. How ev er,
sing o bs erv ational d ata alone is s ubje ct to bi as e s, e specially due

o unmeas ure d c onfoundin g. Combinin g da ta fr om r andomiz ed
rials and obse rvational s tudies ca n allow for a nalysis of a gr ea ter
nd more he tero geneous poo led p articip ant population, while
aintaining the val id ity of tr ea tment causality due to the ran-

omize d n a tur e of the trial. 
me tric Socie ty. Thi s i s a n Ope n Ac c ess a rticle dis tributed unde r the te rms of the C re ative 
nc/4.0/ ) , which permits non-c ommer cial r e-use, distribution, and r epr oduction in any 
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The B a ck Pain Con s ortium ( BA C PA C ) , part of the National
Institutes of Health ( NIH ) Helping to End Addiction Long-term
( H EAL ) Init iat iv e, c onsists of r andomiz ed tri als, o bs erv ational
s tudies, a nd sites developing expe rime n tal new techno lo gy to
study the e tio lo gy of chronic low back pain ( cLBP ) ( NI H H EAL
Init iat iv e, 2019 ) . While m any effe ctiv e tr ea tme n ts h av e be en
ide n tified for cLBP, little is known about which tr ea tme n ts a re
best for which pa tients a t which time in their course of chronic
dis eas e, especi ally due to the high de gre e of patie n t hete roge ne-
ity. Ther efor e, the Biomarkers for Evaluating Spine Treatme n ts
( BEST ) tri al w as designed as a S MART to ev aluate a nd compa re
multiple tr ea tment se quenc es acr oss cLBP pa tients with the goal
of est imat ing opt imal DTRs ( NCT05396014 ) . B a ck Pain Con-
sort ium has mult iple observat ional studies aiming to cha racte r-
ize cLBP patie n t phe notypes, a nd t o evaluat e which cLBP tr ea t-
me n ts a re mos t effe ctiv e for which patie n t subgroups ( Mauck
e t al., 2023 ) . Con s ortium-wide longitudinal d ata co llection on
p articip ant p henotypes, o bs erv e d tr ea tment, and outcomes, was
h armonize d across all stud ies, facil itating integrabil ity of trial
and o bs erv ational study ( O S ) d a ta ( Ba torsky et al., 2023 ) . The
p articip ant popul ation s, and respon s e to cLBP tr ea tme n ts, in
BEST and the o bs erv ational studies are expe cte d to be compa-
rab le. Data co llection for BA C PA C stud ies is c urre n tly unde r-
way, but the structure of the Consortium and harmonization of
dat a e le me n ts across s tudie s provide s a mot ivat ing example to
explor e sta t ist ical methods to improve efficiency of est imat ion
of optimal DTRs from SMARTs by integrating data from o bs er-
vation al studies . 

The re a re seve ral es tab lished me thods for combining single-
stage trial and o bs erv ational d ata to improve efficiency of esti-
mates and improve ge ne rali zab ility of tr ea tme n t effe cts . These
methods include the inverse probability of sampling wei gh t-
ing ( I PSW ) est ima tor, stra tifica tion, and/or inv olv e cr ea ting
propen sity s c ores to re duc e bias from meas ure d c onfounders
( Co lne t e t al., 2021 ) . Other methods include G-formula esti-
ma tors, as pr opos ed by Ro bin s ( Ro bin s, 1986 ) . How ev er, these
methods do not immediately address the ne e d to improv e ef-
ficie ncy, a nd a re not desi gned to es t imate opt imal DTRs from
m ulti -s tage trials. To dat e, methods t o augme n t S MART d ata
w ith stage-w is e o bs erv ational d a ta ar e la ckin g in the litera tur e. 

In this article, we propose a proc e dure within the Q-learning
framework to combine the data from a SMART and an OS to es-
t imate opt imal DTRs. Q-learning is a r egr e ssion- based method
which maximizes the outcome at each seque n tial s tage work-
in g ba ckwa rds to a rriv e at the optim al tr ea tme n t rule at each
stage ( Murp hy, 2005 ) . A t each stage in the Q-learning e stima -
t ion, we ut iliz e the fr amework of the doubly robus t augme n ted
IPS W ( APIS W ) es timator, which was ori ginally used for es ti -
m ating the av erag e tre atme n t effect or he tero g eneous tre atme n t
effect in a single s tage s tudy ( Lunceford a nd Davidia n, 2004 ; Lip-
kovich et al., 2023 ) . The estimator is doubly robust in that it wi l l
give unbi as ed results as long as either the the outcome model
or the probabilities of re c eiving a give n treatme n t a re accurate.
We first predict the estim ate d outc ome model pa ra mete rs using
the S MART d ata, then us e thes e estim ate d pa ra mete rs to es ti -
mate stage-wise pote n tial outcomes for all trial and OS partic-
ipa n ts. We use a doubly robust construction of the Q-function
for trial p articip ants, then incorporate the con tras t of the pre-
dict ed pot e n ti al outcomes for O S p articip ants t o estimat e the
optimal tr ea tme n t rule at each s tage. We de note this al gorithm 

the m ulti -s t age au gme n ted Q-lea rning es timator ( MAQE ) . Due 
to the doubly robust property of this estimator, it is guarante e d 

to be unbi as e d ev en if the pre dicte d pote n tial outcomes a re inac- 
curate because the treatme n t ra ndomi zation probab ilities at each 

stage of the trial are kno wn. Furthermore, the MA QE is expe cte d 

to h av e less unc e rtain ty ( ie, increased efficie ncy ) because of the 
dat a au gme n tation s tep. 

Notat ion and assumpt ions releva n t to this method are intro- 
duc e d in Se ction 2.1 , Q-learning is describe d in Se ction 2.2 , and 

the details of the algorithm are described in Section 2.3 . In Sec- 
tion 3.1, we describe the sim ulation s tudy motivated b y BAC- 
PAC. Pe rforma nce metrics a re describe d in Se ction 3.2 . We then 

de mons trate the properties of the MAQE using simulated test 
data when chan gin g v arious parame ters, such as rel ative and ab- 
s o lute s amp le sizes, O S s amp le si ze, addition of no is e v ari ab les,
a nd using diffe re n t effe ct sizes ( Se ctions 3.3 and 3.4 ) . We also 

d isc uss adva n t age s of this method and next steps for future re- 
search in Section 4 . 

2 M ET H O D S  

2.1 N ot atio n a nd basic assumptions 
The SMART ( henceforth r eferr ed to as the trial ) of size n and OS 

of size m both consist of K st age s of tr ea tme n ts. Individual data 
consist of a se quenc e of K tuples ( X k , Y k , A k ) , k = 1 , ..., K, 
whe re X k de notes a p-dime nsion al v e ctor of cov ari ates co llected 

at stage k. A k re pre se n ts the bina ry, cate gorical or c on tin uous
tr ea tme n t assi gned or o bs erv e d at stage k. For the purposes of
this example A is binary, taking values 0 or 1. Y k denotes the 
o bs erv e d bin ary or continuous outcome, where a larger value is 
more benefici al. Le t Y k (a 1 , . . . , a k ) denot e a pot e n tial outcome
at stage k given tr ea tment a 1 , . . . , a k . Participant history by stage 
k is denoted by H k including the in te rcept, so H 1 = (1 , X 1 ) a nd 

H k consists seque n tially of (H k−1 , A k−1 , Y k−1 , X k ) . 
A DTR is a se quenc e of de cision functions for all K st age s, 

r epr ese n ted b y D = (d 1 , d 2 , . . . , d K ) , whe re s tag e-wise tre at-
me n t rule d k maps H k to the domain of A k , i.e., { 0 , 1 } . The
corresponding value function of D is defined as E( Y 1 ( d 1 ) + 

 2 (d 1 , d 2 ) + . . . + Y K (d 1 , d 2 , . . . , d K )) , which is the expe cte d
popul ation average v alue of the outcome measur es fr om stages 
one to K added to ge the r, if all pa rticipa n ts we re to follow the 
DTR, D . When analyzing a SMART, the goal is t o estimat e the 
optim al DTR, denote d by D 

∗ = (d 

∗
1 , d 

∗
2 , . . . , d 

∗
K ) which yields 

the hi ghes t value. 
The fo llowing as sumption s are ne e de d to provide valid es ti - 

mates of DTRs from SMARTs a nd a re described in more detail 
b y Sch ulte et al. ( 2014 ) . 

Assumption 1 ( consistency and the stable unit tr ea t- 
me n t va lue as s umption [ SUTVA] ) Y k = 

∑ 

a 1 , ... ,a k I(A 1 = 

a 1 , . . . , A k = a k ) Y (a 1 , . . . , a k ) . 

As sumption 2 ( s e que n ti a l i gnorability ) f or any (a 1 , ..., a k ) ,
 k ( a 1 , . . . , a k ) is in depen dent of A k given H k . 
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ssumption 3 ( positiv it y ) P (A k = a k | H k = h k ) > 0 for all
 k ∈ {0,1} and h k in the domain of H k . 

aus al con sis te ncy a nd SUTVA imp licitly as s ume th a t ther e ex-
s ts no in te rfe re nc e or non-c omp li ance. The as sumption of s e-
ue n tial i gnorability, also refe rred to as exchang e abil ity, impl ies

hat due to balanced ra ndomization, the re is no unmeas ure d
onfoundin g at ea ch s tage k, give n pa rticipa n t his tory H k . We
ote that this as sumption ho lds for the SMART but may not be

rue for the OS. The third as sumption imp lies tha t ther e is a non-
ero ( ie, positive ) probability that a study p articip ant wi l l re c eiv e
ny av ail ab le tr ea tment a t e ach stag e. This as sumption ho lds for
MARTs whe n ra ndomiza tion pr obabilities ar e gr ea te r tha n ze ro

or each tr ea tme n t at each stage, but may not hold for observa-
ional da ta, wher e actual or near-positiv ity v io l ation s m ay oc cur.

2.2 Q-learning to estimate optimal DTRs 
-learning is commonly used to est imate opt imal DTRs

rom SMARTs. We refer to the following method of e stima -
ion without augme n tation as the s ta nda rd Q-lea rning es ti -

ator ( SQE ) . Let Q k (H k , A k ) be the Q-function at stage k,
hich is defined as the expe cte d outc ome at stage k given
is tory H k = h a nd tr ea tme n t A k = a , assuming the partic-

pa n t is tr ea te d optim al ly at al l future st age s . An alysis us-
ng the Q-function for m ultiple s t age s use s the Be llma n opti -
 ality e quation ( Bellm an, 1957 ) : Q k−1 (H k−1 , a ) = E[ Y k−1 +
ax a k ∈{ 0 , 1 } Q k (H k , a k ) | H k−1 , A k−1 = a ] . 
The optimal tr ea tme n t for a patie n t with o bs erv e d c ov ari ate

istory h k−1 , at stage k − 1 , is the tr ea tme n t maximizing the ex-
ectation on the ri gh t-ha nd side of the Bellm an e quation. Q-

earning proc e e ds by estim ating stage-wis e Q-function s and op-
imal tr ea tme n t rule s throu gh a backwa rds al gorithm . Le t par-
icipa n ts from the SMART of size n be modeled by a sequence
f K indepe nde n t ra ndom tuple s ( X ik , Y ik , A ik ) 

n 
i =1 inde pe nde n t

 nd ide n tically dis tributed ( i .i .d . ) ac c ording to the tri al popul a-
 ion. In this art icle, we model the in te raction betw e e n A k a nd H k ,
ith form (H k A k ) T βk + (H k ) T γK , where H k may include in te r-

ction term s be tw e en past tr ea tments and o bs erv e d c ov ari ates.
n extension of this method may rep l ace H k with a nonlinear
asis function in the space of H k , to allow for a more flexible and
onlinear model for interactions. 
Start with st age K. Comput ation for Q-learning minimizes the

o llowing o bj e ctiv e funct ion to est im ate the v e ctor of re gression
oefficie n ts from n trial p articip a n ts, which dictate the estim ate d
ptimal tr ea tme n t rule at the las t s tage, K: 

1 

n 

n ∑ 

i =1 

(
Y iK − [(H iK A iK ) T βK + H 

T 
iK γK ] 

)2 

. ( 1 ) 

e denote the estim ate d c oefficients as ( ̂  βK , ̂  γK ) . The estim ate d
ptimal tr ea tme n t rule at s t age K, ̂  d 

∗
K , is used to e stimate the op-

imal tr ea tme n t for s ubje ct i at stage K, the tr ea tme n t that yields
he hi ghes t es tim ate d outc ome as determine d by ( 2 ) ̂ d 

∗
K (h K ) = arg max 

a k 
̂ Y iK (h K , a K ) = I(h 

T 
K ̂

 βK > 0) , ( 2 ) 

here ̂  Y iK (h K , a K ) is the pre dicte d outc ome from the s o lution to
 1 ) for H iK = h K , A iK = a K . 
For each stage working backwa rd, con tin uing with stage K −
 , the pseudo-outcome, ˜ Y i,K−1 = Y i,K−1 + ̂

 V iK (H iK ) is evalu-
 ted, wher e ̂ V iK (h K ) is the maximum of ̂  Y iK (h K , a K ) over a K .
hi s allow s for est imat ion of the condit ional funct ion at stage
 − 1 , E[ ̃  Y i,K−1 | H i,K−1 , A i,K−1 ] . Then, the following function

s minimized 

1 
n 

n ∑ 

i =1 

(˜ Y i,K−1 − [(H i,K−1 A i,K−1 ) T βK−1 + H 

T 
i,K−1 γK−1 ] 

)2 

, ( 3 )

o th at w e obt ain the e stimator for the v e ctor of re gression c o-
fficie n ts, de noted b y ( ̂  βK−1 , ̂  γK−1 ) . Th us, for s tage K − 1 , the
stim ate d optim al tr ea tme n t rule, ̂  d 

∗
K−1 , is us ed to de termine the

r ea tme n t that yields the hi ghes t es tim ate d outc ome, as deter-
ined by ( 4 ) ̂ d 

∗
K−1 (h K−1 ) = arg max 

a k−1 

̂ ˜ Y i,K−1 (h K−1 , a K−1 ) 

= I(h 

T 
K−1 ̂

 βK−1 > 0) , ( 4 )

here ̂  ˜ Y i,K−1 (h K−1 , a K−1 ) is the pre dicte d outc ome from the
 o lution to ( 3 ) . Estimation of s ubse que n t s tage-wise optimal
r ea tme n t rules ( ̂  d 

∗
K−2 , . . . , ̂

 d 

∗
1 ) , and thus the full estim ate d op-

imal DTR, ̂  D 

∗, proceeds using the same algorithm in turn. 

2.3 Dat a augment ation with an OS 

o improve efficiency of e stimate s of optimal DTRs using Q-
earning, we propose the multi-stage augme n ted Q-lea rning es-
imator ( MAQE ) , which includes an augme n tation te rm, allo w -
ng for pooled data analysis of n trial p articip ants and m OS par-
icipa n ts for all K st age s. In addition to data from n trial partic-
pa n ts, we in tr oduce da ta fr om m OS p articip ants, modeled by
 se quenc e of K indepe nde n t ra ndom tuples ( X ik , Y ik , A ik ) 

n + m 

i = n +1 
her e da ta fr om each p articip ant are i .i .d . ac c ording to the dis-

ribution of the O S popul ation . It is as s ume d th a t tr ea tme n t a nd
utcome are o bs erv e d for all K st age s. 
In con tras t to the SQE in ( 1 ) , the MA QE at stag e K directly

 stimate s the treatme n t effect using a con tras t betwee n pote n tial
utcomes for a given p articip ant if they were to re c eiv e treatme n t
 vs 0 at stage K. For s ubje ct i in the trial data, it is clear that be-
ause of Assumptions 1–3, E 

[ 
A iK Y iK 
πiK 

− (1 −A iK ) Y iK 
1 −πiK 

| H iK 

] 
is equal

o this con tras t, whe re πiK = P (A iK = 1 | H iK ) is the known ran-
omiza tion pr obability to assign tr ea tment A iK = 1 . Ther efor e,
 uch a c on tras t is av ail ab le for the tri al p articip ants . How ev er,
inc e there m ay be uno bs erv e d c onfounders and the tr ea tment
ssi gnme n t probabilities are unknown, in the OS such a con tras t
s not av ail ab le a nd the r efor e ne e ds to be estim ate d using the
ata. 
Ther efor e, as the first step at stage K, w e re gress Y iK on H iK 

e parate ly for s ubje cts who re c eiv e tr ea tme n t 1 ( ie, a K = 1 ) , or
r ea tme n t 0 ( ie, a K = 0 ) . These subpopulations are modeled
e parate ly to directly model diffe re nces in treatme n t b y cova ri -
te effe cts . The re gre ssion mode l is chosen to be a linear model
n our analysis, although we can use a nonlinear model by rep l ac-
ng H iK with nonlinear basis functions. We denote the pre dicte d
ote n tial outcome for each tr ea tme n t as ̂  μiaK for a = 1 and 0.
ue t o pot e n ti al bi as es in the o bs erv ational d ata, the above re-

ression is performed only using the tri al d a ta. Once r egr ession
a ra mete rs from each model ( denoted ̂  ηaK ) are estim ate d using
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tri al d ata, the pote n tial outcomes ̂  μiaK are calculated for all trial 
and OS p articip ants. 

Following the construction of the doubly robus t es timator in 

the litera tur e of heter ogeneous tr ea tme n t effects, we have 

E 

[
A iK 

πiK 
( Y iK − ̂ μi 1 K ) − 1 − A iK 

1 − πiK 
( Y iK − ̂ μi 0 K ) 

∣∣∣H iK = h 

]
+ E[ ̂  μi 1 K − ̂ μi 0 K | H iK = h ] = h 

T βK , 

ass uming th a t the true tr ea tme n t effect t ake s form H 

T 
K βK , and 

that this holds even if the models for ̂  μi 1 K and ̂  μi 0 K are not ac- 
curat e. Not e that the fir st cond it ional expectat ion can only be 
estim ate d using the trial data, but the se c ond c ondition al expe c- 
tation can be estim ate d using both the trial and OS. Thus, the 
abov e e quation ca n be furthe r expres s ed as 

E 

[
A iK 

πiK 
( Y iK − ̂ μi 1 K ) − 1 − A iK 

1 − πiK 
( Y iK − ̂ μi 0 K ) 

∣∣∣H iK = h, i ∈ trial 
]

+ wE[ ̂  μi 1 K − ̂ μi 0 K | H iK = h, i ∈ trial ] + (1 − w ) E[ ̂  μi 1 K − ̂ μi 0 K | H iK = h, i ∈ o bs erv ational study ] = h 

T βK , ( 5 ) 
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where w is any value betw e e n 0 a nd 1 a nd is used to
wei gh t the contribution of the con tras t te rm from the trial a nd
OS. 

Ther efor e, for trial p articip ants, we define ̂ R iK =
A iK 
πiK 

( Y iK − ̂ μi 1 K ) − 1 −A iK 
1 −πiK 

( Y iK − ̂ μi 0 K ) + w ( ̂  μi 1 K − ̂ μi 0 K ) 
and for OS p articip ants, we let ̂ R iK = (1 − w )( ̂  μi 1 K − ̂ μi 0 K ) .
An est imat ing equat ion for βK i s g ive n b y 

n 

−1 
n ∑ 

i =1 

H iK ̂  R iK + m 

−1 
n + m ∑ 

i = n +1 

H iK ̂  R iK = n 

−1 
n ∑ 

i =1 

H iK H 

T 
iK βK , 

with analytical s o lution, 

̂ βK = (n 

−1 
n ∑ 

i =1 

H iK H 

T 
iK ) 

−1 [(n 

−1 
n ∑ 

i =1 

H iK ̂  R iK ) 

+(m 

−1 
n + m ∑ 

i = n +1 

H iK ̂  R iK ) 
]
, 

where only the trial data contributes to the design matrix. 
Then the estim ate d optim al tr ea tme n t rule at s tage K iŝ d 

∗
K (h K ) = I(h 

T 
K ̂

 βK > 0) . As a note, when the weight, w , is cho-
sen to be 1, we estimate the conditional mean of the con tras t only
using the trial data, so ̂

 R ik re duc es to the doubly robust construc-
tion in the litera tur e when there is no OS; when the weight, w ,
is chosen to be 0, w e estim ate the c ondition al mean using the
OS. 

To estimate the optimal stage K − 1 tr ea tme n t rule, we m us t
calculate ̂ V iK (h iK ) = max a K ∈{ 0 , 1 } (a K h 

T 
iK ̂

 βK + h 

T 
iK ̂  γK ) , ( 6 )

which is the pre dicte d value of the outcome at stage K if the op-
timal tr ea tme n t rule we re follow e d. In the previous step, w e es ti -
m ate d ̂

 βK , and ther efor e the estim ate d treatme n t effect is h 

T 
iK ̂

 βK .
To calculate the values of ̂  V iK (H iK ) , w e estim ate the m ain effe cts,̂ γK by r egr essing Y iK − A iK H 

T 
iK ̂

 βK , the residual after remo vin g the
estim ate d treatme n t effect, on H iK . 

Next, est imat ion of the optimal tr ea tme n t rule for stage
K − 1 proc e e ds using a simila r al gorithm as s tage K, but the
outcome is the pseudo-outcome given by ˜ Y i,K−1 = Y i,K−1 +̂ 

 iK (H iK ) . As such, the predicted con tras t function, de noted
by ̂ μiaK−1 , is estim ate d using this pseudo-outcome for the
tri al subj ects with tr ea tme n t A i,K−1 = a for a = 1 or 0. Sim-
ilar to st age K, the s e v alues are us e d to estim ate ̂ ˜ R i,K−1 val- 
ues for trial p articip ants as ̂  ˜ R i,K−1 = 

A i,K−1 
πi,K−1 

(˜ Y i,K−1 − ̂ μi 1 ,K−1 
) −

1 −A i,K−1 
1 −πi,K−1 

(˜ Y i,K−1 − ̂ μi 0 ,K−1 
) + w ( ̂  μi 1 ,K−1 − ̂ μi 0 ,K−1 ) , and OS 

p articip ants as ̂  ˜ R i,K−1 = (1 − w )( ̂  μi 1 ,K−1 − ̂ μi 0 ,K−1 ) . 
Using the same argument as for stage K, we show 

E 

[̂ ˜ R i,K−1 
∣∣H i,K−1 = h, i ∈ trial 

]
+ E 

[̂ ˜ R i,K−1 
∣∣H i,K−1 = h, i ∈ o bs erv ational study 

]
= h 

T βK−1 , 

ass uming th a t the true tr ea tme n t effe ct for the pseudo-outc ome 
t ake s the same form as the right-hand side. We are ther efor e able 
t o estimat e the optimal tr ea tme n t rule, ̂ d 

∗
K−1 , after s o lving for 

βK−1 using the est imat ing equat ion 

n 

−1 
n ∑ 

i =1 

H i,K−1 ̂  R i,K−1 + m 

−1 
n + m ∑ 

i = n +1 

H i,K−1 ̂  R i,K−1 = n 

−1 

×
n ∑ 

i =1 

H i,K−1 H 

T 
i,K−1 βK−1 , 

with analytical s o lution, 

̂ βK−1 = (n 

−1 
n ∑ 

i =1 

H i,K−1 H 

T 
i,K−1 ) 

−1 [(n 

−1 
n ∑ 

i =1 

H i,K−1 ̂  R i,K−1 ) 

+(m 

−1 
n + m ∑ 

i = n +1 

H i,K−1 ̂  R i,K−1 ) 
]
. 

The estim ate d optim al tr ea tme n t rule at s tage K − 1 is ̂ d 

∗
K−1 (h K−1 ) = I(h 

T 
K−1 ̂

 βK−1 > 0) . 
We con tin ue the sa me proc e dure backward from stage K −

2 , K − 3 ,..., un til s tage 1. Fin ally, w e obtain est imat ion of opt imal 
tr ea tme n t rules ( ̂  d 

∗
K , . . . , ̂

 d 

∗
1 ) seque n tially to arrive at ̂  D 

∗, the es- 
tim ate d optim al DTR. The ge ne ral al gorithm for the MAQE is 
described in the a ppe ndix. 

As a n exa mple, whe n K = 2, the estim ate d optim al DTR is 
give n b y the values of [ I (H 

T 
1 
̂ β1 > 0) , I (H 

T 
2 
̂ β2 > 0)] . For a
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FIGURE 1 Seque n tial m ultiple assi gnme n t ra ndomized trial design for simulation experiments, including four trial arms, enh anc e d self-care 
( ESC ) , duloxetine, evidenc e-base d exercise and manual therapy ( EBEM ) , and ac c e pt ance and commitment therapy ( ACT ) . 
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ew patie n t in the clinic, values of a patie n t’s meas ure d phe-
otype v ari ab les can be multiplied by the r egr ession parame-

ers for stage 1 to determine the optimal tr ea tment for that pa-
ie n t at the firs t s tage. Once the outcome from tha t tr ea tme n t is

eas ure d , the opt imal stage 2 tr ea tme n t ca n be dete rmined b y
 ultiplying s tage 2 cov ari at e hist ory by the r egr ession pa ra me-

ers for stage 2. For each stage, if the sign of the resulting value
s positive, the patie n t should re c eiv e treatme n t A = 1, other-

ise they should re c eiv e treatme n t A = 0 ( as per Equations 2
nd 4 ) . 

3 S I M U L AT I O N  ST U DY  A N D  R E S U LTS  

3.1 D es ign of the sim ulatio n stud y 
 ioma rke rs for Evaluating S pine Tre atme n ts is a two-stage
MART with four stage 1 tr ea tme n t a rms, with the prima ry aim
f est imat ing an algorithm for optimally assigning cLBP tr ea t-
e n ts based on an individual’s phenotypic markers and respon s e

o tr ea tme n t. Se c ond ary aim s of the tri al include as s es sin g lon g-
erm effe ctiv eness of the estim ate d optim al DTRs, a nd es timat-
ng optimal DTRs tailored to patie n t prefe re nc es . Tw elv e n ation-
lly dis tributed s tudy sites a r e r ecruit ing cLBP part icipa n ts for
EST, who h av e a pain duration ov e r 3 mon ths a nd pain more

h an h alf of the days ov e r the las t 6 mon ths, age 18 

+ . The ta rget
 amp le size for the study is 630 comp le ters. 

For the purposes of i l lus tration a nd ge ne rali zab ility to other
 tudy desi gns, we utilize the mos t basic SMART desi gn for our
im ulation s tudies, whe re ra ndomization to one of two treat-

e n t a rms occ ur s at tw o se que n t ial t ime poin ts three mon ths
 pa rt, ins tead of randomizing to four tr ea tme n t a rms at both
t age s ( F igure 1 ) . F igure 1 shows the simp lified tri al design,
he re pa rticipa n ts a re ra ndomi zed with probab ility 0.5 to either
 nha nced self-ca re or duloxetine, c ode d as 0 a nd 1, at s tage 1,
he n indepe nde n t of respon s e s tatus, a re ra ndomized with prob-
bility 0.5 to either evidenc e-base d exercise and manual ther-
 p y or ac c e pt a nce a nd commitme n t the ra p y, c ode d as 0 and 1,
t stage 2. 
The LB3P study at the University of Pittsburgh, one of BAC-

AC’s me ch a nis tic resea rch ce n te rs, is a prospe ctiv e c o hort O S
ith a target enrollment of 1000 p articip ants ( Vo et al., 2023 ) .
his study has similar inclusion/exclusion cr iter ia as BEST, and

ongitudinal cLBP tr ea tme n t information is ca ptur ed a t simi-
a r timepoin ts as BEST. One of the s tre ngths of BA C PA C is
h at longitudin al data c olle ction was h armonize d, whereby the
 ame d at a e le me n ts of the BA C PA C M inimum Datas e t ar e r e-
uired to be collected across all studies at baseline and a 3-
onth visit to facilitate cha racte rization of cLBP s tudy pa rtici -

a n ts Con s ortium-wide ( Mauck e t al., 2023 ) . 
Study outcome data ele me n ts we re also ha rmonized. The pri -
 ary outc ome for BA C PA C studies is the PEG score, which is

he average value of three questions about pain seve rity a nd pain
n te rfe re nce, whe re for each question, 10 is the worst pain or
ain in te rfe re nc e im agin able and 0 is no pain or pain in te rfe r-
nce ( Krebs et al., 2009 ) . For simul ation s, we us e a con tin uous
 instead of ordin al ) outc ome where higher scor es ar e mor e ben-
ficial, and r epr ese n t the decrease in pain and/or pain in te rfe r-
nc e betw e en the end of each stage and base line. Re sponse to
rs t s tag e tre atme n t ( Resp, 1 = yes, 0 = no ) for trial and OS par-
icipa n ts was defined in simulations as having a stage 1 outcome
alue hi ghe r tha n the 60th pe rce n tile in a sim ul ated d atas e t com-
rising 20,000 p articip ants. 
One of the goals of the analysis of BEST is t o det ermine which

le me n ts of the BA C PA C M inimum Datas e t could be used as
TR tailor ing var iables. Tailor ing var iables are variables used to
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make tr ea tme n t decisions, a nd ca n be c olle cte d at baseline, or
during tr ea tme n t, a nd m ay ch ange thr oughout a tr ea tme n t se-
quence ( Almirall et al., 2014 ) . In our sim ulation s tudies, we use
one con tin uous a nd tw o bin a ry va riables as tailoring v ari ab les for
st age s 1 and 2. The continuous age v ari ab le is denoted by x 1 k ,
x 2 k indicates op io id usage ( 1 = yes, 0 = no ) , and x 3 k indicates
de pre s sion symptom s ( 1 = yes, 0 = no ) , where k re pre se n ts the
s tage n umbe r. 

Table 1 shows sele cte d sim ulation pa ra mete rs for the two s tud -
ies. Op io id usage and depres sion symptom s at 3 month s ( start of
s tage 2 ) we r e corr ela ted with baseline values for a given partici-
pa n t. L og i stic r egr e ssion mode ls, with base line value s a nd s tage
1 tr ea tme n t as model cova riates, we re used to ge ne rate s tage 2
( 3- month ) value s. The tr ea tment randomiza tion pr obabilities a t
e ach stag e for the O S were bas ed on a lo g i stic r egr e ssion mode l
usin g co v ari ates x 2 , x 3 and uno bs erv e d c onfounder, z , a t each r e-
spe ctiv e stage. 

The outcome-ge ne rating models for s t age s 1 a nd 2 a re based
on main effects of the three selected v ari ab les and an uno bs erv e d
confounde r, the in te raction s of all v ari ab les with tr ea tme n t, as
well as in te ractions of tr ea tme n t with squa red a nd cubed age
term s. A t stage 2, the outcome-ge ne rating model also includes
responde r s tatus, a n indicator v ari ab le for stage 1 tr ea tme n t, a nd
the in te raction betw e e n s tag e 2 tre atme n t a nd s tag e 1 tre atme n t.
For a full description of the outcome-ge ne rating models a nd ra-
tionale, p leas e s ee Web A ppendix A in the Supplementary Mat
erials . 

3.2 Evaluation of performance 
We evaluate the pe rforma nce of the MAQE compared with the
SQE, a n es tim ator th at uses the Q-learning algorithm without
dat a au gme n tation, in troduc e d in Se ct ion 2.2 . A 20,000 part ici-
pa n t tes t s e t w as ge ne rat ed using the out come models and par-
ticipa n t cova riate dis tributions from the simulated trial and ob-
s erv ational studies, to r epr ese n t the ta rge t popul ation of cLBP
patie n ts. For this test s e t, the pro bability of a pa rticipa n t being
assigned tr ea tment A k = 1 is 0.5, similar to the tri al, in stead of
using a propen sity s core model. For a full list of simulation pa-
ra mete rs, please see Web A ppendix A . 

One metric for evaluating pe rforma nce of the estimators is de-
te rmining the pe rce n t age of te st s e t p articip ants for whom the
estim ator c orre ctly estim ates the optim al tr ea tme n t seque nce, or
pe rce n t correctly cl as sified ( PCC ) . Becaus e we know the simu-
lation pa ra mete rs for the outc ome models, w e are able to re c ord
the optimal tr ea tme n t seque nce for tes t s e t p articip ants which
optimi zes the Q- function. For each iteration of the simulation,
we use the training SMART and OS datasets to estimate the 2-
s tage DTRs, the n use the r egr ession pa ra mete rs ( ie, es tim ate d
optimal DTRs ) to estimate the optimal tr ea tme n t seque nce for
each p articip ant in the test s e t. For each simul ation run, we
re c ord the pe rce n t age of te st s e t p articip ants for whom the es-
tim ate d treatme n t seque nce matches the optimal tr ea tme n t se-
quence. We also provide a v ari anc e estim ate base d on running
the simulation 500 times. 

We also report the value of the MAQE evaluated on the test
d atas e t, where d ata from the test s e t con sists of tr ea tment A ik ,
cov ari at e hist ory H ik , o bs erv e d outc ome Y ik , s tage n umbe r in-
dexed k from 1 to K, and da ta fr om individual i from 1 to N where

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae046#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae046#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae046#supplementary-data
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TABLE 2 Mea ns a nd s ta nda r d devia tions ( sd ) of per c ent c orre ctly cl as sified ( PCC ) and v alue of m ulti -s t age au gme n ted Q-lea rning es timators 
( MAQE ) a nd s ta nda rd Q-lea rning es timators ( SQE ) with va rying sa mple siz e r a tios wher e the n umbe r of pa rticipa n ts in the trial and OS are de- 
noted n and m, re spective ly. The MAQE1 use s w = n/ (n + m ) , the MAQE2 uses w = 0 , the SQE1 us es only O S d ata, the SQE2 us es c ombine d 

trial and OS data, and the SQE3 uses only trial data. 

Metric n m SQE1 ( m ean , sd ) SQE2 ( m ean , sd ) SQE3 ( m ean , sd ) MAQE1 ( m ean , sd ) MAQE2 ( m ean , sd ) 

PCC 315 1315 30.2 ( 1.19 ) 33.2 ( 1.60 ) 48.1 ( 3.83 ) 48.1 ( 3.62 ) 47.9 ( 3.61 ) 
PCC 630 1000 30.2 ( 1.36 ) 36.5 ( 1.76 ) 49.6 ( 2.80 ) 49.7 ( 2.58 ) 49.4 ( 2.27 ) 
PCC 815 815 30.1 ( 1.60 ) 38.4 ( 2.36 ) 49.8 ( 2.50 ) 50.0 ( 2.36 ) 49.6 ( 2.31 ) 
PCC 1000 630 30.3 ( 1.89 ) 41.0 ( 2.83 ) 50.0 ( 2.27 ) 50.2 ( 2.35 ) 49.7 ( 1.89 ) 
Value 315 1315 9.15 ( 0.0485 ) 9.22 ( 0.0482 ) 9.41 ( 0.0939 ) 9.41 ( 0.0881 ) 9.41 ( 0.0893 ) 
Value 630 1000 9.14 ( 0.0566 ) 9.28 ( 0.0656 ) 9.43 ( 0.0771 ) 9.44 ( 0.0761 ) 9.45 ( 0.0746 ) 
Value 815 815 9.14 ( 0.0705 ) 9.32 ( 0.0735 ) 9.44 ( 0.0734 ) 9.45 ( 0.0743 ) 9.45 ( 0.0726 ) 
Value 1000 630 9.14 ( 0.0795 ) 9.37 ( 0.0687 ) 9.44 ( 0.0710 ) 9.45 ( 0.0738 ) 9.45 ( 0.0700 ) 
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= 20 000. As shown in ( 7 ) , the value of a DTR is defined as the
v erage s um of the outcomes from all st age s for p articip ants who
ollow e d the estim ate d optim al tr ea tme n t rule divided b y the
robability of re c eiving th at treatme n t seque nce, a nd is a com-
on metric for comparing DTRs ( Chen et al., 2020 ) . The value

nder the estim ate d optim al DTR using the MAQE can be com-
ared with the value using othe r es timator s includ ing the SQE.
e also compare the results to the value if a one size fits all treat-
e n t rule were implemented 

1 

N 

N ∑ 

i =1 

[ ∏ K 
k=1 I 

(
A ik = 

̂ d k ( H ik ) 
) (∑ K 

k=1 Y ik 
)∏ K 

k=1 Pr ( A ik | H ik ) 

] 

( 7 ) 

We denote the estimator where w is equal to the proportion
f trial p articip ants, n/ (n + m ) , as the MAQE1 and the e stima -

or where w = 0 as the MAQE2, the SQE using only O S d ata
s SQE1, the SQE using c ombine d trial and OS data as SQE2,
nd the SQE using only tri al d ata as SQE3. We de mons trate
ide by side perform anc e of the MAQE and SQE when varying
he s amp le sizes of the tri al and O S rel ative to each othe r, a nd
arying the OS sample size when keeping the trial sample size
ons ta n t. 

3.3 Results of s imulat ion studies 
sing the s ta nda rd sim ulation pa ra mete rs ( Table 1 , Web App
 ndix A) a nd the proje cte d sample sizes from BEST and LB3P,
he MAQE1 and MAQE2 h av e a hi ghe r PCC a nd value com-
ared with the SQE1 and SQE2, and similar PCC and value
 ompare d with the SQE3 ( Table 2 , Figure 2 b and f ) . The PCC
f the SQEs ( 30.2%, 36.5%, a nd 49.6% ) a nd MAQEs ( 49.7%
 nd 49.4% ) ca n be compa red with a mean 25% PCC rate if bi-
ary tr ea tments wer e randomly assigned at each stage without
sing patie n t cova riates in a decision function. Figure 2 and Ta-
le 2 show that for all sample si ze comb inations, the SQE1 us-

ng only O S d ata has poor pe rforma nce because of unobserv e d
 onfounding. Naiv ely c ombining all trial and O S d ata into the
QE2 gives sli gh tly bette r pe rforma nce because the trial data do
ot h av e uno bs erv e d c onfoundin g, but basin g est imat ion s o lely
n the trial data using the SQE3 improves pe rforma nce dra mat-

cally. Figure 2 a–d shows that the PCC of the MAQE1 is high-
s t a nd h as sm alle r va riability compa red with the S QE3. T he

AQE2 has sli gh tly lowe r PCC compa red with the MAQE1 and
QE3 but has smalle r va riability tha n eithe r. The sli gh t reduc-
ion in a ccura cy but impro ve me n t in va riability is likely due to
he fact that only the O S d ata contribut e t o the con tras t te rm
or the MAQE2, c ompare d with the MAQE1 which uses both
ri al and O S d ata. Tab le 2 shows tha t as the pr oportion of trial
 articip ants increases, the variability of the PCC decreases for

he SQE3, MAQE1, and MAQE2, and that the v ari ability of the
A QEs is g e ne rally lowe r tha n the SQE3, which uses only trial

ata. 
Figure 2 e–h and Table 2 show the MAQE has a hi ghe r ave r-

ge value than all versions of the SQE. The values if all partic-
pa n ts in the te st dat aset follow e d tr ea tme n t seque nces (A 1 =
 , A 2 = 0) , (A 1 = 0 , A 2 = 1) , (A 1 = 1 , A 2 = 0) , or (A 1 =
 , A 2 = 1) are 9.19, 7.95, 9.01, and 7.92, respe ctiv ely. The

AQE also has a hi ghe r value than if the tr ea tment rule con-
is ted of assi gning one of these four s e ts of tr ea tme n t se-
uences to the entire populat ion, ignoring pat ie n t cha racte ris-

ics . The re d dashe d lines in Figure 2 e–h show the value of
he best one size fits all tr ea tme n t seque nce, if eve ryone in
he test s e t were to h av e be en assigne d tr ea tment se quenc e
 1 = 0 , A 2 = 0 . 
Figure 3 shows that as the n umbe r of OS pa rticipa n ts increases,

he PCC and value of the SQE3, MAQE1, a nd MAQE2 re main
 ela tiv ely c ons ta n t but the pe rforma nce of the SQE2 declines.
he pe rforma nce of the SQE1 st ays re lative ly poor at any OS
 amp le size. We would expect to see this decline in pe rforma nce
f the SQE2 because the hi ghe r quality trial data are being di-

uted by the O S d at a, which cont ain s an uno bs erv e d c onfounder.
he PCC and value for the SQE3 is expe cte d to be cons ta n t
ecause it does not use OS data, and due to the nature of the
ugme n ted es tim ator, w e w ould expe ct the perform anc e of the

AQE to be robust to, a nd pote n tially be nefit from, addition of
S p articip ants, despite the effects of uno bs erv e d c onfounding

n this simulation sc en ario. 
It is importa n t t o not e that the value is ge ne rally ac c epte d

n the field as the primary metric for evaluating a DTR. Due
o cov ari a te pr ofiles, some pa tie n ts may be nefit ve ry little b y
eing assigned an opt imal , instead of s uboptim al, tr ea tme n t
t a given stage. Ther efor e, mis cl as sification of these individ-
als make s le ss of a diffe re nc e in the ov erall outc ome for the
opul ation . 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae046#supplementary-data
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(a)

(h)(g)(f )

(b) (c) (d)

(e)

FIGUR E 2 Per form anc e of multi-stage augme n ted Q-lea rning es timators ( MAQE ) a nd s ta nda rd Q-lea rning es timators ( SQE ) w ith vary ing 
trial and observational study ( OS ) sample size ratios. The MAQE1 uses w = n/ (n + m ) , the MAQE2 uses w = 0 , the SQE1 uses only OS 
data, the SQE2 uses c ombine d trial and OS data, and the SQE3 uses only trial data. The red dashed line in subfigures ( e ) –( h ) shows the value 
of the best one size fits all tr ea tment, if all p articip ants follow tr ea tme n t seque nce A 1 = 0 , A 2 = 0 . 

(a) (b)

FIGURE 3 Pe rce n t c orre ctly cl as sified and v alue for the m ulti -s t age au gme n ted Q-lea rning es timators ( MAQE ) a nd s ta nda rd Q-lea rning 
estimators ( SQE ) as number of o bs erv ational study ( OS ) p articip ants varies. The MAQE1 uses w = n/ (n + m ) , the MAQE2 uses w = 0 , the 
SQE1 uses only OS data, the SQE2 uses c ombine d trial and OS data, and the SQE3 uses only trial data. 

 

 

 

 

 

 

We can conclude that assi gning treatme n ts based on rules es-
tim ate d from the data results in better outcomes for this patie n t
population than a one size fits all treatme n t, a nd that the MAQE
has better perform anc e th an n aiv ely c ombining the tri al and O S

data into the SQE when uno bs erv e d c onfounding is expe cte d. 
3.4 Sen s it ivity analyses 
For the MAQE to be app licab le to a rang e of re al d ata s c en ar-
ios, its pe rforma nce a nd r ela tiv e perform anc e c ompare d with 

othe r es tim ators ne e d t o be robust t o va rious expe rime n tal sce-
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 arios . We performe d s en sitivity analys es to tes t pe rforma nce of
he MAQE when a ddin g nois e v ari ab le s to the analysis mode l,
han gin g the magnitude of the tr ea tme n t effects, a nd using
malle r sa mple size s. Re sults are shown in the Supplementary M
terials . 
An importa n t conside ration whe n a nalyzing da ta is to cr ea te

 n in te rpre tab le a nd pa rsimonious model b y s electing key v a ri -
bles for an alysis . Subje ct m a t te r expe rts a nd lite ra tur e r eview
an provide v aluab le in si gh t about pote n ti al DTR tailoring v a ri -
ble s, and mode l-se lection algorithms such as the least abs o lute
hrinkage and selection operator ( LASSO ) can also be used. All
f these sources may be inaccurate, so it is valuable to expe ri -
e n t with the properties of this method in the absence of a reli-

b le v ari ab le-s election algorithm . The s e t of h armonize d dat a e l-
 me n ts in BA C PA C dat a include s upwa rd of h undreds of pote n-
i al tailoring v ari ab les th at m ay define cLBP s ubgroups and c ould
e integral in opt imiz ing DTRs. Web Appendix B de scribe s the
a ra mete rs for the ten noise variables that wer e cr ea ted based in
a rt on va riables within the BA C PA C M inimum Datas e t, with
on tin uous, bina ry or uni for m distributions. S e veral of the vari-
bles are c orrelate d with other v ari ab les ( Web Appendix B ) . 
Our simul ation s indicate that as long as the true v ari ab les in

he outcome-ge ne rating model a re included in analysis, the per-
orm anc e of the MAQE declines only sli gh tly whe n including 10
r 20 noise variables ( W eb Appendix B ) . W eb Figure S1 shows
oxplots of the PCC when using nois e v ari ab les in the analysis
ode l for e st imat ing ̂  ηak and the Q-funct ion. Web Figure S1b

hows the reduction in pe rforma nce of the MAQE is sli gh t, a nd
omparable to the reduction in pe rforma nce of the SQE, com-
ared with not using these 10 noise variables in the models. We
 ee simil a r tre nds in Web Fi gure S1c , whe re a furthe r reduction
n pe rforma nce is simila r betw e e n the MAQE a nd SQE whe n
ncluding 20 noise variables in the an alysis . This shows th at the

A QE is re as onab ly ro bust to the us e of models with nois e v a ri -
bles as long as the key v ari ab les are als o included in the model,
nd is in all cases an impro vement o ver the SQE1 and SQE2.
hi s i s especi ally us eful if the a nalys t does not h av e expert opin-

on for v ari ab le s election, or in the abs ence of a suitab le v ari ab le
 election algorithm . 

We additionally expe rime n t with sim ulation pa ra mete rs whe re
he effect sizes in the trial a nd OS a re smalle r or la rge r tha n our
 ta nda rd sim ulation pa ra mete rs. Web Fi gure S2 shows boxplots
f the PCC when the tr ea tme n t effect sizes in the tri al, O S and

est s e t a re 0.5, 1.2, a nd 2 times that of the s ta nda rd pa ra mete rs.
s the effect size increases, the a ccura cy of all estimators also

ncreases, which would be expected. The MAQE has similar or
mprov e d perform anc e c ompare d with the SQE regardless of
ffect size. The improve me n t in pe rforma nce whe n the effect
ize is smaller is evidenc e th at the MAQE is more efficie n t tha n
he SQE. 

Las tly, we expe rime n t with smalle r sa mple sizes, whe re the trial
as 250 p articip ants and the OS has either 250, 300, or 500 par-
icipa n ts. Web Fi gure S3 shows simila r tre nds for thes e s amp le
izes as with the la rge r sa mple sizes. 

4 D I S  C U S S  I O N 

e show that across va rious sim ulation pa ra mete rs the MAQE
onsis te n tly pe rforms the same or better than the SQE when
se d to estim ate the optim al tr ea tme n t seque nce for tes t s e t par-
icipa n ts, a nd has a hi ghe r ave rage value. We de mons trate the
e rforma nce of the MAQE as compared with the SQE when ex-
e rime n ting with the r ela tive s amp le size be tw e e n the trial a nd
S, total n umbe r of trial and OS p articip ants, inclusion of noise
 ari ab les, and differences in tr ea tment effect sizes. 
To apply the MAQE to analysis of BEST, the algorithm can be

dapt ed t o analyze a SMART design with more than two tr ea t-
e n t options at e ach stag e, and for analysis of other trials, it can

e used to analyze more than two tr ea tme n t s t age s. The algo-
ithm for the method is a me nable to the addition of a large num-
e r of pote n ti al tailoring v ari ab les, a nd diffe re n t va ri ab le s e lec -
ion method algorithms, such as LASSO, could be applied. This
s a key fea tur e of the method since pote n tial tailoring va riables
 ay ne e d to be inves ti gat ed t o estimat e an optimal DTR for a

e tero geneous patient population, such as with cLBP. The use
f Q-learning also lends well to interpr etability compar ed with
l as sification-bas ed me thods. 
The pe rforma nce of this method depends on the confounding

ias in the OS data. We a n ticipate whe n the re is small bias due to
no bs erv e d c onfounders, inte grating O S d ata with even a small
 amp le size can yield a significant improvement as c ompare d
ith analyzing the SMART only. Ther efor e, car eful selection of

he O S d a ta to minimize differ enti ab le bi as be tw e e n the OS a nd
MA RT partic ipa n ts is importa n t for applying this method. 
While one goal of developing methods to integrate trial and
 S d ata is to improve efficie ncy, a nothe r is to have gr ea ter accu-

acy whe n ge ne ralizing or tra nsporting a tr ea tme n t effect or DTR
o a targe t popul ation . In future studies, we wi l l expe rime n t with
ncorporating e st ablished wei gh ting methods in to the MAQE
o improve ge ne rali zab ility of estim ate d optim al DTRs to a tar-
e t popul a tion with differ ent cov ari ate distribution s. B a ck Pain
on s ortium has multiple obse rvational s tudies with diffe re n t

LBP patie n t popul ation s, including BA C Khome ( University
f Cali for nia Sa n Fra ncisco, 2023 ) , a na tion-wide fully r emote
000-p articip ant study c oordin ate d by the University of Califor-
ia San Francisco. Data harmonization and cr ea tion of data stan-
ar ds ( Ba torsky et al., 2023 ) , fa cilitate lon gitudin al ch a racte riza-
 ion of cLBP pat ie n t phe notypes a nd in t egrat ed analys es acros s
ll BA C PA C s tudies. In tegrating ha rmonized data across m ulti -
le r andomiz ed tri als and o bs erv ational studies can improve ef-
ciency of est imat ing DTRs and may also improve ge ne rali zab il-

ty to a targe t popul ation . Spea rheaded b y the NIH Common
ata Ele me n ts progra m ( Wa ndne r et al., 2022 ) , it is be c oming

ncreasingly common for con s orti a to have harmonized data col-
ect ion across mult iple r andomiz ed trials and obse rvational s tud -
es, mak ing method s li ke the M A QE incre asingly useful and e asy
o imple me n t. 
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ra mete rs refe re nc e d in Se ctions 3.1 and 3.2 . Web Appendix B
provide s de s cription s of the simul ation studies for the s en sitiv-
ity a nalyses a nd disp l ays the Figur es r efer enc e d in Se ction 3.4 .
R code and a ccompanyin g documentation for running the
simul ation s are als o included, and are av ail ab le on G ith ub ( h ttps:
//github.com/ab atorsk y/MAQ E ) . 
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Al go r ithm 1 Multi- st age Au gmented Q-learning Estimator 
Require: k ≥ 1 

while k > 0 do 

if k = K then ̂ V i,k+1 = 0 

else if k < K then ˜ Y ik = Y ik + ̂

 V i,k+1 (H i,k+1 ) for all p articip ants 
end if 
Sele ct s ubs e t of v ari ab les H k to cr ea t e out come mod- 

els E[ ̃  Y iak | H ik ] = H 

T 
ik ηak 

Perform r egr es sion s e parate ly for p articip ants re c eiving 
tr ea tme n t A ik = 0 and 1 

Calcul ate ̂  μiak v alues for all trial and OS p articip ants using ̂ μiak = H 

T 
ik ̂  ηak ∀ a ∈ { 0 , 1 } 

Use ̂ ˜ R ik = 

A ik 
πik 

(˜ Y ik − ̂ μi 1 k 
) − 1 −A ik 

1 −πik 

(˜ Y ik − ̂ μi 0 k 
) + 

w ( ̂  μi 1 k − ̂ μi 0 k ) for trial p articip ants and (1 − w )( ̂  μi 1 k −̂ μi 0 k ) for OS p articip ants to calculate the v e ctor of ̂  ˜ R ik 
Calculate the stage k estim ate d optim al tr ea tme n t rule ̂ βk = ( n 

−1 ∑ n 
i =1 H ik H 

T 
ik ) 

−1 
[

( n 

−1 ∑ n 
i =1 H ik ̂

 ˜ R ik ) + 

(m 

−1 ∑ n + m 

i = n +1 H ik ̂
 ˜ R ik ) 

]
if k > 1 then 

Estim ate m ain effe cts by re gressing Y ik − A ik (H 

T 
ik ̂

 βk ) 
on H ik to obtain its coefficie n t es timate, ̂  γk 

Use ̂  V ik (h k ) = m ax a ∈{ 0 , 1 } (a h 

T 
k ̂

 βk + h 

T 
k ̂  γk ) 

end if 
k = k − 1 

end while 
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