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ABSTRACT

Sequential multiple assignment randomized trials (SMARTs) are the gold standard for estimating optimal dynamic treatment regimes (DTRs),
but are costly and require a large sample size. We introduce the multi-stage augmented Q-learning estimator (MAQE) to improve efficiency of es-
timation of optimal DTRs by augmenting SMART data with observational data. Our motivating example comes from the Back Pain Consortium,
where one of the overarching aims is to learn how to tailor treatments for chronic low back pain to individual patient phenotypes, knowledge
which is lacking clinically. The Consortium-wide collaborative SMART and observational studies within the Consortium collect data on the
same participant phenotypes, treatments, and outcomes at multiple time points, which can easily be integrated. Previously published single-
stage augmentation methods for integration of trial and observational study (OS) data were adapted to estimate optimal DTRs from SMARTs
using Q-learning. Simulation studies show the MAQE, which integrates phenotype, treatment, and outcome information from multiple studies
over multiple time points, more accurately estimates the optimal DTR, and has a higher average value than a comparable Q-learning estimator
without augmentation. We demonstrate this improvement is robust to a wide range of trial and OS sample sizes, addition of noise variables, and

effect sizes.
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1 INTRODUCTION

Patient heterogeneity necessitates approaches to clinical
medicine and patient care that are tailored to patients’ indi-
vidual characteristics. The field of precision medicine seeks to
leverage new data analysis methods to improve treatment deci-
sions such that the right treatment is given to the right person at
the right time (Kosorok and Laber, 2019). Dynamic treatment
regimes (DTRs), also known as adaptive treatment strategies
or individualized interventions, are sequences of decision rules,
one per intervention, that assign treatments to patients based on
individual characteristics such as past treatments and evolving
disease history (Lavori et al., 2000; Lavori and Dawson, 2004;
Chakraborty and Murphy, 2014).

Just as the randomized controlled trial is the gold standard
for efficacy trials, a sequential multiple assignment random-
ized trial (SMART) design is better suited for unbiased esti-
mation of optimal DTRs than observational studies (Murphy,
2005). Using SMART designs to address precision medicine
aims has become increasingly common in fields such as men-
tal and behavioral health, oncology, obesity, and smoking ces-
sation, among others. The sequential nature of SMARTS allows
the delayed effects of previous treatments to be observed over
time, which can guide clinical care. However, the limitation to
the sequential design is that a large sample size is needed to esti-

mate optimal DTRs, so many SMARTS are only powered to ad-
dress primary aims such as comparison of initial treatment op-
tions or comparison of second stage treatment options for non-
responders (Murphy et al,, 2007). Other limitations to conduct-
ing SMARTS and other randomized trials are the cost of the trial
itself, the complexity of the design and implementation, and po-
tential for drop-out and non-compliance due to the length of
the study (March et al.,, 2010). Therefore, there is a need to
improve analysis methods to more efficiently estimate optimal
DTRs.

Observational data, such as cohort studies, medical records,
and patient databases, have been used to estimate optimal DTRs
(Moodie etal., 2012). The advantage of using observational data
is that it is less expensive and studies can enroll many more par-
ticipants than randomized trials. Inclusion and exclusion criteria
are generally less strict than trials, so the participant population
may be more representative of the true patient population, and
heterogeneity of treatments can be better represented. However,
using observational data alone is subject to biases, especially due
to unmeasured confounding. Combining data from randomized
trials and observational studies can allow for analysis of a greater
and more heterogeneous pooled participant population, while
maintaining the validity of treatment causality due to the ran-
domized nature of the trial.
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The Back Pain Consortium (BACPAC), part of the National
Institutes of Health (NIH) Helping to End Addiction Long-term
(HEAL) Initiative, consists of randomized trials, observational
studies, and sites developing experimental new technology to
study the etiology of chronic low back pain (cLBP) (NIH HEAL
Initiative, 2019). While many effective treatments have been
identified for cLBP, little is known about which treatments are
best for which patients at which time in their course of chronic
disease, especially due to the high degree of patient heterogene-
ity. Therefore, the Biomarkers for Evaluating Spine Treatments
(BEST) trial was designed as a SMART to evaluate and compare
multiple treatment sequences across cLBP patients with the goal
of estimating optimal DTRs (NCT05396014). Back Pain Con-
sortium has multiple observational studies aiming to character-
ize cLBP patient phenotypes, and to evaluate which cLBP treat-
ments are most effective for which patient subgroups (Mauck
et al,, 2023). Consortium-wide longitudinal data collection on
participant phenotypes, observed treatment, and outcomes, was
harmonized across all studies, facilitating integrability of trial
and observational study (OS) data (Batorsky et al,, 2023). The
participant populations, and response to cLBP treatments, in
BEST and the observational studies are expected to be compa-
rable. Data collection for BACPAC studies is currently under-
way, but the structure of the Consortium and harmonization of
data elements across studies provides a motivating example to
explore statistical methods to improve efficiency of estimation
of optimal DTRs from SMARTS by integrating data from obser-
vational studies.

There are several established methods for combining single-
stage trial and observational data to improve efficiency of esti-
mates and improve generalizability of treatment effects. These
methods include the inverse probability of sampling weight-
ing (IPSW) estimator, stratification, and/or involve creating
propensity scores to reduce bias from measured confounders
(Colnet et al., 2021). Other methods include G-formula esti-
mators, as proposed by Robins (Robins, 1986). However, these
methods do not immediately address the need to improve ef-
ficiency, and are not designed to estimate optimal DTRs from
multi-stage trials. To date, methods to augment SMART data
with stage-wise observational data are lacking in the literature.

In this article, we propose a procedure within the Q-learning
framework to combine the data from a SMART and an OS to es-
timate optimal DTRs. Q-learning is a regression-based method
which maximizes the outcome at each sequential stage work-
ing backwards to arrive at the optimal treatment rule at each
stage (Murphy, 2005). At each stage in the Q-learning estima-
tion, we utilize the framework of the doubly robust augmented
IPSW (APISW) estimator, which was originally used for esti-
mating the average treatment effect or heterogeneous treatment
effect in a single stage study (Lunceford and Davidian, 2004; Lip-
kovich et al., 2023). The estimator is doubly robust in that it will
give unbiased results as long as either the the outcome model
or the probabilities of receiving a given treatment are accurate.
We first predict the estimated outcome model parameters using
the SMART data, then use these estimated parameters to esti-
mate stage-wise potential outcomes for all trial and OS partic-
ipants. We use a doubly robust construction of the Q-function
for trial participants, then incorporate the contrast of the pre-

dicted potential outcomes for OS participants to estimate the
optimal treatment rule at each stage. We denote this algorithm
the multi-stage augmented Q-learning estimator (MAQE). Due
to the doubly robust property of this estimator, it is guaranteed
to be unbiased even if the predicted potential outcomes are inac-
curate because the treatment randomization probabilities at each
stage of the trial are known. Furthermore, the MAQE is expected
to have less uncertainty (ie, increased efficiency) because of the
data augmentation step.

Notation and assumptions relevant to this method are intro-
duced in Section 2.1, Q-learning is described in Section 2.2, and
the details of the algorithm are described in Section 2.3. In Sec-
tion 3.1, we describe the simulation study motivated by BAC-
PAC. Performance metrics are described in Section 3.2. We then
demonstrate the properties of the MAQE using simulated test
data when changing various parameters, such as relative and ab-
solute sample sizes, OS sample size, addition of noise variables,
and using different effect sizes (Sections 3.3 and 3.4). We also
discuss advantages of this method and next steps for future re-
search in Section 4.

2 METHODS

2.1 Notation and basic assumptions

The SMART (henceforth referred to as the trial) of size nand OS
of size m both consist of K stages of treatments. Individual data
consist of a sequence of K tuples (X, Y, Ay), k=1,....K,
where X;. denotes a p-dimensional vector of covariates collected
at stage k. Ay represents the binary, categorical or continuous
treatment assigned or observed at stage k. For the purposes of
this example A is binary, taking values 0 or 1. Y; denotes the
observed binary or continuous outcome, where a larger value is
more beneficial. Let Y;.(ai, . . . , ;) denote a potential outcome
atstage k given treatmentay, . . ., ax. Participant history by stage
k is denoted by Hy including the intercept, so H; = (1, X; ) and
H;. consists sequentially of (Hy—1, Ar—1, Yi—1, X)-

A DTR is a sequence of decision functions for all K stages,
represented by D = (d, da, . .., di ), where stage-wise treat-
ment rule d; maps H; to the domain of Ay, ie., {0, 1}. The
corresponding value function of D is defined as E(Y;(d;) +
Y,(dy, dy) + ...+ Yi(dy, da, ..., di)), which is the expected
population average value of the outcome measures from stages
one to K added together, if all participants were to follow the
DTR, D. When analyzing a SMART, the goal is to estimate the
optimal DTR, denoted by D* = (d}, d5, ..., di) which yields
the highest value.

The following assumptions are needed to provide valid esti-
mates of DTRs from SMARTS and are described in more detail
by Schulte et al. (2014).

Assumption 1 (consistency and the stable unit treat-
ment value assumption [SUTVA]) Y, =)  I(A =

ay, ..., Ax=a)Y(ay, ..., a).

Assumption 2 (sequential ignorability) for any (ay, ..., ar),
Yi(ay, ..., a) is independent of A, given Hy.



Assumption 3 (positivity) P(A; = ai|Hy = ) > 0 forall
ar € {0,1} and hy. in the domain of H;.

Causal consistency and SUT VA implicitly assume that there ex-
ists no interference or non-compliance. The assumption of se-
quential ignorability, also referred to as exchangeability, implies
that due to balanced randomization, there is no unmeasured
confounding at each stage k, given participant history Hi. We
note that this assumption holds for the SMART but may not be
true for the OS. The third assumption implies that there isa non-
zero (ie, positive) probability that a study participant will receive
any available treatment at each stage. This assumption holds for
SMARTSs when randomization probabilities are greater than zero
for each treatment at each stage, but may not hold for observa-
tional data, where actual or near-positivity violations may occur.

2.2 Q-learning to estimate optimal DTRs

Q-learning is commonly used to estimate optimal DTRs
from SMARTs. We refer to the following method of estima-
tion without augmentation as the standard Q-learning esti-
mator (SQE). Let Qi(Hy, Ar) be the Q-function at stage k,
which is defined as the expected outcome at stage k given
history Hy = h and treatment A; = a, assuming the partic-
ipant is treated optimally at all future stages. Analysis us-
ing the Q-function for multiple stages uses the Bellman opti-
mality equation (Bellman, 1957): Qu—; (Hi—1, a) = E[Y;—; +
maxg, 0,1y Qe (He, ap) [Hi—1, Ay = al.

The optlmal treatment for a patient with observed covariate
history hy_, at stage k — 1, is the treatment maximizing the ex-
pectation on the right-hand side of the Bellman equation. Q-
learning proceeds by estimating stage-wise Q-functions and op-
timal treatment rules through a backwards algorithm. Let par-
ticipants from the SMART of size n be modeled by a sequence
of K independent random tuples (X, Y, Ay )., independent
and identically distributed (i.i.d.) according to the trial popula-
tion. In this article, we model the interaction between A, and Hy,
with form (HyA)T B + (Hi )T vk, where Hi may include inter-
action terms between past treatments and observed covariates.
An extension of this method may replace Hj with a nonlinear
basis function in the space of Hy, to allow for a more flexible and
nonlinear model for interactions.

Start with stage K. Computation for Q-learning minimizes the
following objective function to estimate the vector of regression
coeflicients from n trial participants, which dictate the estimated
optimal treatment rule at the last stage, K

- Z (YK — [(HxA)" B +H KyK]>2. (1)

We denote the estimated coefficients as ( Bx, P ). The estimated
optimal treatment rule at stage K, dy, is used to estimate the op-
timal treatment for subject i at stage K, the treatment that yields
the highest estimated outcome as determined by (2)

(hK) = argmaXY:K(hK, ag) = I(hg B >0), (2)

where Yix (hg, ax ) is the predicted outcome from the solution to
(1) fOI'H,'K = hK, A

iK = AdK-
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For each stage workmg backward, contlnulng with stage K —
1, the pseudo outcome, YK 1 =Yk —|— VK(H,K) is evalu-

ated, where VIK(hK) is the maximum of Y,K(hK, ag) over ag.
This allows for estimation of the conditional function at stage

— 1, E[Y, " k—1|Hix—1, Aix—1]. Then, the following function
is mlmmlzed

1 n - 2

" Z (Yi.K—l — [(Hix-14ix-1)" Br—1 + Hi?K*lVK-l]) ) (3)
i=1

so that we obtain the estimator for the vector of regression co-

efficients, denoted by ( ,BK 1 V- 1) Thus, for stage K — 1, the

estimated optimal treatment rule, dr &_1,is used to determine the

treatment that yields the highest estimated outcome, as deter-

mined by (4)

d1*<71(h1<71) = arg r‘?aX?i,Kfl(hKfl’ aKﬂ)
k—1

= I(hg_,Br1 > 0), (4)

where ?i, x—1(hk_1, ax_1) is the predicted outcome from the
solution to (3). Estimation of subsequent stage-wise optimal
4 :13‘ ), and thus the full estimated op-
timal DTR, D¥, proceeds using the same algorithm in turn.

treatment rules (dy_,, .. .,

2.3 Data augmentation with an OS

To improve efficiency of estimates of optimal DTRs using Q-
learning, we propose the multi-stage augmented Q-learning es-
timator (MAQE), which includes an augmentation term, allow-
ing for pooled data analysis of  trial participants and m OS par-
ticipants for all K stages. In addition to data from » trial partic-
ipants, we introduce data from m OS participants, modeled by
a sequence of K independent random tuples (X, Yi, Ay gﬁl
where data from each participant are ii.d. according to the dis-
tribution of the OS population. It is assumed that treatment and
outcome are observed for all K stages.

In contrast to the SQE in (1), the MAQE at stage K directly
estimates the treatment effect using a contrast between potential
outcomes for a given participant if they were to receive treatment
1 vs 0 at stage K. For subject i in the trial data, it is clear that be-

AuYie (=AY pro |
_ Th— |Hix | is equal

to this contrast, where 7m;x = P(A;x = 1|Hjg ) is the known ran-
domization probability to assign treatment A;x = 1. Therefore,
such a contrast is available for the trial participants. However,
since there may be unobserved confounders and the treatment
assignment probabilities are unknown, in the OS such a contrast
is not available and therefore needs to be estimated using the
data.

Therefore, as the first step at stage K, we regress Yix on Hi
separately for subjects who receive treatment 1 (ie, ax = 1), or
treatment O (ie, ax = 0). These subpopulations are modeled
separately to directly model differences in treatment by covari-
ate effects. The regression model is chosen to be a linear model
in our analysis, although we can use a nonlinear model by replac-
ing H;x with nonlinear basis functions. We denote the predicted
potential outcome for each treatment as j1;,x for a = 1 and 0.
Due to potential biases in the observational data, the above re-
gression is performed only using the trial data. Once regression
parameters from each model (denoted 7,k ) are estimated using

cause of Assumptions 1-3, E [



4 e Biometrics, 2024, Vol. 80, No. 2

trial data, the potential outcomes [Z;;x are calculated for all trial
and OS participants.

Following the construction of the doubly robust estimator in
the literature of heterogeneous treatment effects, we have

A'K ~ 1 _A‘K ~
E |:—l (Y — tax) — ——— (Yix — Hiok) ‘HiK = h:|
TTiK 1 —mi

+E[fik — Hiox|Hix = h] = h" B,
Aix ~ 1 —Ax

E |:—l (Yix — k) — ———— (Y —
TTiK 1-— ik

+WE[ﬁilK -

where w is any value between 0 and 1 and is used to
weight the contribution of the contrast term from the trial and

OsS.
Therefore, for trial

(Y — Rik) — T

participants, we define Ry =
(Yix — Ttiox) + w(Iix — Hiok)

and for OS participants, we let Ry = (1— w) (Wix — ok )-
An estimating equation for B is given by
n n+m
n! ZHiKRiK +m Z HgRix = n~ ZHzKH kB
i=1 i=n+1 i=1

with analytical solution,

n n
Bk = (n”! ZHiKH,};)_I[(”_l ZHiKR\iK)
i—1 i=1
n+m

m! Z HiKﬁiK)],

i=n+1

where only the trial data contributes to the design matrix.

Then the estimated optimal treatment rule at stage K is

K(hK) = I(h} ,BK > 0). As a note, when the weight, w, is cho-
sentobe 1, we estimate t the conditional mean of the contrast only
using the trial data, so R,k reduces to the doubly robust construc-
tion in the literature when there is no OS; when the weight, w,
is chosen to be 0, we estimate the conditional mean using the
OsS.

To estimate the optimal stage K — 1 treatment rule, we must
calculate

viK(hiK) = m“xaKE{O,l}(al<h§<ﬂK + h&i’\K), (6)

which is the predicted value of the outcome at stage K if the op-
timal treatment rule were followed. In the previous step, we esti-
mated ,BK, and therefore the estimated treatment effect is h % K ,BK
To calculate the values of V Vik (H,K ), we estimate the main effects,
Vi byregressing Yix — A H, KﬂK, the residual after removing the
estimated treatment effect, on Hk.

Next, estimation of the optimal treatment rule for stage
K — 1 proceeds using a similar algorithm as s stage K, but the
outcome is the pseudo-outcome given by K k-1 =Yk +

,K(HtK) As such, the predicted contrast function, denoted
by i1, is estimated using this pseudo-outcome for the

Wox|Hx = h, i € trial] + (1 — w)E[lix —

assuming that the true treatment effect takes form HY B, and
that this holds even if the models for 71;;x and [Tjox are not ac-
curate. Note that the first conditional expectation can only be
estimated using the trial data, but the second conditional expec-
tation can be estimated using both the trial and OS. Thus, the
above equation can be further expressed as

Hiok) ’HiK =h,ie trial]

Wik |Hx = h, i € observational study] = h” Bk, (5)

trial subjects with treatment A; x_; = a for a = 1 or 0. Sim-

ilar to stage K, these values are used to estimate IZ,K_I val-
. .. = Ak (S ~

ues for trial participantsasR; k1 = nﬁ,l (Y,-’K_l — /,L,-1J<_1) —

1-Aik—1

T—— (?i,Kfl — Tio.k—1) + w(Ti k-1 — Rio.x—1), and OS

participants as R; k-1 = (1 — w) (k-1 — Lio.k—1)-
Using the same argument as for stage K, we show

E|:§i,K—1 |Hix—1=h,i€ tria1i|

+E|: i K— 1’Ht x—1 = h, i € observational study]

= hTﬂK—h
assuming that the true treatment effect for the pseudo-outcome
takes the same form as the right-hand side. We are therefore able
to estimate the optimal treatment rule, é;*(_l , after solving for
Bk—1 using the estimating equation

n ntm

n! Z Hix-1Rix—1 +m™! Z Hix—iRig1=n""

i=1 i=n+1

n
§ : T
X Hi,K—IH,‘,K_l,BK—l,
i=1

with analytical solution,

n
Br—1=(n"" ZHi,KqH,-TK,IV

i=1

n
G ZHi,Kflﬁ\i,Kfl)
=1
n+m

m™! Z Hi,Kflji\i,Kfl)]-

i=n+1
The estimated optimal treatment rule at stage K —1 is
dic_ (hx—1) :I(h11;71,3K71 > 0).

We continue the same procedure backward from stage K —
2, K — 3,..., until stage 1. Finally, we obtain estimation of optimal
treatment rules (dI o *) sequentially to arrive at D¥, the es-
timated optimal DTR. The general algorithm for the MAQ_E is
described in the appendix.

As an example, when K =2, the estimated optimal DTR is
given by the values of [I(HT,Bl >0), I(HT,32 > 0)]. For a
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Y, : PEG Score
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FIGURE 1 Sequential multiple assignment randomized trial design for simulation experiments, including four trial arms, enhanced self-care
(ESC), duloxetine, evidence-based exercise and manual therapy (EBEM), and acceptance and commitment therapy (ACT).

new patient in the clinic, values of a patient’s measured phe-
notype variables can be multiplied by the regression parame-
ters for stage 1 to determine the optimal treatment for that pa-
tient at the first stage. Once the outcome from that treatment is
measured, the optimal stage 2 treatment can be determined by
multiplying stage 2 covariate history by the regression parame-
ters for stage 2. For each stage, if the sign of the resulting value
is positive, the patient should receive treatment A =1, other-
wise they should receive treatment A =0 (as per Equations 2

and 4).

3 SIMULATION STUDY AND RESULTS
3.1 Design of the simulation study

Biomarkers for Evaluating Spine Treatments is a two-stage
SMART with four stage 1 treatment arms, with the primary aim
of estimating an algorithm for optimally assigning cLBP treat-
ments based on an individual’s phenotypic markers and response
to treatment. Secondary aims of the trial include assessing long-
term effectiveness of the estimated optimal DTRs, and estimat-
ing optimal DTRs tailored to patient preferences. Twelve nation-
ally distributed study sites are recruiting cLBP participants for
BEST, who have a pain duration over 3 months and pain more
than half of the days over the last 6 months, age 18™. The target
sample size for the study is 630 completers.

For the purposes of illustration and generalizability to other
study designs, we utilize the most basic SMART design for our
simulation studies, where randomization to one of two treat-
ment arms occurs at two sequential time points three months
apart, instead of randomizing to four treatment arms at both
stages (Figure 1). Figure 1 shows the simplified trial design,
where participants are randomized with probability 0.5 to either

enhanced self-care or duloxetine, coded as 0 and 1, at stage 1,
then independent of response status, are randomized with prob-
ability 0.5 to either evidence-based exercise and manual ther-
apy or acceptance and commitment therapy, coded as 0 and 1,
at stage 2.

The LB3P study at the University of Pittsburgh, one of BAC-
PAC’s mechanistic research centers, is a prospective cohort OS
with a target enrollment of 1000 participants (Vo et al., 2023).
This study has similar inclusion/exclusion criteria as BEST, and
longitudinal cLBP treatment information is captured at simi-
lar timepoints as BEST. One of the strengths of BACPAC is
that longitudinal data collection was harmonized, whereby the
same data elements of the BACPAC Minimum Dataset are re-
quired to be collected across all studies at baseline and a 3-
month visit to facilitate characterization of cLBP study partici-
pants Consortium-wide (Mauck et al., 2023).

Study outcome data elements were also harmonized. The pri-
mary outcome for BACPAC studies is the PEG score, which is
the average value of three questions about pain severity and pain
interference, where for each question, 10 is the worst pain or
pain interference imaginable and 0 is no pain or pain interfer-
ence (Krebs et al., 2009). For simulations, we use a continuous
(instead of ordinal) outcome where higher scores are more ben-
eficial, and represent the decrease in pain and/or pain interfer-
ence between the end of each stage and baseline. Response to
first stage treatment (Resp, 1 = yes, 0 = no) for trial and OS par-
ticipants was defined in simulations as having a stage 1 outcome
value higher than the 60th percentile in a simulated dataset com-
prising 20,000 participants.

One of the goals of the analysis of BEST is to determine which
elements of the BACPAC Minimum Dataset could be used as
DTR tailoring variables. Tailoring variables are variables used to
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make treatment decisions, and can be collected at baseline, or
during treatment, and may change throughout a treatment se-
quence (Almirall et al., 2014). In our simulation studies, we use
one continuous and two binary variables as tailoring variables for
stages 1 and 2. The continuous age variable is denoted by xy,
xyi. indicates opioid usage (1 =1yes, 0 =no), and «3; indicates
depression symptoms (1 = yes, 0 = no), where k represents the
stage number.

Table 1 shows selected simulation parameters for the two stud-
ies. Opioid usage and depression symptoms at 3 months (start of
stage 2) were correlated with baseline values for a given partici-
pant. Logistic regression models, with baseline values and stage
1 treatment as model covariates, were used to generate stage 2
(3-month) values. The treatment randomization probabilities at
each stage for the OS were based on a logistic regression model
using covariates x;, x3 and unobserved confounder, z, at each re-
spective stage.

The outcome-generating models for stages 1 and 2 are based
on main effects of the three selected variables and an unobserved
confounder, the interactions of all variables with treatment, as
well as interactions of treatment with squared and cubed age
terms. At stage 2, the outcome-generating model also includes
responder status, an indicator variable for stage 1 treatment, and
the interaction between stage 2 treatment and stage 1 treatment.
For a full description of the outcome-generating models and ra-
tionale, please see Web Appendix A in the Supplementary Mat
erials.

3.2 Evaluation of performance

We evaluate the performance of the MAQE compared with the
SQE, an estimator that uses the Q-learning algorithm without
data augmentation, introduced in Section 2.2. A 20,000 partici-
pant test set was generated using the outcome models and par-
ticipant covariate distributions from the simulated trial and ob-
servational studies, to represent the target population of cLBP
patients. For this test set, the probability of a participant being
assigned treatment A; =1 is 0.5, similar to the trial, instead of
using a propensity score model. For a full list of simulation pa-
rameters, please see Web Appendix A.

One metric for evaluating performance of the estimators is de-
termining the percentage of test set participants for whom the
estimator correctly estimates the optimal treatment sequence, or
percent correctly classified (PCC). Because we know the simu-
lation parameters for the outcome models, we are able to record
the optimal treatment sequence for test set participants which
optimizes the Q-function. For each iteration of the simulation,
we use the training SMART and OS datasets to estimate the 2-
stage DTRs, then use the regression parameters (ie, estimated
optimal DTRs) to estimate the optimal treatment sequence for
each participant in the test set. For each simulation run, we
record the percentage of test set participants for whom the es-
timated treatment sequence matches the optimal treatment se-
quence. We also provide a variance estimate based on running
the simulation 500 times.

We also report the value of the MAQE evaluated on the test
dataset, where data from the test set consists of treatment Ay,
covariate history Hy, observed outcome Y, stage number in-
dexed kfrom 1 to K, and data from individual i from 1 to N where

TABLE 1 Selected parameters from simulation study using sequential multiple assignment randomized trial (SMART), observational study (OS), and test datasets.
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TABLE 2 Means and standard deviations (sd) of percent correctly classified (PCC) and value of multi-stage augmented Q-learning estimators
(MAQE) and standard Q-learning estimators (SQE) with varying sample size ratios where the number of participants in the trial and OS are de-
noted n and m, respectively. The MAQE1 uses w = n/(n + m), the MAQE2 uses w = 0, the SQE1 uses only OS data, the SQE2 uses combined

trial and OS data, and the SQE3 uses only trial data.

Metric n m SQEI1 (mean,sd) SQE2 (mean,sd) SQE3 (mean,sd) MAQEI (mean,sd) MAQE2 (mean, sd)
PCC 315 1315 30.2 (1.19) 33.2 (1.60) 48.1(3.83) 48.1 (3.62) 47.9 (3.61)
PCC 630 1000 30.2 (1.36) 36.5(1.76) 49.6 (2.80) 49.7 (2.58) 49.4 (2.27)
PCC 815 815 30.1 (1.60) 38.4(2.36) 49.8 (2.50) 50.0 (2.36) 49.6 (2.31)
PCC 1000 630 30.3 (1.89) 41.0 (2.83) 50.0 (2.27) 50.2 (2.35) 49.7 (1.89)
Value 315 1315 9.15 (0.0485) 9.22 (0.0482) 9.41 (0.0939) 9.41 (0.0881) 9.41 (0.0893)
Value 630 1000 9.14 (0.0566) 9.28 (0.0656) 9.43 (0.0771) 9.44 (0.0761) 9.45 (0.0746)
Value 815 815 9.14 (0.0705) 9.32 (0.07353) 9.44 (0.0734) 9.45 (0.0743) 9.45 (0.0726)
Value 1000 630 9.14 (0.0795) 9.37 (0.0687) 9.44 (0.0710) 9.45 (0.0738) 9.45 (0.0700)

N =20000.Asshown in (7), the value of a DTR is defined as the
average sum of the outcomes from all stages for participants who
followed the estimated optimal treatment rule divided by the
probability of receiving that treatment sequence, and is a com-
mon metric for comparing DTRs (Chen et al., 2020). The value
under the estimated optimal DTR using the MAQE can be com-
pared with the value using other estimators including the SQE.
We also compare the results to the value if a one size fits all treat-
ment rule were implemented

1 a le I(Ay = CTk (H)) (Zf:l Yi)
N ;[ [T, Pr (Al Hic) :| @)

We denote the estimator where w is equal to the proportion
of trial participants, n/(n 4+ m), as the MAQE1 and the estima-
tor where w = 0 as the MAQE?2, the SQE using only OS data
as SQE1L, the SQE using combined trial and OS data as SQE2,
and the SQE using only trial data as SQE3. We demonstrate
side by side performance of the MAQE and SQE when varying
the sample sizes of the trial and OS relative to each other, and
varying the OS sample size when keeping the trial sample size
constant.

3.3 Results of simulation studies

Using the standard simulation parameters (Table 1, Web App
endix A) and the projected sample sizes from BEST and LB3P,
the MAQE1 and MAQE?2 have a higher PCC and value com-
pared with the SQEI and SQE2, and similar PCC and value
compared with the SQE3 (Table 2, Figure 2b and f). The PCC
of the SQEs (30.2%, 36.5%, and 49.6%) and MAQEs (49.7%
and 49.4%) can be compared with a mean 25% PCC rate if bi-
nary treatments were randomly assigned at each stage without
using patient covariates in a decision function. Figure 2 and Ta-
ble 2 show that for all sample size combinations, the SQE1 us-
ing only OS data has poor performance because of unobserved
confounding. Naively combining all trial and OS data into the
SQE?2 gives slightly better performance because the trial data do
not have unobserved confounding, but basing estimation solely
on the trial data using the SQE3 improves performance dramat-
ically. Figure 2a—d shows that the PCC of the MAQE] is high-
est and has smaller variability compared with the SQE3. The
MAQE?2 has slightly lower PCC compared with the MAQE1 and

SQE3 but has smaller variability than either. The slight reduc-
tion in accuracy but improvement in variability is likely due to
the fact that only the OS data contribute to the contrast term
for the MAQE2, compared with the MAQE1 which uses both
trial and OS data. Table 2 shows that as the proportion of trial
participants increases, the variability of the PCC decreases for
the SQE3, MAQE1, and MAQE?2, and that the variability of the
MAQE:s is generally lower than the SQE3, which uses only trial
data.

Figure 2e-h and Table 2 show the MAQE has a higher aver-
age value than all versions of the SQE. The values if all partic-
ipants in the test dataset followed treatment sequences (A; =
O,Az = 0), (Al = O,Az = 1), (Al = 1,A2 = 0), or (A] =
1,A, = 1) are 9.19, 7.95, 9.01, and 7.92, respectively. The
MAQE also has a higher value than if the treatment rule con-
sisted of assigning one of these four sets of treatment se-
quences to the entire population, ignoring patient characteris-
tics. The red dashed lines in Figure 2e-h show the value of
the best one size fits all treatment sequence, if everyone in
the test set were to have been assigned treatment sequence
A =0,A,=0.

Figure 3 shows that as the number of OS participants increases,
the PCC and value of the SQE3, MAQE]1, and MAQE2 remain
relatively constant but the performance of the SQE2 declines.
The performance of the SQEI stays relatively poor at any OS
sample size. We would expect to see this decline in performance
of the SQE2 because the higher quality trial data are being di-
luted by the OS data, which contains an unobserved confounder.
The PCC and value for the SQE3 is expected to be constant
because it does not use OS data, and due to the nature of the
augmented estimator, we would expect the performance of the
MAQE to be robust to, and potentially benefit from, addition of
OS participants, despite the effects of unobserved confounding
in this simulation scenario.

It is important to note that the value is generally accepted
in the field as the primary metric for evaluating a DTR. Due
to covariate profiles, some patients may benefit very little by
being assigned an optimal, instead of suboptimal, treatment
at a given stage. Therefore, misclassification of these individ-
uals makes less of a difference in the overall outcome for the
population.
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We can conclude that assigning treatments based on rules es- 3.4 Sensitivity analyses
timated from the data results in better outcomes for this patient
population than a one size fits all treatment, and that the MAQE
has better performance than naively combining the trial and OS
data into the SQE when unobserved confounding is expected.

For the MAQE to be applicable to a range of real data scenar-
ios, its performance and relative performance compared with
other estimators need to be robust to various experimental sce-



narios. We performed sensitivity analyses to test performance of
the MAQE when adding noise variables to the analysis model,
changing the magnitude of the treatment effects, and using
smaller sample sizes. Results are shown in the Supplementary M
aterials.

An important consideration when analyzing data is to create
an interpretable and parsimonious model by selecting key vari-
ables for analysis. Subject matter experts and literature review
can provide valuable insight about potential DTR tailoring vari-
ables, and model-selection algorithms such as the least absolute
shrinkage and selection operator (LASSO) can also be used. All
of these sources may be inaccurate, so it is valuable to experi-
ment with the properties of this method in the absence of a reli-
able variable-selection algorithm. The set of harmonized data el-
ements in BACPAC data includes upward of hundreds of poten-
tial tailoring variables that may define cLBP subgroups and could
be integral in optimizing DTRs. Web Appendix B describes the
parameters for the ten noise variables that were created based in
part on variables within the BACPAC Minimum Dataset, with
continuous, binary or uniform distributions. Several of the vari-
ables are correlated with other variables (Web Appendix B).

Our simulations indicate that as long as the true variables in
the outcome-generating model are included in analysis, the per-
formance of the MAQE declines only slightly when including 10
or 20 noise variables (Web Appendix B). Web Figure S1 shows
boxplots of the PCC when using noise variables in the analysis
model for estimating 77,1 and the Q-function. Web Figure S1b
shows the reduction in performance of the MAQE is slight, and
comparable to the reduction in performance of the SQE, com-
pared with not using these 10 noise variables in the models. We
see similar trends in Web Figure Slc, where a further reduction
in performance is similar between the MAQE and SQE when
including 20 noise variables in the analysis. This shows that the
MAQE is reasonably robust to the use of models with noise vari-
ables as long as the key variables are also included in the model,
and is in all cases an improvement over the SQE1 and SQE2.
This is especially useful if the analyst does not have expert opin-
ion for variable selection, or in the absence of a suitable variable
selection algorithm.

We additionally experiment with simulation parameters where
the effect sizes in the trial and OS are smaller or larger than our
standard simulation parameters. Web Figure S2 shows boxplots
of the PCC when the treatment effect sizes in the trial, OS and
test set are 0.5, 1.2, and 2 times that of the standard parameters.
As the effect size increases, the accuracy of all estimators also
increases, which would be expected. The MAQE has similar or
improved performance compared with the SQE regardless of
effect size. The improvement in performance when the effect
size is smaller is evidence that the MAQE is more efficient than
the SQE.

Lastly, we experiment with smaller sample sizes, where the trial
has 250 participants and the OS has either 250, 300, or 500 par-
ticipants. Web Figure S3 shows similar trends for these sample
sizes as with the larger sample sizes.

4 DISCUSSION

We show that across various simulation parameters the MAQE
consistently performs the same or better than the SQE when
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used to estimate the optimal treatment sequence for test set par-
ticipants, and has a higher average value. We demonstrate the
performance of the MAQE as compared with the SQE when ex-
perimenting with the relative sample size between the trial and
OS, total number of trial and OS participants, inclusion of noise
variables, and differences in treatment effect sizes.

To apply the MAQE to analysis of BEST, the algorithm can be
adapted to analyze a SMART design with more than two treat-
ment options at each stage, and for analysis of other trials, it can
be used to analyze more than two treatment stages. The algo-
rithm for the method is amenable to the addition of a large num-
ber of potential tailoring variables, and different variable selec-
tion method algorithms, such as LASSO, could be applied. This
is a key feature of the method since potential tailoring variables
may need to be investigated to estimate an optimal DTR for a
heterogeneous patient population, such as with cLBP. The use
of Q-learning also lends well to interpretability compared with
classification-based methods.

The performance of this method depends on the confounding
bias in the OS data. We anticipate when there is small bias due to
unobserved confounders, integrating OS data with even a small
sample size can yield a significant improvement as compared
with analyzing the SMART only. Therefore, careful selection of
the OS data to minimize differentiable bias between the OS and
SMART participants is important for applying this method.

While one goal of developing methods to integrate trial and
OS data is to improve efliciency, another is to have greater accu-
racy when generalizing or transporting a treatment effect or DTR
to a target population. In future studies, we will experiment with
incorporating established weighting methods into the MAQE
to improve generalizability of estimated optimal DTRs to a tar-
get population with different covariate distributions. Back Pain
Consortium has multiple observational studies with different
cLBP patient populations, including BACKhome (University
of California San Francisco, 2023), a nation-wide fully remote
3000-participant study coordinated by the University of Califor-
nia San Francisco. Data harmonization and creation of data stan-
dards (Batorsky et al., 2023), facilitate longitudinal characteriza-
tion of cLBP patient phenotypes and integrated analyses across
all BACPAC studies. Integrating harmonized data across multi-
ple randomized trials and observational studies can improve ef-
ficiency of estimating DTRs and may also improve generalizabil-
ity to a target population. Spearheaded by the NIH Common
Data Elements program (Wandner et al., 2022), it is becoming
increasingly common for consortia to have harmonized data col-
lection across multiple randomized trials and observational stud-
ies, making methods like the MAQE increasingly useful and easy
to implement.
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rameters referenced in Sections 3.1 and 3.2. Web Appendix B
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R code and accompanying documentation for running the
simulations are also included, and are available on Github (https:
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Algorithm 1 Multi-stage Augmented Q-learning Estimator

Require: k> 1
while k > 0 do
if k = K then
Vikr1 =0
else if k < K then
Yie =Yg + Vi g1 (H; 41 ) for all participants
end if
Select subset of variables Hj to create outcome mod-
els E[Yi|Hy] = Hy nak
Perform regression separately for participants receiving
treatment Aj =0and 1
Calculate [L;, values for all trial and OS participants using
ﬁiak = H,'{ﬁak Xa € {0, 1}
Use Ry = % (Y — k) — =22 (Y — fok) +

1—my

w(ax — Mior) for trial participants and (1 — w) (i, —
ok ) for OS participants to calculate the vector of ﬁ,-k
Calculate the stage k estimated optimal treatment rule
Be= (7' 3oL HyH) 7' [(n' 200, HiRie) +
_ n—+m g
(m ! Zi:n+l HikRik)]
if K > 1 then R
Estimate main effects by regressing Y — Ay (Hiw Br)
on Hy to obt/a\in its coefficient estimate, } Vi
Use Vi (h) = maxaeqo,1(ahl Bx + hi V)
end if
k=k—-1
end while
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