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Abstract

Artificial Intelligence (AI) in oncology is advancing beyond algorithm development to integration 

into clinical practice. This review describes the current state of the field, with a specific focus on 

clinical integration. AI applications are structured according to cancer type and clinical domain, 

focusing on the four most common cancers and tasks of detection, diagnosis, and treatment. 

These applications encompass various data modalities, including imaging, genomics, and medical 

records. We conclude with a summary of existing challenges, evolving solutions, and potential 

future directions for the field.
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Introduction

Artificial Intelligence (AI) is increasingly being applied to all aspects of oncology. These 

applications have been set in motion by two fundamental shifts. The first is the development 

of new computational models and tools. In particular, advances in deep learning1 over the 

past decade have made it feasible to learn complex patterns directly from real-world data, 

making it the core driver of AI advances in and out of healthcare2. These advances in deep 

learning have been accompanied with rapid advances in graphical processing units (GPUs) 

and cloud computing that enable the development of increasingly large models trained on 

massive data sets. The second shift is the advancing digital landscape of oncology itself. 

This includes the storage of patient data in electronic medical record (EMR) systems, the 

digitization of radiology and pathology imaging3, and the increasing adoption of routine 

genomic profiling4. While this digitization is non-uniform across data modalities and 

clinical sites, there is increasing availability of detailed, longitudinal information for cancer 

patients. This data can be used to build and train AI models, and critically, the real-time 

availability of this data can enable individualized, clinically relevant AI predictions to 

further the goal of precision oncology5.

Within this review, we aim to summarize the current landscape of AI in oncology. While 

the field can encompass numerous applications, including biological and drug discovery6, 

this review specifically focuses on AI use cases targeting direct integration into clinical 

practice. This focus is motivated by the accelerated advancement of AI applications from 

development to clinical use. Additionally, we focus on AI approaches based on modern, 

deep learning methods, rather than other machine learning or rule-based methods. Finally, 

given the numerous possible applications and breadth of AI work, the review focuses on 

the four most common cancer types: Breast, Prostate, Lung, and Colorectal, accounting for 

50% of all new cancer cases in 20237. AI applications for these cancer types serve as a 

good representation of the current state of the field, especially as their prevalence facilitates 

large-scale data collection and encourages clinical application.

To first motivate the focus on applications targeting clinical integration and illustrate the 

pathway to clinical deployment, we highlight the use of AI for breast cancer detection 

in mammography (Figure 1). To develop such a system, one typically curates thousands 

of mammograms (x-ray images of the breast) along with ground truth annotations of 

whether breast cancer is present. A deep artificial neural network is then trained to 

detect the presence of breast cancer based on this data (Figure 1A). Initial testing of the 

resulting model often consists of pilot, retrospective studies. Towards clinical integration, 

commercialization may follow, consisting of steps such as product engineering, more 

rigorous testing, and regulatory clearance (Figure 1B). In the case of mammography, there 

are now multiple commercial AI devices cleared by the US Federal Drug Administration 

(FDA) and/or the European Union (EU) that are designed to aid radiologists in breast 

cancer detection. There are also multiple ongoing clinical trials evaluating the real-world 

effectiveness of such systems.

While there are many application-specific considerations and the trajectory is not always 

linear, the use of AI in mammography illustrates both the core steps and challenges for 

Lotter et al. Page 2

Cancer Discov. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



developing AI applications in oncology. In addition to cancer detection applications like 

mammography, AI is being heavily applied all along the cancer care continuum using 

different types of data (Figure 2). Below, we provide a structured summary of these 

applications categorized along a clinical trajectory divided into three stages: detection, 

diagnosis, and treatment, with subdivisions by cancer type. We then summarize overarching 

challenges, such as data curation, fairness, and regulation, along with efforts currently 

underway to address these challenges. We conclude with forward looking principles for 

guiding the development and deployment of clinically-effective, equitable AI in oncology.

Cancer Detection

Large-scale data generated through current and expanding screening programs present a 

unique opportunity for the development and deployment of AI applications. Screening 

focuses on early cancer detection, where, especially in the context of breast and lung 

cancer, radiology-based medical imaging techniques are used. Outside of screening, 

imaging techniques are still often a core component of initial cancer detection, either in 

symptomatic patients or via incidental detection. Although not yet uniformly adopted across 

imaging providers or cancer hospitals, there are multiple FDA-cleared and/or EU-certified 

commercial devices in the cancer detection domain, and multiple reported clinical trials.

Breast Cancer:

As described above, the use of AI for breast cancer detection in X-ray mammography is one 

of the most active areas of development and clinical translation. An early catalyst in this 

space was the Digital Mammography DREAM Challenge, an open AI competition where 

groups were able to benchmark and compare different AI approaches8. A later study led 

by Google in 2020 garnered much attention in reporting evidence of expert-level breast 

cancer detection by an AI system9. A subsequent study presented an AI approach that 

encompasses both 2D and 3D mammography, with evidence of detecting breast cancer 

1–2 years earlier than standard radiographic review for some cases10. There are now 

several FDA-cleared AI products with an intended use of aiding radiologists in detecting 

breast cancer from mammograms (K220105, K211541, K200905 RRID:SCR_012945). 

FDA-cleared AI algorithms have also been developed to aid in the interpretation of magnetic 

resonance imaging (MRI) (DEN1700, RRID:SCR_012945) and breast ultrasound exams 

(K190442, K210670, P150043 RRID:SCR_012945). Prospective studies are also underway 

to evaluate such products in clinical care. This includes the Mammography Screening with 

Artificial Intelligence (MASAI) clinical trial in Sweden, which recently reported that an AI-

assisted workflow led to a 44% reduction in radiologist workload with comparable clinical 

performance metrics11. Several studies have also examined the use of AI to predict future 

breast cancer risk. For instance, the Mirai system developed by Yala et al.12 is designed 

to predict 5-year cancer risk directly from mammograms and has been retrospectively 

evaluated across multiple hospitals. These AI risk prediction algorithms have been shown 

to outperform traditional risk models13,14, and could be used to identify women who would 

benefit from supplemental screening. For example, the ScreenTrustMRI clinical trial will be 

using AI risk prediction models to select women for supplemental MRIs, and is expected to 

report results in 2025 (NCT04832594, RRID:SCR_002309).
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Colorectal Cancer:

In the context of colorectal cancer screening, deep learning has been applied extensively to 

colonoscopy images and video. For example, Zhou et al.15 have reported on CRCNet, a deep 

learning model for detecting the presence of colorectal cancer within endoscopy images, 

with reported high performance across three independent data sets. Multiple companies have 

received FDA clearance or EU certification for computer-aided detection (CADe) systems 

in identifying polyps from colonoscopy images (K211951, K223473 RRID:SCR_012945), 

and multiple randomized controlled trials have also reported promising results16–22. Several 

of the clinical studies have reported an increased Adenoma Detection Rate (ADR) with 

AI, a central criteria in evaluating the effectiveness of colonoscopy procedures. However, 

most of these same studies also found an increased detection rate of diminutive adenomas 

(defined as polyps ≤5 mm in size), which are very rarely malignant23,24. Future research is 

therefore needed to determine whether these AI tools result in long term patient benefit, a 

core challenge across AI applications. To that end, a longer term, prospective clinical trial 

is now seeking to assess the connection between colonoscopy CADe systems and incidence 

and mortality from colorectal cancer after a 10 year follow-up period25.

Lung Cancer:

Since 2013, the US Preventive Services Task Force has recommended low-dose computed 

tomography (LDCT) to screen for lung cancer in high risk populations26. These 

recommendations are based on multiple studies27,28 including the National Lung Cancer 

Screening Trial (NLST), which has become a key public data resource for machine learning 

research. Multiple groups have now leveraged NLST imaging data to develop lung cancer 

detection models. For example, Ardila et al.29 developed an approach to localize lung 

nodules and predict their likelihood of malignancy, where this model is now licensed by the 

AI company Aidence30. In addition to the use of computed tomography (CT) exams, there 

have been efforts to detect lung nodules on chest x-rays using deep learning. For example, 

Nam et al.31 have published promising results from a single center, open-label randomized 

control trial that utilized an AI based system for chest x-rays from the company Lunit, and 

reported that the AI arm had an improved detection rate of actionable nodules compared to 

the non-AI arm. Beyond detecting the current presence of lung cancer, Mikhael et al.32 have 

recently reported on an AI model that predicts 6-year lung cancer risk. The model, referred 

to as Sybil, was trained on NLST data and subsequently validated using two independent 

data sets.

Prostate Cancer:

Current US and European guidelines recommend prostate cancer detection via MRI prior 

to biopsy33,34. There have been many AI efforts in this domain, including those aimed 

at directly classifying clinically significant prostate cancer and approaches to quantify 

clinically-relevant features such as segmenting and measuring the volume of the prostate 

gland35. This has resulted in numerous academic studies and regulatory-cleared commercial 

software devices36. For example, a commercial prototype from Siemens was shown to 

increase the diagnostic accuracy of clinically significant prostate cancer in a retrospective 

reader study involving seven radiologists37. More recently, Hamm et al.38 presented an 
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explainable AI model that goes beyond classification to output AI predictions in terms of PI-

RADS criteria39, a standard set of criteria used by radiologists to evaluate multiparametric 

prostate MRIs. Multiple open AI data challenges are also underway. For instance, the 

Prostate Imaging - Cancer AI (PI-CAI) challenge enables participants to train on a multi-

center, multi-vendor data set of 1500 MRI prostate exams36. These challenges provide a 

transparent mechanism for evaluating and benchmarking AI models, paving the way for 

future algorithmic improvements.

Cancer Diagnosis

Once cancer is suspected, definitive diagnosis usually requires histopathologic examination. 

Beyond a determination of malignancy, histopathology techniques are used to classify 

the disease into standard clinical categories such as cancer subtype, grade, and stage. 

AI has been applied to each of these tasks, though these applications are generally 

further from clinical adoption with fewer FDA or EU clearances than the imaging-based 

detection applications described above. In addition to augmenting standard histochemical 

diagnostic workflows, several studies have demonstrated the potential of using AI to 

facilitate intra-operative diagnosis (e.g., during surgical resection) using label-free40,41 and 

cryosectioned42,43 tissue samples.

Breast Cancer:

AI has been applied extensively to the analysis of Hematoxylin and Eosin (H&E) images 

for aiding in breast cancer diagnosis. A core line of work in this domain has focused on 

the detection of metastatic lesions in sentinel lymph nodes. Treatment decisions in breast 

cancer frequently hinge on the detection of such lesions44, but pathology review remains 

labor intensive and subject to significant inter-reader variability (arXiv:1703.02442). Beyond 

the clinical significance, a key driving force in this application has been the Cancer 

Metastases in Lymph Nodes Challenge (CAMELYON), an open competition hosted in 

2016 (CAMELYON16) and 2017 (CAMELYON17)45. This AI challenge became an early 

model for many AI projects in cancer, as it provided a publicly-available, expertly curated 

set of images and a transparent method for evaluating and comparing AI models. This 

evaluation includes comparison to a reference panel of pathologists working on the same 

data set with predefined time constraints designed to mimic routine pathology workflows, 

where many of the models in the challenge exhibited higher performance than the panel of 

pathologists. The CAMELYON16/17 data has subsequently become a standard benchmark 

for deep learning models in pathology. For example, Google developed LYmph Node 

Assistant (LYNA)46, and reported that pathologists who used the system were able to detect 

significantly more micrometastases with shorter review time. Multiple commercial platforms 

for breast cancer lymph node metastasis are also clinically-available or in development. For 

instance, Challa et al.47 evaluated the Visiopharm Integrator System (VIS) metastasis AI 

algorithm in pathology workflows in a retrospective study at Ohio State University with 

promising results. The AI company Paige has also recently been granted FDA Breakthrough 

Device Designation status for Paige Lymph Node, providing a path for accelerated FDA 

clearance48.
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Beyond metastases detection, groups have reported on the use of deep learning for breast 

cancer diagnosis and subtyping from H&E slides49–51, and quantifying other clinically-

relevant features such as mitotic cell counting52,53. For example, Sandbank et al.50 have 

recently presented a deep learning model for classifying invasive and non-invasive breast 

cancer subtypes and generating 51 predicted clinical and morphological features. The 

model was validated with external data sets from the Institut Curie, and then piloted as 

a second reader diagnostic system at Maccabi Healthcare Services in Israel. The model is 

now being further developed and Conformité Européenne (CE)-marked as Galen Breast54 

by Ibex Medical Analytics. Towards intra-operative diagnosis of breast cancer during 

surgical resection, You et al.40 have presented an approach that combines intra-operative 

microscopy with a deep learning model to classify malignant vs. benign breast tissue. 

Beyond histological subtyping, CE-marked products exist for quantifying estrogen receptor 

(ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and 

Ki67 status from digital pathology images55–57. As another example, Wang et al.58 have 

developed DeepGrade, a deep learning model that aims to improve on the Nottingham 

grading system. Much of this work has now been integrated into Stratipath59, a Swedish 

based AI start-up focused on digital pathology.

Prostate Cancer:

Multiple academic groups and companies have developed AI models for prostate cancer 

diagnosis and grading from H&E images. For instance, Raciti et al.60 reported on Paige 

Prostate Alpha, a commercial decision support system trained to detect prostate cancer 

from core needle biopsies. In a retrospective study, pathologists demonstrated improved 

sensitivity in diagnosing prostate cancer when using the AI platform, along with a 

reduction in review time and no statistically significant change in specificity. The platform 

was subsequently validated in an external cohort61 and eventually cleared by the FDA 

(DEN200080, RRID:SCR_012945). Along with using AI to aid in the diagnosis of prostate 

cancer from H&E images resulting from biopsies, AI is being used to guide biopsies 

themselves through prostate segmentation and quantitative feature extraction on MRI images 

(K193283, RRID:SCR_012945). Beyond diagnosis, multiple groups have reported on 

Gleason scoring predictions from prostate cancer H&E images62–64. For example, Nagpal 

et al.62 used a deep learning model to predict Gleason scores using H&E images from 

The Cancer Genome Atlas (TCGA), and reported significantly higher diagnostic accuracy 

compared to a cohort of 29 board-certified pathologists. There are now several CE-marked 

products for Gleason grading55,65,66. More recently, Kartasalo et al.67 have developed an AI 

model using H&E images to detect perineural invasion – a key prognostic marker associated 

with poor outcomes in prostate cancer.

Lung and Colorectal Cancers:

Significant efforts have also been made in using AI for histopathological diagnosis in 

lung and colorectal cancers, though FDA-cleared devices for these tasks do not exist at 

the time of writing. However, there are several CE-marked devices for treatment-related 

biomarker quantification for lung and colorectal cancers, which are described in the 

Treatment section below. In terms of histologic diagnosis, a 2018 study by Coudray et 

al.68 trained a deep learning model on TCGA H&E images to classify non-small cell 
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lung cancer (NSCLC) subtypes. The paper was also notable as one the first studies to 

predict mutation status for key driver genes directly from H&E images. More recently, 

Lu et al.69 used a weakly supervised deep learning method – dubbed clustering-constrained-

attention multiple-instance learning (CLAM) – to predict subtypes in renal cell carcinoma 

and NSCLC. A study by Ozyoruk et al.43 also demonstrated the potential of using AI to 

facilitate intra-operative subtyping of NSCLC by transforming cryosectioned tissue slides 

into the style of standard formalin-fixed and paraffin-embedded slides. Histopathological 

classification studies have been reported in colorectal cancer70,71. For instance, Korbar et 

al.72 developed a deep learning model to classify colorectal polyps into one of five common 

types based on H&E whole slide images.

Cancer Treatment

While cancer diagnosis and classification strongly inform patient treatment, AI algorithms 

are also being developed to directly improve treatment itself. These approaches include 

using AI to aid in treatment selection, design personalized treatments, and provide guidance 

during treatment delivery. We summarize advances in these applications below. We start 

by describing cancer-specific applications, where, in particular, there are increasing efforts 

of using digital pathology images to guide treatment selection by predicting patient 

prognosis73–75 and/or existing treatment biomarkers76–79 using AI. While there are some 

clinically-available devices for these tasks, they tend to be further from clinical maturity 

than cancer detection and diagnosis tasks. We then describe several specific treatment 

applications that are more fitting to be described in a pan-cancer setting: radiotherapy, 

molecular oncology, clinical trial matching, treatment decision support, and optimizing 

administrative workflows and patient engagement. The last three sections highlight the 

rapid advancement in the application of Large Language Models (LLMs) to healthcare. 

Models such as BERT80, GPT81, and ChatGPT (arXiv:2303.08774) are rapidly diffusing 

into industry, and healthcare specific models are also being developed82 (arXiv:2106.03598, 

arXiv:1904.05342). These increasingly large models have attracted attention for their 

improving ability to perform “zero-shot” and “in-context” learning, which can enable them 

to perform a myriad set of downstream tasks without necessarily being fine-tuned on those 

tasks directly, as described in the applications below.

Breast Cancer:

A recent study by Ogier du Terrail et al.83 presented a federated learning approach for 

predicting response to neoadjuvant chemotherapy in triple-negative breast cancer. The 

approach included weakly supervised training to predict response from H&E whole slide 

images, with subsequent application of interpretability approaches to identify features 

that correlate with higher response predictions, such as the presence of tumor-infiltrating 

lymphocytes (TILs) and necrosis. In another recent study, Amgad et al.84 explicitly 

enforce interpretability by using deep learning to extract human interpretable features, and 

subsequently use these features to generate a risk score for breast cancer prognosis. Other 

efforts have used AI on H&E images to directly predict TIL presence 85,86, a notable 

prognostic and predictive biomarker in breast cancer, and programmed cell death ligand 1 

(PD-L1) expression status, a predictive biomarker for immunotherapies87.
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Colorectal Cancer:

Prognostic AI models for colorectal cancer have been developed for various data 

modalities, including MRI88, histopathology89–91, and multiplex imaging92,93. In terms 

of histopathology, DoMore Diagnostics has a CE-marked product that predicts colorectal 

cancer prognosis from H&E slides94. There have additionally been several validation 

studies of histopathology-based prognostic models95,96, including a study demonstrating 

that a prognostic feature previously identified through AI analysis can be learned and 

used by pathologists95. Along with directly predicting prognosis, there have been several 

studies using AI to predict previously identified prognostic/predictive biomarkers. For 

instance, a line of work97–99 has focused on developing and validating AI for predicting 

microsatellite instability (MSI), a feature associated with clinical outcomes and a biomarker 

for immunotherapy100. This application is beginning to be commercialized, such as the 

CE-marked product101 developed by Owkin to predict MSI from H&E images.

Lung Cancer:

The relatively poor prognosis of NSCLC and the variable success of immunotherapies 

for NSCLC have motivated many efforts in using AI to predict prognosis, treatment 

response, and existing biomarkers for these patients. These efforts include histology102 

and CT-based103 models for survival prediction, and the correlation of CT imaging features 

with histology risk factors104. Numerous studies have demonstrated the potential for using 

AI to predict immunotherapy biomarkers from H&E images of NSCLC patients, including 

tumor mutation burden (TMB)76, PD-L1 expression105, and TILs106,107. For instance, a 

study106 by AI startup Lunit used Lunit-Scope, a product currently available for research 

only, to categorize tumors into inflamed, immune-excluded, or immune-desert based on 

estimated TIL distributions in H&E images. These AI-classified phenotypes were then 

shown to differentially correlate with immune checkpoint inhibitor response. A study by 

Vanguri et al.108 demonstrated that a multimodal model that included CT images, digitized 

PD-L1 immunohistochemistry (IHC) slides, and molecular alteration data performed 

significantly better than unimodal models in predicting response to immunotherapy in 

NSCLC. Additionally, CE-marked products exist for quantifying PD-L1 expression from 

IHC slides109–111.

Prostate Cancer:

Efforts are also underway to use AI to improve prostate cancer prognostication. For 

instance, P-NET112 is a sparse deep learning model that processes molecular profiling 

data in a biologically-informed, pathway-driven fashion to predict prostate disease state 

such as metastases, where the resulting prediction scores were shown to independently 

correlate with prognosis. AI company ArteraAI has developed and tested a multimodal 

AI approach113,114 that uses histology images and clinical data to predict prostate cancer 

prognosis. This technology has been commercialized as the ArteraAI Prostate Test, which is 

now clinically available through a Clinical Laboratory Improvement Amendments (CLIA)-

certified laboratory115.
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Radiotherapy:

Radiotherapy is a critical therapeutic approach for multiple cancer types, and an intense 

area of AI research, development, and commercialization. This includes the use of AI 

at all steps of radiotherapy, including image segmentation, treatment planning, outcome 

prediction, quality assurance, and AI-guided radiosurgery116. Of these, a particularly 

clinically-advanced area is the use of deep learning to automatically contour Organs 

at Risk (OARs) within clinical images such as CT, positron emission tomography and 

computed tomography (PET-CT), and MRI. Multiple companies have now received FDA 

clearances and/or EU certification for these approaches (K201232, K223774, K211881 

RRID:SCR_012945). A recent study by Radici et al.117 evaluated the FDA-cleared 

and CE-marked Limbus Contour (LC) AI platform for auto-contouring within a single 

European tertiary cancer hospital, and found that the technology significantly reduced the 

procedure time and interobserver variability. MD Anderson Cancer Center is also creating a 

comprehensive AI-based Radiation Planning Assistant for auto-contouring and radiotherapy 

planning, and will primarily target low- and middle-income countries, where AI can provide 

scalable assistance118. AI applications are also now advancing in the field of image-guided 

radiotherapy, adaptive radiotherapy, stereotactic radiosurgery119, and surgery in general, 

where auto-contouring is similarly helpful120. For a more comprehensive overview of recent 

advances, we refer readers to an excellent review by Huynh et al121.

Molecular Oncology:

Rich molecular data are increasingly critical for personalized cancer treatment across cancer 

types. This includes the use of AI in nearly every step of next generation sequencing (NGS) 

processing and interpretation, including mutation identification122,123, artifact filtering124 

and driver gene identification125. The interpretation of germline and somatic mutations 

observed in cancer continues to be a challenge, and new AI tools are also emerging to 

automatically annotate and interpret variants. For example, a recent study investigated the 

use of deep learning for pathogenic germline variant detection in cancer126. The approach 

was evaluated in prostate cancer and melanoma, and outperformed standard genetic analysis 

approaches, providing a foundation for integration into clinical practice. “Dig” is a deep 

learning framework that identifies somatic mutations that are found to be under positive 

selection when compared to a genome-wide neutral mutation rate model127. The method 

outperformed multiple other methods for driver identification in accuracy and power and 

ran multiple orders of magnitude faster. Applied to 37 cancer types from the Pan-Cancer 

Analysis of Whole Genomes data set128, Dig identified several potential cryptic splice 

sites, recurrent variants in non-coding regions, as well as mutations in rarely mutated 

genes. Most recently, AlphaMissense, a deep learning model that builds on the protein 

structure prediction tool AlphaFold129, was introduced130. AlphaMissense predicts 32% of 

all possible missense variants in the human proteome to be pathogenic, but which subset is 

oncogenic in the setting of cancer remains to be evaluated. Additionally, CancerVar131 is a 

AI platform that uses a deep learning framework to predict oncogenicity of somatic variants 

using both functional and clinical features, and may provide a robust alternative to manually 

curated databases, such as CiVIC132 and OncoKB133.
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An additional longstanding diagnostic challenge is cell-of-origin prediction, which is 

particularly relevant for cancers of unknown primary where accurate origin information 

could significantly impact treatment strategy. Multiple AI methods have been developed 

to perform these predictions. This includes genomics-based algorithms, where targeted 

next generation sequencing algorithms have been rigorously evaluated and are currently 

being deployed and assessed for clinical utility134,135. Transcriptomic-based algorithms 

have also been developed136,137, although these approaches will require expansion of 

clinical transcriptome profiling for assessments of generalizability. Additional approaches 

that integrate multiple molecular inputs for refined cell of origin prediction may further 

enhance performance. A study by Lu et al.138 has also demonstrated the potential of using 

AI to predict tumor origin from routine histology slides.

Deep learning methods are also having an impact on emerging novel therapeutic approaches 

involving molecular oncology. For example, personalized cancer vaccines are being tested 

in a wide variety of clinical indications, and recent trial data indicates their potential role 

in combination with existing immune checkpoint blockade139. Increasingly, detection of 

cancer specific neoantigens and related immune microenvironmental cell types is being 

informed by deep learning strategies. These include neoantigen discovery methods, e.g. 

NetMHCPan140 and HLAthena141, as well as associated T-cell receptor (TCR) discovery 

methods, e.g. DeepTCR142 and pMTnet143. Ultimately, assessments of these approaches 

will be performed in clinical trial settings that may guide the ongoing use of these 

immunogenomics and deep learning algorithms in clinical settings.

Clinical trial matching and automated pre-screening:

Clinical trials are the primary mechanism for evaluating and advancing new cancer 

therapeutics. However, only 6% of cancer patients enroll in clinical trials144 and there 

continue to be race-, sex- and age-based disparities within clinical trials145,146. The clinical 

trial system also suffers from overall inefficiencies, where 20% of trials are prematurely 

terminated, many due to insufficient accrual of patients147. Properly deployed, AI could 

increase efficiencies and patient diversity within the clinical trial system and assist 

physicians in matching patients to clinical trials. From a computer science perspective, 

clinical trial matching is usually framed as a natural language processing (NLP) challenge, 

where patient medical records — usually only available as unstructured clinical notes — 

are matched against inclusion and exclusion clinical trial criteria148. Multiple non-deep 

learning clinical trial matching applications now exist. A 2022 meta-analysis reported on 

ten published studies across multiple commercial and academic platforms, and found that 

most applications offered comparable, if not superior performance to manual screening, 

with dramatic improvements in efficiency149. The advent of LLMs now offers a renewed 

opportunity to improve NLP trial matching. For example, multiple groups have now reported 

on the use of LLMs to effectively extract structured data from clinical notes150 and to 

match patients to clinical trials (arXiv:2303.16756, arXiv:2306.02077, arXiv:2304.07396, 

arXiv:2308.02180). All of these efforts will benefit from the development of reference data 

sets, ideally derived from multiple hospitals, and prospective studies evaluating clinical 

integration across diverse hospital settings.

Lotter et al. Page 10

Cancer Discov. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Treatment decision support:

The rapid advancement of LLMs has sparked interest in their potential for treatment 

decision support in oncology. Several recent studies have explored the feasibility of using 

LLMs to assist with tasks such as identifying personalized treatment options for patients 

with complex cancer cases. For instance, a recent study evaluated the performance of four 

LLMs in suggesting treatment options for fictional patients with advanced cancer. While 

the LLMs generated a wider range of treatment options compared to human experts, their 

recommendations often deviated from expert consensus. Despite these limitations, LLMs 

were able to correctly identify several important treatment strategies and even suggested 

some reasonable options that were not readily apparent to experts151. Similarly, a second 

study investigated the use of ChatGPT for providing first-line treatment recommendations 

for advanced solid tumors. Performance was generally promising, though there were 

cases in which the model arguably provided outdated information, such as investigational 

drug names152. Overall, these recent endeavors suggest that LLMs offer promising 

applications for clinical decision support in oncology, but further research is necessary to 

address limitations in accuracy, reliability, integration with existing clinical workflows, and 

regulatory requirements.

Optimizing administrative workflows and patient engagement:

LLMs also have the potential to significantly improve administrative workflows and 

patient engagement across the patient care trajectory, including treatment. Documentation 

and coding requirements in modern EMRs are extensive, imposing a significant time 

burden on clinicians153 and contributing to burnout154 that risks driving providers away 

from clinical practice and impairing access to care. Several companies have developed 

AI-assisted scribing technologies to generate documentation based on transcriptions of a 

clinical encounter155,156. LLMs could also be leveraged to unify disparate medical records 

into concise summaries157 of a patient’s case, allowing clinicians to focus on treatment 

planning together with patients. In terms of patient engagement, the complexity of modern 

oncology and the emotionally laden nature of dealing with cancer creates an environment 

in which patients’ understanding of their diseases may be limited. Many patients with 

advanced cancer, for example, do not fully grasp the palliative intent of their treatment158. 

Advances in LLMs that can generate patient-facing summaries of complex and multimodal 

information could facilitate patients’ understanding of their condition without significant 

additional burden on clinicians’ time. It would be critical for such summaries to be accurate 

and interpretable across diverse populations in order to prevent misunderstanding. A recent 

study has demonstrated promise towards these goals, where ChatGPT was shown to exhibit 

good performance at answering questions about cancer myths and misconceptions159.

Challenges and Opportunities

While there has been much progress in AI for oncology, significant challenges persist. These 

challenges include obtaining and sharing robust medical data, risks to patient privacy, and 

ensuring fairness in AI performance across all patients. As more AI models reach the clinic, 

there are also challenges in effectively integrating AI applications into clinical workflows 

and assessing the ultimate impact on patients and healthcare systems. Here, we summarize 
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core challenges as they relate to AI in oncology (Figure 3), and describe multiple approaches 

already taken by the community to address these challenges.

Data Curation and Sharing

Robust, generalizable AI models require vast amounts of training data, ideally sourced from 

multiple, independent sources160. This is particularly important in cancer, where each site 

is limited in patient size, patient diversity, and its own set of embedded clinical practices. 

It is even more acutely important for rare cancers, where individual sites may only treat 

a small number of such patients, and multi-site data integration is necessary to establish 

meaningful scientific or clinical insights161. Beyond training, AI models must also be tested 

across multiple independent sites, and evaluated for overall accuracy and potential bias162. 

Despite the need for multi-site training and evaluation, significant obstacles to cancer data 

sharing persist163. This includes protection of intellectual property, data interoperability 

challenges, and protection of patient privacy, as codified by multiple regulatory frameworks 

such as the Health Insurance Portability and Accountability Act (HIPAA), the Federal Policy 

for the Protection of Human Subjects, and the EU General Data Protection Regulation 

(GDPR)163,164.

To overcome these challenges in data sharing and privacy, the cancer community has 

explored three primary options. The first is centralized learning161, where a group organizes 

multi-party legal agreements and creates a shared set of security protocols. Once all sites 

agree, data is transferred to a central, secure enclave where AI development and evaluation 

can commence. This is the standard, default approach used in most commercial and 

academic AI efforts to date. The second option is deidentification and public release of 

data, usually via a consortium model. For example, the CAMELYON45 and International 

Brain Tumor Segmentation (BraTS) (arXiv:1811.02629) challenges have both made large-

scale de-identified data sets available to machine learning teams, and the recently created 

Nightingale Open Science Initiative165 aims to make additional de-identified data sets 

available. The third option is federated learning (FL), where data remains private at each 

institution, but machine learning models are jointly updated and shared in a distributed 

fashion166,167. While federated learning introduces a number of logistical and algorithmic 

complexities, progress has been made in narrowing the gap in model performance between 

federated learning and centralized learning160, where FL has now been successfully applied 

to multiple cancer applications. For example, Ogier du Terrail et al.83 used a FL approach 

to develop an AI model for predicting histological response to neoadjuvant chemotherapy 

in patients with triple-negative breast cancer. A study by Pati et al.161 also used federated 

learning across 71 sites to predict tumor boundaries within multi-parametric MRI scans of 

Glioblastoma patients.

In addition to data curation across clinical sites, there is a need for curation across data 

modalities to enable multimodal AI approaches. The majority of AI approaches described 

above have been unimodal, such as making predictions from a medical image alone. 

However, oncologists rely on the totality of information regarding a patient — including 

radiology images, pathology images, lab values, genomic data, family history, and prior 

clinical notes — to provide optimal care. These different data modalities are likely to contain 
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distinct and complementary information; thus, multimodal AI is an active area of research 

in oncology168,169. For instance, Chen et al.75 developed an approach to fuse genomic data 

and histopathology images to predict survival in a pan-cancer cohort. This work leverages 

the TCGA database, which has become a critical multimodal data set to advance AI efforts. 

Boehm et al.170 used TCGA and an internal cohort to fuse genomic data, histopathology 

imaging, and radiology imaging to predict survival in high-grade serous ovarian cancer. 

Additionally, ArteraAI has developed a clinically-available laboratory developed test to 

predict prostate cancer prognosis by integrating digital pathology images with clinical 

metadata115. The increasing focus on multimodal approaches in oncology parallels similar 

efforts in natural images and text, such as OpenAI’s GPT-4 model (arXiv:2303.08774). 

Such “foundation models” (arXiv:2108.07258) that are trained on vast quantities of data 

have shown promise in facilitating downstream tasks with less amounts of labeled data, a 

common regime in oncology applications. Beyond using general purpose foundation models 

like GPT-4, there are increasing efforts building domain-specific foundation models for 

healthcare171, including pathology172 (arXiv:2309.07778, arXiv:2307.12914). These efforts 

further emphasize the need for robust data sets, as the same data set and even model 

architecture can be used to support multiple clinical tasks.

Bias and Fairness

An overarching challenge in AI in medicine is ensuring fairness in performance and use 

across populations173. Conversely, AI offers opportunities to mitigate healthcare disparities 

that are already known to exist174,175. Both of these considerations certainly apply in 

oncology, where potential sources of bias span the full patient care and AI lifecycle 

continuums. As an illustrative application, breast cancer screening has been heavily studied 

in the context of both general healthcare equity and AI. In clinical practice, there are known 

disparities in access to newer imaging technologies and patient outcomes for underserved 

populations, such as Black women176–178. From an AI perspective, there are examples of 

both bias perpetuation and potential mitigation. For instance, an ensemble of AI models 

trained on mammograms from a largely White population demonstrated lower performance 

when tested on a more diverse population179. Conversely, there are efforts to generate 

more diverse public data sets, such as EMBED180, and instances where AI performance 

has generalized well across different patient populations9,10,12. The diversity of public data 

sets is a challenge across other oncology applications, including popular genomics data 

sets, such as TCGA181 and GENIE182. Fairness and diversity have especially important 

considerations in such applications given that genetic ancestry may be causally related to 

some genetic traits and diseases178,183–186, as opposed to the social construct of race173. 

Altogether, there is growing awareness of the fairness of AI algorithms, including guidance 

from regulatory bodies, but there remains much room for improvement in reducing bias in 

AI and healthcare more broadly.

Regulation and Evaluation

Most of the described AI applications fall under the purview of regulatory agencies, 

depending on regional regulations and the intended use of the device. Neither the US nor 

the EU currently have AI-specific regulatory approval pathways for AI-based medical tools. 
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Rather, both regulate AI healthcare applications as medical devices, and categorize such 

devices based on the level of risk posed to individual patients.

The US currently follows a centralized model of medical device regulation, overseen 

by the FDA. The FDA regulates AI applications under the umbrella of Software as a 

Medical Device (SaMD) with similar regulatory processes as other SaMD devices and 

non-AI algorithms187. The requirements for FDA clearance depend largely on the class 

and intended use of the device, with device classes ranging from I (lowest risk) to III 

(highest risk). The vast majority of AI devices thus far, including those in oncology, fall 

under Class II, for which the FDA 510(k) pathway applies and requires the device to be 

“substantially equivalent” to other tools already cleared by the FDA187. Importantly, given 

this classification, randomized controlled clinical trials are not typically required by the 

FDA, though this can depend on the device’s intended use. In contrast to US FDA’s single 

centralized model, the EU has two broad regulations that govern medical device safety and 

efficacy, including AI applications. These are the Medical Device Regulation (MDR), which 

governs devices implanted within the body, and the In Vitro Diagnostic Devices Regulation 

(IVDR), which governs devices that test specimens outside the human body. Within the EU, 

there is no one central agency that performs device assessments; rather, assessments are 

handled by accredited organizations, which are empowered to issue Conformité Européenne 

(CE) marks.

In the future, both the US and the EU are likely to evolve their regulatory frameworks to 

leverage the unique characteristics of AI and mitigate corresponding risks. In particular, the 

unique capacity of improving AI by continually learning from new data will likely require a 

shift from single product approvals to life-cycle change management and robust postmarket 

monitoring188. To this end, the US FDA is developing a pathway for a “Predetermined 

Change Control Plan” to enable AI updates in a device without requiring a resubmission189. 

Similarly, the EU AI Act will require device manufactures to document their strategy for 

modifying and subsequently testing and validating AI medical devices190. A particularly 

evolving and debated topic is the regulation of LLMs, and in which contexts and intended 

uses do they qualify as medical devices191,192.

One challenge in monitoring the progress of regulatory clearances is the lack of up-to-date, 

frequently-refreshing databases focused on AI devices and their specific characteristics. 

The FDA has released a list of AI-enabled devices193 on a yearly basis for the last few 

years, which is very valuable for the field, yet the rapid progress and value of aggregating 

more detailed characteristics creates a strong need for complementary solutions. To this 

end, multiple studies have also attempted to create snapshots of approved AI devices. For 

example, Luchini et al. 194 summarized 71 FDA-cleared devices in oncology (up to 2021), 

and found that radiology accounted for the majority of approved devices (54.9%), followed 

by pathology (19.7%). These algorithms are largely designed to assist clinicians in making 

diagnoses and/or quantify image-based properties (e.g., lesion size) but the clinician makes 

the final call. The same study also found that breast cancer was the most commonly cited 

cancer type (31%), most commonly associated with radiology, providing further evidence 

of the advancing maturity of AI in mammography. Muehlematter et al.195 surveyed all 

approved AI medical devices in both the US and the EU for the period 2015–2020, and 
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also found that a majority of approved devices in both the US and the EU were radiology 

focused.

An aspect that is closely tied to regulation is the evaluation of devices to ensure safe 

and effective performance, where clinical trials remain the gold standard in assessing 

new clinical interventions. While clinical trials in AI oncology remain rare, we are now 

starting to see an uptick in such trials. A search of ClinicalTrials.gov of “cancer” and 

“artificial intelligence” at the time of writing finds 526 studies, 81 of which are classified as 

interventional and actively recruiting. These include trials involving AI-based chatbots, such 

as use in genetic counseling (NCT05562778, NCT04354675 RRID:SCR_002309). Multiple 

clinical trials have now also published results in the past two years, such as those described 

in the breast cancer and colorectal screening sections above.

A critical component of AI evaluation and development more generally is ensuring 

transparency and reproducibility, allowing independent research groups to review and build 

on prior scientific progress196. This is especially important for assessing potential biases in 

data sets and generalizability across different clinical settings. The EQUATOR (Enhancing 

the QUAlity and Transparency Of health Research) Network currently provides a growing 

set of reporting guidelines specific to AI in healthcare and oncology197. This includes 

MINIMAR (MINimum Information for Medical AI Reporting), which defines a minimal set 

of reporting elements covering study population and setting, patient demographics, model 

architecture, and model evaluation198. Additional guidelines include SPIRIT-AI (Standard 

Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence), which 

provides an extended set of 15 items for AI focused protocol documents199, and CONSORT-

AI (Consolidated Standards of Reporting of Trials - Artificial Intelligence), which provides 

an extended set of 14 items for reporting on AI focused clinical trials200. Finally, there 

is an increasing use of AI in analyzing real-world data (RWD), and the European Society 

for Medical Oncology Guidance for Reporting Oncology Real-World Evidence (ESMO-

GROW) now provides publication guidelines regarding use of RWD in oncology, along with 

specific AI-focused reporting guidelines201.

Integrating into Clinical Workflows

Realizing the potential of AI in oncology requires effective integration into clinical 

workflows, which presents both logistical and scientific challenges202. AI applications 

require significant computational infrastructure (either on-premise or cloud-based) and 

highly skilled engineers – both of which are likely to extend already stretched healthcare 

information technology (IT) budgets. Beyond initial hardware considerations, data pipelines 

must also be developed to efficiently route data to AI systems and subsequently make 

the AI results available to clinicians. Such workflows require integration into clinical 

systems, which can be especially challenging for proprietary systems with limited 

customization. The precise form of the AI results requires careful consideration of the 

clinical end goal and the intended use of the device. To this end, explainability is an 

often cited challenge for “black box” AI models203,204. As such, explainable AI (XAI) 

is a highly active area of research focused on conveying how an AI model arrived at its 

prediction. Common approaches to XAI involve post-hoc explanations, such as generating 
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saliency maps that highlight aspects of the input that most contribute to the model’s 

prediction204. There are ongoing efforts to provide more structured explainability, such as 

representing AI predictions in terms of human-interpretable concepts205–207 and language-

based explanations208,209 (medRxiv 2023.06.07.23291119). However, the optimal form of 

explainability for clinical use is an important open question, with a recent report indicating 

that scope of explainability offered in FDA-cleared devices for medical imaging is often 

limited (medRxiv 2023.11.28.23299132).

Even with effective infrastructure and AI outputs, monetization and liability questions can 

hinder widespread adoption, where the vast majority of commercially-available AI devices 

are not currently reimbursed210. This lack of reimbursement also makes it challenging to 

assess the true extent of clinical integration, as traditional methods for measuring medical 

device use such as insurance claims data cannot be used except for a small number of 

applications211. Despite these challenges, notable efforts are underway to facilitate efficient 

clinical integration. In particular, there is a growing number of AI “orchestration” platforms 

that serve as an intermediary between clinical systems and AI algorithms. Rather than 

having each AI application interface separately with clinical systems, these platforms, such 

as those developed by Nvidia212 and CARPL213, serve as a single interface and orchestrate 

the execution of multiple AI algorithms based on rule-based logic.

Future Directions and Conclusions

The field of AI in oncology is developing at a rapid pace. This development encompasses 

both algorithmic advances and new clinical use cases. Over the next few years, we are likely 

to see a steady flow of new AI regulatory approvals and clinical trial results, including 

those going beyond the current prevalent use case of AI as an assistive detection/diagnostic 

aid. We are also likely to see multiple new LLM-based applications and those that utilize 

multimodal data.

Nonetheless, the future of AI oncology will not be driven by technology innovation alone. 

Rather, we see several fundamental requirements that will drive the future of AI in oncology 

(Figure 4). These requirements will need to be jointly assessed by multiple stakeholders, 

including research teams, clinicians, ethicists, hospital administrators, and IT teams as 

they consider the development and deployment of AI models in oncology. First, there 

is a strong need for objective assessment of AI impact on patient outcomes, defined in 

cancer-specific, clinically meaningful metrics. This will require a greater investment in 

real-world studies and ideally randomized clinical trials, with an emphasis on critically 

evaluating AI generalizability across patient populations and clinical sites. Second, the 

healthcare value of AI deployment needs to be rigorously assessed and combined with 

aligned payment structures. Healthcare value is defined as the health outcome achieved 

per dollar spent214, and is a critical metric for making informed healthcare investments. 

Critically, while AI will ideally improve healthcare outcomes, its biggest impact may 

ultimately be in improving resource allocation and access to quality care. Realizing these 

benefits may require structural changes and new clinical workflows. Relatedly, a third need 

is a clear, standardized process for AI clinical integration, which covers aspects ranging 

from technical standards to stakeholder involvement and training.
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Finally, stakeholders must adopt objective processes for continuously monitoring AI impact 

and measuring patient safety. Arguably, the greatest strength of data-driven, deep learning 

approaches is the ability to continually improve over time. However, realizing these benefits 

requires well-defined regulatory processes and joint efforts to continuously monitor AI 

devices over the long-term. This necessity applies even for “frozen” AI devices that may 

experience data or population shifts over time. Altogether, these considerations will strongly 

shape the future of AI in oncology to help ensure effective, equitable, and sustainable use of 

AI for improving the care of cancer patients.
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Statement of Significance

Artificial Intelligence (AI) is increasingly being applied to all aspects of oncology, 

where several applications are maturing beyond research and development to direct 

clinical integration. This review summarizes the current state of the field through the 

lens of clinical translation along the clinical care continuum. Emerging areas are also 

highlighted, along with common challenges, evolving solutions, and potential future 

directions for the field.
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Figure 1: Stages of AI development and clinical translation: Example of AI in mammography.
We consider the development of AI for breast cancer detection in mammography as a lens 

to understand the broader landscape of AI in oncology. A) An artificial neural network is 

trained on thousands of labeled mammography images. The performance of the network 

in detecting breast cancer is iteratively improved, and then the network can be used to 

make predictions on previously unseen images. These predictions can then be used to assist 

radiologists in their workflow. B) AI in mammography has transitioned from research on 

retrospective samples to regulatory clearance, clinical integration, and real-world clinical 

evaluation.
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Figure 2: Overview of AI in Oncology, with specific examples highlighted.
AI is being applied across the patient care trajectory, where this review groups applications 

into three main categories across this trajectory. Detection applications tend to currently 

have the highest level of clinical maturity, where several applications have regulatory 

clearances and published clinical trials, which we denote as “Scaling”. Diagnosis 

applications tend to be less mature, but regulatory clearances exist and validation studies 

are underway (“Piloting”). Prognosis and treatment applications are generally furthest 

from maturity with much emerging research (“Developing”). The review highlights AI 

applications in each of the clinical categories, with a specific focus on Breast, Prostate, 

Lung, and Colorectal cancers.
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Figure 3: Challenges and Opportunities.
Like many other domains in medicine, AI in oncology faces significant challenges 

to effective development and clinical translation. These challenges pertain to curating 

and sharing data across institutions, guarding against biases from training through to 

deployment, ensuring appropriate regulation and evaluation, and integrating into clinical 

workflows across diverse clinical settings.

Lotter et al. Page 30

Cancer Discov. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Important forward-looking considerations for AI in Oncology.
Effective clinical adoption of AI in oncology will require more than technology advances, 

and must include critical evaluation of AI impact on patient outcomes and healthcare value. 

Robust processes for integration across diverse clinical settings are also required, along with 

ongoing monitoring to ensure patient benefit and safety.
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