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Abstract. Epidemiological studies establish a link
between Type 2 diabetes (T2DM) and Alzheimer’s
disease (AD), both leading causes of morbidity and
mortality in the elderly. These diseases also share
clinical and biochemical features suggesting common
pathogenic mechanisms. Specifically, both are amy-
loidoses as they are characterized by fibrillar protein
aggregates —amylin in T2DM pancreatic islets, and f3-

amyloid (AB) and neurofibrillary tangles (NFTs) in
AD brain. Amylin aggregation is associated with
pancreatic 3-cell loss, and AP and NFT formation with
neuronal cell loss. We discuss the possibility that
amylin and Af exert their toxicity by similar mech-
anisms, with components of the pathocascades shared,
and that therapies based on amyloidogenic properties
are beneficial for both T2DM and AD.
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Introduction

Type 2 diabetes mellitus (T2DM) and Alzheimer’s
disease (AD) are chronic, age-related diseases that
have attained epidemic proportions. The total number
of people with diabetes is projected to rise from
171 million in 2000 to 366 million in 2030 [1]. Some
risk factors implicated in the development of T2DM
are genetic predisposition, obesity, diet, physical
inactivity and age [2]. In comparison, there are 24
million dementia patients worldwide, and numbers
continue to increase exponentially [3]. AD is the most
frequent form of all dementing disorders, and in rare
familial cases it is caused by autosomal dominant
mutations [4]. In contrast, sporadic cases are caused
by environmental conditions like oxidative stress, with
age being a major risk factor [5]. For both T2DM and
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AD, despite some insight into causative and suscept-
ibility genes, their molecular pathophysiology is not
yet fully understood. Interestingly, a number of well-
designed epidemiological studies have established a
link between the two diseases [6—8]. More impor-
tantly, they share clinical and biochemical features
suggesting common pathogenic mechanisms [9-11].

AD and T2DM are conformational diseases

AD is characterized by a progressive loss of memory
and other cognitive functions, resulting in dementia.
In the AD brain, the A} peptide and the microtubule-
associated protein tau undergo a change in tertiary
structure followed by self-association and deposition.
AP is derived from the amyloid precursor protein,
APP, and is the major constituent of P-amyloid
plaques; hyperphosphorylated tau is the major con-
stituent of neurofibrillary tangles (NFTs) [9, 12]. In
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familial cases of AD, mutations have been identified
in the APP gene itself, and in genes encoding APP
proteases. In frontotemporal dementia (FTD), the
second-most prevalent form of dementia, mutations
have been identified in tau [13]. This information has
been used to develop transgenic animal models with
AP plaque and NFT formation, along with memory
impairment [14]. Significant neuronal cell loss, anoth-
er hallmark of the AD and FTD brain, has been
achieved upon massive overexpression of FTD mu-
tant tau [15].

Diabetes mellitus (DM) is subdivided into Type 1
(T1DM) and Type 2 (T2DM), with the latter account-
ing for 90% of all cases. T2DM is characterized by
insulin resistance of target tissue, leading to elevated
blood glucose levels. Disease progression correlates
with amylin deposition, which, similar to Af} and tau,
undergoes a change in tertiary structure and is finally
deposited in insulin-producing pancreatic islet -cells
[10]. Amylin is also known as islet amyloid polypep-
tide (IAPP). In humans, it is synthesized as an inactive
67-residue propeptide that is colocalized with insulin
in B-cell granules. The mature 37-amino acid peptide is
produced by proteolysis. In vitro and in vivo studies
have revealed that its formation causes [-cell death
[10, 16]. Interestingly, differing from non-amyloido-
genic rat amylin, human amylin and A (that are both
amyloidogenic) cause a dose-, time- and cell type-
specific neurotoxicity, supporting the notion of a
similar toxic mechanism [17].

Like AD, T2DM has been modeled in mice: in the ob/
ob (leptin knockout) and db/db (leptin receptor
knockout) strains, both of which are insulin resistant
[18, 19], and in mice overexpressing human IAPP in
pancreatic islet cells [20-23]. Breeding of IAPP
transgenic mice to homozygosity caused islet amylin
aggregation, [3-cell death and DM [22]. An alternative
strategy to induce T2DM is by injecting streptozotocin
that causes [-cell destruction [24]. -cell destruction
can be further caused by allogeneic expression of
MHC antigens [25].

In conclusion, both T2DM and AD are characterized
by insoluble protein aggregates with a fibrillar con-
formation — amylin in T2DM pancreatic islets, and A
amyloid and NFTsin AD brain. Amylin aggregation is
associated with pancreatic 3-cell loss, whereas AP} and
NFT formation is associated with neuronal cell loss. 3-
cell loss leads to diabetes, nerve cell loss to dementia.
Therefore, T2DM and AD are both conformational
diseases.

Diabetes and Alzheimer’s disease

Need for effective therapies targeting DM and AD

The mainstay of non-pharmacological DM treatment
is diet and physical activity. Although T2DM patients
do not critically depend on insulin, about one third of
them need insulin to reduce high blood glucose levels
[26,27]. The current treatment of AD is symptomatic
and only moderately slows the cognitive decline;
treatments include acetylcholine esterase inhibitors
and the NMDA glutamate receptor antagonist Mem-
antine, to counteract excitotoxicity [28]. Recent
clinical trials include vaccination strategies, metal
chelation, anti-inflammatory drugs, anti-oxidants, and
kinase inhibitors, among others [14].

Commonalities of T2DM and AD

Similar mechanisms of degradation and clearance of
Ap and amylin. AP and amylin levels are determined
by (i) production through precursor processing, and
(ii) degradation and clearance. Interestingly, the
missense mutations in familial cases of AD all either
increase A production or enhance A fibril forma-
tion [29]. Neprilysin (NEP) and insulin-degrading
enzyme (IDE) degrade AP in vivo. Amylin and insulin
are additional substrates of IDE [30]. Enhanced IDE
activity correlates with decreased Af levels in brains
of IDE/APP double transgenic mice [31], and IDE
shows decreased degrading activity of AP in AD
compared to control brains [31]. In vivo, IDE
substrates can compete with each other, with an
imbalance of the substrates possibly influencing the
pathogenesis of AD or T2DM [30]. Moreover,
mutations in IDE cause human T2DM-like symptoms
[32]. Hence, modulating these clearing enzymes in
their activity may be beneficial in the treatment of
both AD and T2DM.

Toxicity of A} and amylin. A diverse range of fibrillar
peptides that include A and human amylin can cause
increased levels of APP, a putative Af receptor [33],in
both primary neuronal and astrocyte cultures [34].
Furthermore, there is increasing evidence that amylin,
similar to AP, can induce apoptotic cell death [35].
Finally, distinct integrin signaling pathways mediate
both AP- and amylin-induced neurotoxicity, and both
can be inhibited with integrin antibodies and cytocha-
lasin D [11]. This presents components of the integrin
signaling pathway as putative targets in drug screen-
ings for AD and T2DM. A second interesting signal-
ing pathway involves the kinase GSK3 that is down-
stream of insulin. When inhibited by insulin, glycogen
and protein synthesis is induced [36]. In diabetic and
obese mice levels of GSK were found to be elevated
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[37]. Together this encouraged the development of
GSK3 inhibitors to treat T2DM [36]. GSK3 has also
been suggested as a link between Af and tau [38], as
GSK3 phosphorylates tau and regulates APP cleavage
and AP production; hence, GSK3 inhibitors including
lithium are considered for the treatment of AD [39].

Amylin and Af aggregates impair cellular functions
by similar mechanisms. Amylin and AP aggregation
cause increased oxidative stress and mitochondrial
dysfunction, and vice versa. We recently demonstrated
a mitochondrial dysfunction in our P301L tau mutant
mice, associated with higher levels of reactive oxygen
species (ROS) and an up-regulation of antioxidant
enzymes [40]. P301L tau mitochondria display an
increased vulnerability towards fibrillar AP peptide
[40]. Mitochondrial dysfunction also characterizes
APP transgenic mice with an Af} pathology [41]. The
amyloidogenic similarities between human Af and
amylin make it likely that a mitochondrial dysfunction
may be found in IAPP transgenic mice.

Cells dealing with the excessive production of ROS
and oxidative stress require a cascade of intracellular
events known as the “unfolded protein response”.
Oxidative stress and increased insulin production
contribute to protein misfolding and the induction of
the unfolded protein response in (3-cell [42]. Trans-
genic expression of human IAPP in islets induces
endothelial reticulum stress-mediated (3-cell apopto-
sis, a characteristic of humans with T2DM but not
T1DM [43]. Our proteomic and biochemical data of
Ap-injected P301L tau mice, a model combining the
NFT and AP pathology of AD [44], also suggest an
impaired unfolded protein response [45]. Together,
this supports the notion of an impaired unfolded
protein response in both AD and T2DM.

The relative contribution of fibrillar and oligomer
forms of AP and amylin, respectively, in the patho-
genesis of AD and DM is highly controversial [46, 47].
While in AD brain, AP forms both stable oligomers
and fibrils [48], an oligomeric A dodecamer has been
identified as a major toxic species [49]. We found that
oligomeric AP species can cause a mitochondrial
dysfunction, similar to fibrillar Ap [50]. For T2DM,
there is accumulating evidence that oligomeric amylin
participates in 3-cell apoptosis [51]. Again, this notion
is supported by transgenic mouse work [52], while the
relative contribution of fibrillar versus oligomeric
species is far from clear.

Thus, the production of Af} and amylin, the exertion of
biological activity (both physiological and patholog-
ical), as well as their clearance are so similar that a
therapy targeting any of these steps is likely to benefit
both diseases.
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Comparative proteomics reveals similar proteomic
profile

T2DM and AD also share a remarkably similar
proteomic profile. This is impressively illustrated by
a proteomic analysis of pancreaticislets that identified
several novel proteins that are associated with AD
pathogenesis [53]. Interestingly, in a proteomic study
using Ap-injected P301L tau transgenic brains, we
showed that a significant subset of these ‘islet’ proteins
are deregulated upon A injection, such as GRP78,
valosin-containing protein, calreticulin, the HSP fam-
ily or peroxiredoxin [45]. Similarly, in the formic acid
fraction of Ap-treated P301L tau-transfected cells, we
identified insulin-like growth factor binding protein 2
precursor (IGFBP-2) as an up-regulated protein,
again demonstrating a similar proteomic profile of
DM and AD (unpublished data). This implies that
similar proteins and pathways are activated by amylin
and AP, respectively, in either pancreatic islets
(T2DM) or brain (AD).

Common treatment strategies ?

What does this imply in practical terms and what can
be envisaged for the near future? It seems logical to
pursue comparative transcriptomic and proteomic
analyses of AD brain and T2DM pancreata and to
extend these studies, in a comparative manner, to
transgenic mouse tissue. This will not only identify
deregulated genes and proteins, but is likely to
decipher shared pathomechanisms. It may even be
possible, using this comparative approach, to identify
the putative AP and amylin receptor(s) by which these
peptides may exert toxicity. So far their identity has
remained elusive, despite the fact that many candi-
dates have been proposed in the past [54]. The
information gained by a comparative approach will
undoubtedly assist in the development of treatment
strategies for such debilitating diseases as AD and
T2DM that so far have defied proper treatment.
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