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Abstract. Resistance to apoptosis is a common
challenge in human malignancies contributing to
both progress of cancer and resistance to conventional
therapeutics. Abnormalities in a variety of cell intrin-
sic and extrinsic molecular mechanisms cooperatively
promote tumor formation. Therapeutic approaches
that specifically target components of these molecular
mechanisms are getting widespread attention. Mcl-1 is
a highly expressed pro-survival protein in human
malignancies and its cellular expression is tightly
regulated via multiple mechanisms. Mcl-1 differs from

other members of the Bcl-2 family in having a very
short half-life. So inhibition of its expression and/or
neutralization of its anti-apoptotic function will rap-
idly make Mcl-1-dependent cells more susceptible to
apoptosis and provide an opportunity to combat
several types of cancers. This review summarizes the
current knowledge on the regulation of Mcl-1 expres-
sion and discusses the alternative approaches target-
ing Mcl-1 in human cancer cells whose survivals
mainly depend on Mcl-1.
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Introduction

Apoptosis is a morphologically distinct form of cell
death in multicellular organisms and involves a series
of biochemical events leading to a variety of morpho-
logical changes including blebbing, change in mem-
brane asymmetry, cell shrinkage, nuclear fragmenta-
tion and chromatin condensation [1]. Its regulation
and execution require contributions and interactions
of several groups of proteins and other molecules. Two
major pathways that regulate apoptosis have been
defined in a number of different cell types. The first is
the death receptor pathway (the extrinsic apoptosis
pathway) initiated mainly by TNFRs and Fas that can
activate a caspase cascade via activation of caspase-8
as an initiator caspase. The second is termed the
intrinsic apoptosis pathway and involves mitochon-
dria and Bcl-2 family members. It results in the

activation of a caspase cascade via activation of
caspase-9 as an initiator caspase [2].
Bcl-2 family proteins are the main regulators of
apoptotic processes and include anti-apoptotic and
pro-apoptotic members. The balance between the
relative levels of these antagonistic proteins is critical
for cell fate [3]. Any mechanism breaking down this
balance and failures in normal apoptosis pathways
may contribute to several diseases including carcino-
genesis. Commitment of cells to apoptosis is con-
trolled largely by protein-protein interactions be-
tween members of the Bcl-2 protein family that can be
divided into three subgroups based on their structural
and functional properties. The anti-apoptotic sub-
group includes Bcl-2, Bcl-xL, Mcl-1 (myeloid cell
leukemia-1), Bcl-w, and A1. Whereas Bcl-2, Bcl-xL

and Bcl-w contain four BH (Bcl-2 homology) domains
(BH1, BH2, BH3, BH4), Mcl-1 and A1 distinguish
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themselves from the other pro-survival Bcl-2 family
proteins because they lack a well-defined BH4
domain. The first of two pro-apoptotic groups includes
Bax and Bak with multiple BH domains (BH1, BH2,
BH3). Members of the second pro-apoptotic group
including Bad, Bid, Bim, Bik, NOXA, and PUMA
contain only BH3 domains (and are therefore called
“BH3-only proteins”) [4].
Structural studies revealed that BH1, BH2, and BH3
domains of the anti-apoptotic Bcl-2 family proteins
form a hydrophobic groove on their surface. This
structural property is important since the hydrophobic
groove of an anti-apoptotic member can bind to an a-
helical BH3 domain of a pro-apoptotic protein and
neutralize its pro-apoptotic function [5]. Further-
more, anti-apoptotic Bcl-2 family members prevent
effector pro-apoptotic proteins Bax and Bak from
being activated. When apoptotic signals are received,
BH3-only proteins competitively bind to the hydro-
phobic groove of the anti-apoptotic proteins and
displace Bax and Bak [6]. Bax and Bak can then form
oligomers, permeabilize outer mitochondrial mem-
brane and trigger the release of the apoptotic mito-
chondrial proteins including cytochrome c [7]. Cyto-
chrome c which associates with Apaf-1 activates a
caspase cascade leading to cleavage of specific cellular
proteins and thereby execution of cell death [7].
Mcl-1 is an anti-apoptotic member of the Bcl-2 family
and was originally cloned as an early induction gene
during differentiation of the myeloid cell line, ML-1
[8]. Mcl-1 had sequence and functional similarity to
Bcl-2, which is the founding member of the Bcl-2
protein family. Although Mcl-1 and Bcl-2 share the
ability to promote cell survival, there is accumulating
evidence showing that the expressions of these
proteins are independently regulated and the tissue
distributions of Mcl-1 and Bcl-2 show significant
differences [9, 10]. Furthermore, differential regula-
tion of Mcl-1 and Bcl-2 depending on the develop-
mental stages implies that these two anti-apoptotic
proteins may function independently [11]. All these
reports suggest that Mcl-1 may have a distinct role in
controlling apoptotic pathways.

Structural and functional properties of Mcl-1

The human Mcl-1 gene is located on chromosome
1q21 and comprises three exons. Alternative splicing
gives rise to two distinct Mcl-1 mRNAs either
containing or lacking exon 2 and encoding the Mcl-
1L and Mcl-1S isoforms, respectively [12]. Excluding
exon 2 in Mcl-1S causes exon 3 sequences to be
translated in a different reading frame and C-terminal
transmembrane (TM) domain, which is a part of Mcl-

1L, is not included in Mcl-1S (Mcl-1S/DTM). Whereas
wtMcl-1L comprises 350 amino acid residues and has
BH1, BH2, BH3 and C-terminal TM domains, Mcl-1S

contains 271 amino acid residues and only a BH3
domain. The C-terminal TM domain serves to localize
Mcl-1L mainly to the outer mitochondrial membrane
[13]. Surprisingly, although Mcl-1L and Mcl-1S are
expressed from the same gene via alternative splicing,
they have opposing functions, Mcl-1L being anti-
apoptotic and Mcl-1S pro-apoptotic [12]. Two PEST
sequences located N-terminal part of the both Mcl-1
proteins are characteristic sequences that are found in
proteins with rapid turn over. They are thought to be
as the main reasons of the short half-life of Mcl-1
protein. Whereas two residues in PEST domains
(Asp127 and Asp157) have been reported to be critical
for caspase cleavage of Mcl-1 [14], several other
residues (Ser64, Thr92, Ser155, Ser159, Thr163) have been
shown as the potential sites for phosphorylation [15 –
17].
Mcl-1 (Mcl-1L will be simply called as Mcl-1 hereafter)
is primarily localized to the outer mitochondrial
membrane and promotes cell survival by suppressing
cytochrome c release from mitochondria via hetero-
dimerization with and neutralization of effector pro-
apoptotic Bcl-2 family members including Bak [18].
Mcl-1 also selectively interacts with BH3-only pro-
teins, Bim, tBid, Bik, PUMA and NOXA [18 – 22]. As
the most plausible mechanism of anti-apoptotic action
of Mcl-1, it has been suggested that Mcl-1 may
function as an anti-apoptotic factor by sequestering
Bak on the outer mitochondrial membrane, prevent-
ing Bak oligomerization and cytochrome c release
from mitochondria [18, 22]. However, when apoptotic
signals are received, Bik, NOXA and tBid can
selectively disrupt Mcl-1-Bak interaction to displace
Bak from Mcl-1, leading to Bak oligomerization and
cytochrome c release (displacement model) [18, 20,
22] (Fig. 1). As an alternative mechanism, activator
BH3-only proteins (Bim, PUMA, and tBid) bind and
activate Bax and/or Bak directly if they are not bound
and neutralized by Bcl-2-like proteins including Mcl-1
[6, 19, 20, 23]. However, NOXA (perhaps also Bik)
can competitively bind to Mcl-1 and prevent it from
sequestering activator BH3-only proteins [23] (Fig. 1).
When we consider our previous finding that Mcl-1 is
mainly localized to outer mitochondrial membrane
via its C-terminal TM domain [13], it seems reason-
able that Mcl-1 may be primarily acting as a factor
sequestering Bak at the outer mitochondrial mem-
brane in an inactive state. Besides these two models
explaining the pro-survival function of Mcl-1, further
experimental analysis is required to determine wheth-
er Mcl-1 plays any other direct and/or indirect role in
performing its anti-apoptotic function.
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Regulation of the Mcl-1 expression

Mcl-1 has a short half-life and is a highly regulated
protein. Whereas its expression is induced by survival
and differentiation signals, it is also rapidly down-
regulated during apoptosis in many cell systems. The
rapid regulation of the Mcl-1 expression suggests that
it plays a critical role in apoptosis in response to
rapidly changing conditions. Regulation of Mcl-1
expression can occur at multiple levels as summarized
in Figure 2.

Transcriptional regulation of Mcl-1 expression

Several constitutively activated and/or extracellular
signal-activated transcription factors can regulate
Mcl-1 transcription. The signal transducers and
activators of transcription (STATs) represent a
family of transcription factors and regulate cell
growth, survival and differentiation in many types
of cells. Mcl-1 promoter has been shown to be a target
of STAT proteins. Whereas Mcl-1 transcription is up-
regulated through a STAT3 pathway upon IL-6
treatment in cholangiocarcinoma cells [24], STAT5
activation contributes to BCR/ABL-dependent ex-
pression of Mcl-1 in leukemic cells [25] . IL-3
activates Mcl-1 transcription either by the PI3-K/
Akt-dependent pathway through a transcription

factor complex containing CREB [26] or by activa-
tion of the PU.1 transcription factor through a
p38MAPK-dependent pathway [27]. Up-regulation
of Mcl-1 is critical for protection of melanoma cells
against endoplasmic reticulum stress-induced apop-
tosis and is due to increased transcription that
involves IRE1a and activating transcription factor
6 (ATF6) [28]. Mcl-1 transcription can also be up-
regulated by hypoxia-inducible factor-1 (HIF-1) that
protects cells against apoptosis under hypoxia [29].
Mcl-1 gene promoter has also been identified as a
target for the ternary complex factor (TCF)-serum
response factor (SRF) complex and TCF-SRF-regu-
lated Mcl-1 expression protected cells from apopto-
sis [30].

Post-transcriptional regulation of Mcl-1 expression

Alternative splicing gives rise to two distinct Mcl-1
mRNA encoding Mcl-1 and Mcl-1S isoforms with
opposing functions [12]. It has been recently reported
that alternative splicing of Mcl-1 can be regulated in a
cell-specific manner. Macrophages up-regulate anti-
apoptotic Mcl-1 expression during bacterial infec-
tions, and their commitment to apoptosis for the
resolution of infection is dynamically regulated by
switching Mcl-1 expression from anti-apoptotic Mcl-1
to pro-apoptotic Mcl-1S [31].

Figure 1. Mcl-1 plays two main
roles in the cellular apoptosis
machinery. In survival conditions,
Mcl-1 may function as an anti-
apoptotic factor by sequestering
Bak on the outer mitochondrial
membrane (OMM). However,
when apoptotic signals are re-
ceived, specific BH3-only pro-
teins can displace Mcl-1 from
Bak leading to Bak oligomeriza-
tion and cytochrome c release
from mitochondria. Mcl-1 can
also display its pro-survival func-
tions by heterodimerizing with
activator BH3-only proteins in-
cluding tBid, PUMA and Bim. In
apoptotic conditions, NOXA dis-
places Mcl-1 from these activator
binding partners. Then, Bim,
PUMA and tBid can interact
with Bax causing its insertion
into outer mitochondrial mem-
brane, oligomerization and cyto-
chrome c release.
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Translational regulation of Mcl-1 expression

We and others have shown that Mcl-1 mRNA and
protein both have very short half-lives and their
cellular levels depend on balance between de novo
synthesis and degradation [13, 32]. Mcl-1 was shown
to be regulated at the translational level by micro-
RNAs through a mir-29b binding in the 3�-UTR of
Mcl-1 mRNA [33]. Mir-29b directly inhibits expres-
sion of Mcl-1 by binding to its target sequence.
Furthermore, mir-29b was found to be overexpressed
in non-malignant compared to malignant cholangio-
cytes, implying a critical role of Mcl-1 protein up-
regulation in malignant cells [33]. CUGBP2, an RNA
binding protein, can also bind to Mcl-1 mRNA 3�-
UTR and inhibits its translation, driving the cells in
HCGU2 cell line stably expressing CUGBP2 in the
HCT-116 colon cancer cells to apoptosis [34].
mTORC1, the mammalian target of rapamycin com-
plex 1, is a serine/threonine protein kinase and a
downstream target of PI3K/Akt. It has been reported

that Mcl-1 is a translationally up-regulated genetic
determinant of mTORC1-dependent survival [35].

Post-translational regulation of Mcl-1 expression

Multiple modes of post-translational regulation of
Mcl-1 have been defined. Mcl-1 possesses many
phosphorylation sites, and it is likely that differential
phosphorylation of Mcl-1 results in different fates of
this protein. Whereas ERK-mediated phosphoryla-
tion of Mcl-1 at Thr92 and Thr163 prolongs the Mcl-1
half-life [17, 36], Ser159 phosphorylation by GSK-3b

reportedly enhances Mcl-1 ubiquitylation and degra-
dation [37]. On the other hand, a distinct pathway
involving phosphorylation at Ser64 enhances its anti-
apoptotic function [15]. Furthermore, Mcl-1 is phos-
phorylated at Ser121/Thr163 and inactivated by JNK in
response to oxidative stress [38].
Caspase-mediated and proteasome-dependent degra-
dations are two main routes responsible for the rapid

Figure 2. Multiple modes of regulation of the Mcl-1 expression. Mcl-1 is a short-lived and highly regulated protein. Whilst its expression is
induced by survival and differentiation signals, it is also rapidly down-regulated during apoptosis in many cell systems. Regulation of Mcl-1
expression can occur at multiple levels. Several transcription factors contribute constitutive and regulated transcription of Mcl-1.
Alternative splicing of Mcl-1 pre-mRNA produces two proteins with antagonistic functions and splicing mechanisms can be regulated to
shift the balance in favor of one of these proteins according to signals received by the cell. Translational control is also widely used to
regulate the Mcl-1 expression. MicroRNAs and RNA binding proteins have been shown to inhibit the translation of Mcl-1 mRNA as
discussed in the text. Multiple modes of the post-translational regulation of Mcl-1 protein have been described. Mcl-1 possesses several
phosphorylation sites, and it is likely that differential phosphorylation of Mcl-1 results in different fate of this protein. Proteasome and/or
caspase-mediated degradation of Mcl-1 are two mechanisms to rapidly diminish cellular levels of this protein. (Numbers in brackets show
the references cited and details of regulation are given in the text).
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turnover of Mcl-1. The degradation of Mcl-1 can be
blocked by proteasome inhibitors, suggesting a role
for the ubiquitin proteasome pathway in apoptosis
[39]. It has been demonstrated that Mcl-1 is ubiqui-
nated at five lysines by Mule (Mcl-1 ubiquitin ligase
E3) [40]. NOXA is the best-characterized BH3-only
protein, and can displace Bak from Mcl-1 to initiate
apoptosis. Binding of NOXA to Mcl-1 also induced
Mcl-1 degradation via a proteasome-dependent
mechanism [22]. The role of Mcl-1 phosphorylations
on its proteasome-dependent degradation has also
been implicated since Mcl-1 hyperphosphorylation
accelerated both Mcl-1 turnover and apoptosis [37,
39]. On the other hand, specific cleavage of anti-
apoptotic Mcl-1 at Asp127 and Asp157 by caspase-3
during the apoptotic process produced a C-terminal
domain with a death-promoting activity [14, 41].

Mcl-1 as a potential therapeutic target in human
malignancies

Although Mcl-1 is one of the essential anti-apoptotic
factor in the development and differentiation of
normal cells, deregulation of signaling pathways
regulating Mcl-1 expression often results in its over-
expression, which contributes to several human dis-
eases including malignancies. Mcl-1 overexpression
has been shown in a variety of human hematopoietic,
lymphoid cancers and solid tumors [25, 42 – 44], and
also appears to be a key factor in the resistance of
some cancer types to conventional cancer therapies

[45 – 47]. Mcl-1 down-regulation is often sufficient to
promote apoptosis in cancer cells, suggesting that Mcl-
1 can be a potential therapeutic target in the treatment
of several human malignancies [48 – 50].

Interventions to neutralize the pro-survival function
of Mcl-1 in malignant cells

Mechanisms that abrogate the anti-apoptotic function
of Mcl-1 can be divided into two categories: (1) Mcl-1
levels can be diminished in target cells by inhibiting its
expression and/or inducing its rapid degradation; (2)
pro-survival function of Mcl-1 can also be abolished by
disrupting Mcl-1/Bak interaction via supplying exog-
enous binding partners, such as BH3 mimetics that
interfere with the direct interaction between Mcl-1
and Bak (Fig. 3).
Many types of therapeutic interventions have been
tested to neutralize the pro-apoptotic function of Mcl-
1 in overexpressing cell lines and their effects on Mcl-1
are summarized in Figure 3. They can be categorized
as either nonspecific or specific interventions. Non-
specific treatments mainly include chemotherapeutic
agents directed towards more general molecular
mechanisms with effects on a wide range of intra-
cellular regulators. On the other hand, specific inter-
ventions include antisense oligonucleotides (ASOs),
RNA interference (RNAi) and BH3 mimetics, which
are able to specifically down-regulate the expression
of deregulated proteins of cancer cells. Gene-specific
interventions, which first became available in 1990 s,

Figure 3. Multiple types of interventions can down-regulate Mcl-1L expression or, alternatively, small-molecule inhibitors can bind to
surface hydrophobic groove of Mcl-1 and neutralizes its pro-survival functions. Mcl-1 is overexpressed in a variety of human hematopoietic,
lymphoid cancers and solid tumors and also appears to be a key factor in the resistance of some cancer types to conventional cancer
therapies. Mcl-1 down-regulation and/or neutralization of its pro-survival functions with BH3 mimetics are often sufficient to promote
apoptosis in cancer cells, suggesting that Mcl-1 can be a potential therapeutic target in the treatment of several human malignancies. The
figure shows the potential types of interventions either to down-regulate Mcl-1 expression or to neutralize its anti-apoptotic function.
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have had a significant influence on apoptosis induc-
tion in some types of cancer cell lines, and are
currently a very popular research area. However,
advanced drug delivery systems have to be developed
so that the treatment can be directed towards the
localization of the malignant disease to reduce the risk
of serious side effects [51].
Many synthetic chemicals and natural products have
been investigated for their anticancer activities in a
wide variety of cancer cell lines and down-regulation
of the Mcl-1 expression has been reported as one of
the mechanisms for the activities of these agents [17,
52 – 54]. However, the most important characteristic
of these compounds with anticancer activities is that
they lack specificity and they often affect multiple
targets via distinct signaling pathways.
STAT proteins are often constitutively activated in
many human cancer cells and tumor tissues. They have
been shown to induce expression of genes involved in
cell proliferation and survival [55]. Mcl-1 is transcrip-
tionally regulated by STATs and this represents a
promising target for cancer therapy. In recent years,
many synthetic and natural compounds including
Resveratrol, CDDO-Me, interferon-a, Dasatinib,
PD180970 and Imatinib (STI-571) have been demon-
strated to have inhibitory effects on STAT3 and
STAT5, leading to Mcl-1 down-regulation and apop-
tosis induction [53, 56– 60].
The fact that both Mcl-1 mRNA and protein have
relatively short half-lives can be exploited in cancer
therapy since inhibition of transcription and/or trans-
lation can rapidly diminish Mcl-1 levels in the cells
whose survivals mainly depend on Mcl-1 expression.
Treatments with cyclin-dependent kinase (CDK) in-
hibitors including Seliciclib and flavopiridol resulted
in down-regulation of Mcl-1 mRNA via inhibition
RNA polymerase II-dependent transcription [61, 62].
Inhibition of translation has been an alternative
mechanism to down-regulate anti-apoptotic proteins
in cancer cells. Homoharringtonine (HHT, a natural
compound), its semi-synthetic derivative (ssHHT),
Sorafenib (BAY 43 – 9006, a kinase inhibitor), and
425.3PE (an unmodified Pseudomonas exotoxin co-
valently linked to the 425.3 antibody) have all been
shown to inhibit translation and rapidly reduced the
levels of short-lived Mcl-1 protein, albeit with differ-
ent mechanisms [48, 52, 54, 63]. Furthermore, it has
also been demonstrated that phosphorylation of Mcl-1
by ERK leads to its stabilization via Pin 1, and
inhibition of ERK by Sorafenib reverses this stabili-
zation [17].
Although a clear mechanism has yet to be defined,
histone deacetylase (HDAC) inhibitors, alone or in
combination with other therapeutics, induced apop-

tosis via down-regulating the anti-apoptotic proteins
including Mcl-1 [64, 65].
Treatments regulating alternative splicing of Mcl-1
can have a therapeutic potential if the splicing
mechanisms can be directed towards the production
of pro-apoptotic Mcl-1S. Several therapeutic agents
have already been shown to up-regulate Mcl-1S

splicing variant. For example, epigallocatechin-3-gal-
late (EGCG) and ibuprofen synergistically sup-
pressed proliferation and induced apoptosis of pros-
tate cancer cell lines via altering the ratio of the splice
variants of Bcl-x and Mcl-1, down-regulating the
mRNA levels of anti-apoptotic Bcl-xL and Mcl-1 with
a concomitant increase in the mRNA levels of pro-
apoptotic Bcl-xS and Mcl-1S [66]. Similarly, SDX-101
(the R-enantiomer of etodolac) induced up-regula-
tion of Mcl-1S and enhanced the activity of dexame-
thasone in multiple myeloma [67]. Antisense technol-
ogy has been a useful tool to manipulate alternative
splicing mechanisms and ASOs were efficiently used
to shift the splicing pattern of Bcl-x pre-mRNA from
anti-apoptotic Bcl-xL to Bcl-xS [68 – 70]. Similarly,
specificity of ASOs can also be exploited to direct
alternative splicing of Mcl-1.
Some of the anticancer agents targeting Mcl-1 have
been commercialized and used in the treatment of
several types of cancer. For example, imatinib
(STI571) is currently on the market as an anticancer
drug and used in the treatment of chronic myeloid
leukemia (CML). BCR/ABL is an oncoprotein that is
expressed in leukemic cells as a result of the reciprocal
translocation t(9;22) and displays constitutive tyro-
sine kinase activity. It has been shown that primary
CML cells express Mcl-1 in a constitutive manner and
that BCR/ABL promotes the expression of MCL-1
through activation of the RAS/RAF/MAP kinase
pathway [25]. Several kinase inhibitors including
imatinib and U0126 were used to down-regulate
Mcl-1 expression in human cancer cell lines [25, 71,
72].
Recently, gene-specific interventions have drawn
more attention and they have been successfully
applied to neutralize anti-apoptotic proteins in a
wide variety of cancer cell lines. Antisense technolo-
gies and RNAi are two gene-specific interventions
based on inhibition of expression of specific genes [73,
74]. ASOs block translation of target mRNAs in a
sequence-specific manner either by sterically blocking
translation, or by degradation of the bound mRNA via
RNase H. On the other hand, RNAi is a mechanism in
which genes are specifically silenced at the level of
mRNA degradation. Both technologies, alone or in
combination with other conventional therapeutics,
have been used efficiently to down-regulate Mcl-1 in
several cancer cell lines and sensitized them by

Cell. Mol. Life Sci. Vol. 66, 2009 Review Article 1331



specifically inhibiting Mcl-1 expression [25, 44, 49, 50
75, 76].
Agents that mimic BH3 domains of the pro-apop-
totic Bcl-2 family members can neutralize anti-
apoptotic proteins by binding to their surface hydro-
phobic groove. Whereas BH3 domains of the pro-
apoptotic proteins contain conserved residues and
generally function in a similar manner, it has been
reported that only some pro-apoptotic Bcl-2 family
members bind strongly to Mcl-1 [22, 23] . A number
of small-molecule inhibitors of anti-apoptotic Bcl-2
family members have been recently developed and
shown to inhibit multiple anti-apoptotic Bcl-2 family
members [77, 78] . Although these small-molecule
inhibitors can be peptide or non-peptide, one major
advantage of non-peptide small-molecule BH3 mim-
etics over peptide-based inhibitors is their superior
cell permeability. Differential binding specificities of
BH3 domains suggest that it might be possible to
design BH3 mimetics to specifically target an anti-
apoptotic protein that are overexpressed in a partic-
ular type of cancer [21]. For example, ABT-737, a
potent and specific BH3 mimetic, has high affinity for
Bcl-xL and Bcl-2 but it binds poorly to Mcl-1 [79] . So
novel BH3 mimetics that can also neutralize Mcl-1
are needed since Mcl-1 overexpression plays a major
role in resistance to ABT-737 [80 – 82]. TW-37,
MIPRALDEN, BI-33, Gossypol, Apogossypolone
and pyrogallol-based molecules have been shown to
inhibit multiple anti-apoptotic Bcl-2 family members
including Mcl-1 [47, 83 – 88]. Furthermore, several
small-molecule inhibitors that have high affinities for
Mcl-1 have been recently developed and used
selectively to neutralize Mcl-1. A novel BH3 mim-
etic, obatoclax (GX015 – 070), has been shown to
interfere with the direct interaction between Mcl-1
and Bak and overcome Mcl-1-mediated resistance to
apoptosis [45, 89] . On the other hand, a novel BH3-
like peptidic ligand derived from Bim, BimS2A,
which is highly selective for Mcl-1, can efficiently
antagonize Mcl-1 by tightly engaging its binding
groove [90].
Mcl-1 and other survival factors can also be targeted
simultaneously to induce enhanced apoptosis.
SiRNA (Mcl-1)/Rituximab, siRNA(Mcl-1)/ABT-
737, N-(4-hydroxyphenyl)retinamide/ABT-737, Sor-
afenib/Rapamycin, Rapamycin/UCN-1 and Mcl-1
down-regulation/NOXA up-regulation combina-
tions have been used to obtain a synergistic apoptotic
response and efficiently overcome resistance in
several cancer types [46, 81, 82, 91 – 93].

Conclusions and future perspectives

Survival of a malignant cell often depends on the
presence of multiple anti-apoptotic proteins [94, 95].
Furthermore, types and levels of survival factors may
vary from one type of cancer cell to another [10, 42,
94, 96] . For example, whereas Bcl-2 and Bcl-xL are
the main anti-apoptotic proteins in small-cell lung
cancer cell lines [94] , Mcl-1 is the essential anti-
apoptotic Bcl-2 family member in human myeloma
cells [42].
Simultaneous targeting of multiple survival factors
generally induces much stronger apoptotic response
[52, 80, 82, 93]. However, singular targeting of Mcl-1
using antisense technologies, RNAi or BH3 mimetics
may be sufficient to trigger apoptosis in specific types
of cancer cell lines [42, 44, 90]. The expression levels of
Mcl-1 vary substantially among normal and malignant
cells [32, 96, 97]. Overexpression of Mcl-1 is often a
critical determinant of extended survivals of cancer
cells, and specific targeting of Mcl-1 can potentially
overcome the resistance to apoptosis in malignant
cells [44, 98].
In sum, Mcl-1 is a critical survival factor for both
normal and malignant tissues and its cellular expres-
sion is tightly regulated via multiple mechanisms.
Deregulation of signaling pathways often results in
Mcl-1 overexpression contributing to development of
malignancies and formation of resistance to conven-
tional therapeutics. Over the past decade, there has
been significant progress towards understanding the
function and regulation of Mcl-1. Appreciable ad-
vancement has also been made towards finding
relevant interventions to down-regulate Mcl-1 ex-
pression and/or to neutralize its pro-survival func-
tions.
Almost all the experimental evidence summarized in
this review has been obtained using cancer cell culture
systems and they need to be tested in more complex
living organisms including humans. In addition to this,
improvements in drug delivery systems have to be
made so that the treatment can be directed towards
the localization of the malignant disease to reduce the
risk of serious side effects. Production of better drug
delivery systems, development of novel interventions
specifically targeting Mcl-1, and testing efficiencies of
all kinds of specific interventions in clinical trials of
cancer treatment will certainly be priorities in the near
future.
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