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Abstract. Multisubunit RNA polymerase transcribes
DNA in all living organisms. RNA polymerase is also
known to synthesize DNA replication primers in some
replication systems, a function that is commonly
performed by primases. There are two unrelated
types of primases, the bacterial and eukaryal-archaeal

types; RNA polymerase has no evolutionary relation-
ship to either type. Here we discuss the mechanism of
primer synthesis by RNA polymerase and compare it
to mechanisms used by primases of both types as well
as to the mechanisms used by RNA polymerase during
transcription.
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Introduction

Precise duplication of information coded by genomic
DNA is the main prerequisite of life. This duplication
is carried out by specialized enzymes, DNA polymer-
ases. However, no DNA polymerase can initiate DNA
synthesis de novo. Such an apparent deficiency might
have evolved to increase processivity of these en-
zymes whose job is to replicate genomes of thousands
and millions of bases long. The processivity would be
impaired by the sequence-specific interactions with
template, which is needed for specific initiation of de
novo synthesis. All DNA polymerases require an
accessible and properly positioned hydroxyl group for
attaching a deoxyribonucleotide. In other words,
DNA synthesis needs to be primed. Although
“ready to use” primers, such as protein primers [1],
tRNA molecules, or nicks in the DNA strand are used

to initiate replication in some systems, in the vast
majority of cases DNA replication is primed by
specialized enzymes called primases. Primases are
DNA-dependent RNA polymerases that synthesize
oligoribonucleotides that remain annealed to tem-
plate DNA and are used by DNA polymerases as
primers.
The evolutionary origins of DNA replication proteins
are obscure. Although some components are con-
served within all living organisms, several major
players, including primases, are different in eukar-
yotes-archaea and bacteria, indicating that these
essential components of present-day replication ma-
chines could have emerged after the split of bacteria
from eukaryotes and archaea [2]. The eukaryotic-
archaeal and bacterial superfamilies of primases [3]
share no structural or sequence similarity. There is
also a great divergence within each superfamily,
leading to differences in some aspects of primer
synthesis. However, the basic mechanism is the same
within a group, and there are also significant con-* Corresponding authors.
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vergent similarities between mechanisms used by
enzymes from different groups.
Most cellular RNA is synthesized by multisubunit
RNA polymerases (RNAPs), enzymes responsible for
transcription. Amazingly, some replicons rely on
RNAPs, rather than primases, for initiation of repli-
cation of their genomes. Replication priming by
RNAP was discovered more than 30 years ago, but
until recently remained poorly understood despite a
dramatic progress in mechanistic and structural under-
standing of transcription. In this review, we discuss
RNAP-dependent replication priming and compare it
to priming by eukaryotic-archaeal- and bacterial-type
primases and to functioning of RNAP in transcription.
We focus on bacterial RNAP, the only enzyme of its
class known to prime replication. Given the excep-
tionally high level of conservation of RNAP structure
and mechanism, the absence of reports on involve-
ment of eukaryal and archaeal RNAPs in replication
priming most likely reflects the lack of precedent
rather than true absence of such mechanism in nature.
The functioning of RNAP as a primase was first
observed by Arthur Kornberg while setting up a
defined in vitro replication system [4, 5]. In fact for a
brief time, RNAP was thought to be the only primase
in the cell until a dedicated primase, DnaG, was found,
also by Kornberg and colleagues [6 – 8]. However,
RNAP was still shown to be essential for initiation of
replication of the M13 phage leading to the formation
of double-stranded form of its genome from a single-
stranded form present in phage virions [4]. In this
system, RNAP was shown to synthesize a primer of
defined length at a specific position of the genome [9 –
11]. Later, additional examples of replication primer
synthesis by RNAP were discovered [12, 13]. Al-
though all currently known examples are limited to
plasmids and bacteriophages, the possibility of RNAP
participation in replication of cellular genomes could
not be dismissed (see below).

Recognition of the primer synthesis start site

While RNAP operates on double-stranded (ds) DNA
(during transcription), to allow template-directed
RNA synthesis it locally melts the DNA helix to
form a transcription bubble of about 12 – 14 melted
base pairs. RNAP initiates transcription at specific
sites called promoters. The catalytically proficient,
elongation-competent RNAP core enzyme does not
recognize promoters. Binding of one of the several
specificity subunits s converts the core into the
holoenzyme, which can recognize promoters and
initiate transcription (for review see [14]). In the
context of the holoenzyme, s recognizes two con-

served upstream DNA elements positioned around
registers �10 and �35 relative to the start of tran-
scription, and nucleates the melting of the DNA at
position �11 (Fig. 1). The melting is next propagated
towards the transcription start site (for review see
[15]). Melting positions dsDNA downstream of the
transcription start site into the so-called downstream
DNA-binding channel formed by structural elements
of the RNAP core; however; this interaction is
nonspecific. The precise location of the transcription
start site is primarily determined by the distance from
the promoter elements recognized by the s subunit.
However, because of a strong preference to use purine
nucleotides (nt) for transcription initiation, transcrip-
tion start sites in some promoters can be shifted one to
two nt upstream or downstream of the preferred
position (i.e. , one defined by the proper distance from
the �10 element).
In contrast to “normal” transcription, most cases of
RNAP-catalyzed replication priming involve single-
stranded (ss) DNA (for review see [12]). However, to
be recognized by RNAP single-stranded origins of
replication (ori) form pseudo double-stranded struc-
tures. In this review we focus on initiation of repli-
cation of phage M13, currently the best-understood
case of priming by RNAP (Fig. 1). Early work
demonstrated that priming in this system requires
the holoenzyme form of RNAP of E. coli, the host
bacterium for the M13 phage. The requirement for the
s subunit was rationalized by proposing that the ori
forms two partly double-stranded hairpins each con-
taining sequences that resemble basal promoter
elements sequences [16–18]. The ori was, therefore,
thought to function in essence as a “normal” double-
stranded promoter. However, later investigations
revealed that ori recognition (but not primer syn-
thesis) can be carried out by both the holo and the core
enzyme [19]. This was a highly surprising finding, since
RNAP core was thought to lack the ability to
recognize specific DNA sequences. The minimal ori
fragment specifically recognized by RNAP (both core
and holo) consists of an ~ 17-bp-long imperfect hairpin
(Fig. 1). The structure of the ori (particularly the loop
of the hairpin and mismatch bulges in the stem) may
be more important for recognition than the sequence
per se (N.Z., unpublished). In a way, it is probably
more correct to say that the ori hairpin recognizes
RNAP, i.e., that the structures of the origin evolved as
aptamers that tightly bind to a specific site of RNAP.
The complete partially double-stranded ori structure
is much larger than the minimal structure that is
capable of RNAP binding. The additional sequences
and/or structures may stabilize the structure recog-
nized by RNAP but may also improve the recognition
by RNAP through interactions with the s subunit or

Cell. Mol. Life Sci. Vol. 65, 2008 Review Article 2281



additional domains of the core. Since RNAP has a
high affinity to the ssDNA, the ~ 5000-base-long
genome of the phage must be covered with ssDNA-
binding protein (SSB), to, on the one hand, exclude
RNAP from ssDNA and, on the other hand, expose
the partially double-stranded origin. In this way, SSB
strongly increases the specificity of RNAP binding to
the ori. In vitro synthesis of primer from a minimal ori
fragment occurs without SSB and is, in fact, inhibited
by it [18, 19].
The minimal M13 origin hairpin is bound in the RNAP
core channel normally occupied by dsDNA down-
stream of the transcription initiation start site [19].
Such a binding mode positions the single-stranded 3’
end of the hairpin in the active center of RNAP,
making it possible to initiate the RNA synthesis
(Fig. 1). Thus, in contrast to transcription initiation
from promoters, which depends on specific interac-
tions of the s subunit with DNA elements upstream of
the RNAP active center, ori recognition is accom-
plished by RNAP core contacts with DNA down-
stream of the active center.
In contrast to RNAP recognition of the M13 ori,
primases recognize ssDNA generated by the action of

helicases that are often associated with the primases,
which allows localizing the primase activity to func-
tional replication forks. Since primer synthesis must
occur frequently during lagging strand synthesis,
sequences recognized by primases are short. For
bacterial-type primases, the recognition sites are 3 nt
long (5’-CTG-3’ for E. coli DnaG primase), and are
positioned around the site of the synthesis start [20,
21]. During the lagging strand synthesis, several
primase molecules are bound to the hexameric ring
of the helicase. The helicase generates ssDNA that
emerges from the hole of the ring and is scanned by
primases for the presence of the recognition site
sequence [22]. The catalytic domain of bacterial-type
primases possesses only nonspecific DNA-binding
activity and cannot recognize this sequence [23]. The
recognition site binding is specified by a flexibly
linked Zn-binding domain (ZBD). Curiously, site
recognition for a given catalytic domain is performed
in trans by the ZBD of a neighbor primase bound to
the helicase ring [23, 24]. The function of ZBD in
primer synthesis start site recognition resembles the
role of the s subunit in the case of promoter
recognition by RNAP. The cooperation between (at

Figure 1. Transcription and primer synthesis by RNAP, and hypothetical mechanisms of primer synthesis by bacterial-type and eukaryotic-
archaeal-type primases. Schemes represent the sequences of events from formation of the initiation complex to the formation of the
priming complex (except for transcription). The main players of the mechanisms are shown in color and labeled. See text for details. For the
complexes of RNA polymerase during transcription the non-template strand of the transcription bubble is omitted for clarity.
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least) two primase molecules that are needed for
primer synthesis initiation presumably decreases the
possibility of aberrant primase function outside of the
replication fork.
Interestingly, some bacteriophages use bacterial pri-
mase to prime the lagging strand replication of their
single-stranded genomes. In this case, primase acts
without the help from helicase; however, two primase
molecules are still involved in origin recognition and
primer synthesis [25, 26]. The primer synthesis
reaction depends on the presence of SSB. Presumably,
SSB and the extensive secondary structure of the
origin together ensure that primase binds exclusively
at the ori site [27]. SSB may also directly participate in
the reaction of primer synthesis (for review see [28]).
Eukaryotic-type primases are either less sequence
specific than bacterial-type primases, or their specif-
icity is not yet understood. The only obvious sequence
requirement appears to be that a base coding for the 5’
end nt of the primer must be a pyrimidine [29]. In
addition, the sequence of DNA ~ 10 nt downstream of
the primer start site must be pyrimidine rich [30].
Crystallographic analysis suggests that this sequence is
recognized by ZBD of eukaryotic-archaeal-type pri-
mases (euZBD). Despite (or perhaps because of) their
low specificity, eukaryotic primases have an extended
ssDNA-binding surface [31], presumably needed for
stabilization of the initiation complex. The smaller
ssDNA-binding surface of bacterial-type primases
may be compensated by the specificity of their ZBD
interaction to the recognition sequence.

Initiation of primer synthesis

On regular promoters, the RNAP s subunit initiates
melting of the double-stranded promoter DNA, while
the core finalizes the process leading to the formation
of transcription-competent open promoter complex
(for review see [15]). However, productive RNA
synthesis that would lead to escape from promoter and
processive transcript elongation cannot begin imme-
diately: at least in vitro, large numbers of short
abortive products are synthesized in each productive
promoter escape event. Such apparently wasteful
abortive synthesis is a common property of all RNA
polymerases (the only enzymes capable of de novo
template-directed synthesis of phosphodiester
bonds), and can be regarded as a necessary price for
not using a primer. During de novo synthesis of the
first as well as several following phosphodiester bonds,
the synthesis product cannot form an extended stable
hybrid. During elongation, such a hybrid stabilizes the
3’ hydroxyl of the product in the active center,
increasing the processivity of synthesis. Therefore,

during initiation of synthesis, RNAP must form a tight
(and specific) complex with the template and sub-
strates to achieve stabilization of reacting groups in
the active center. The stabilization is achieved through
sequence-specific interactions of the enzyme with the
template. However, after the RNA product becomes
long enough to form a stable hybrid with the template,
stable initiation complex must be destroyed to allow
the formation of the elongation complex that is stable
(due to the formation of product-template hybrid) and
yet sequence nonspecific (to allow processive elonga-
tion). If the stable initiation complex fails to be
destroyed, further synthesis becomes impossible,
preventing promoter escape. In this situation, the
product is aborted and the enzyme reinitiates the
synthesis without leaving the promoter. Generally, the
formation of a stable initiation complex requires
participation of additional subunits or domains. Con-
versely, release or rearrangement of these subunits or
domains results in stable initiation complex disrup-
tion. For example, during initiation on common
promoters, the stabilization is thought to be achieved
through sequence-specific interactions of the s sub-
unit with DNA, which must be destroyed for transition
into productive synthesis, and which presumably
causes abortive initiation.
The RNAP core enzyme was found to be able to
specifically initiate RNA synthesis on the M13 ori
hairpin or, in the presence of SSB, even on the M13
genome, in the absence of the s subunit [19]. Despite
the absence of s, the product, a dinucleotide, is
synthesized in an abortive manner [19]. Presumably,
stabilization of the initiation complex in this case is
achieved through “structure-specific” interactions of
the downstream DNA-binding channel of the core
with the ori hairpin.
However, despite the ability of RNAP core to
recognize ori, form initiation complex, and initiate
RNA synthesis, no synthesis beyond the first phos-
phodiester bond is observed, and the s subunit is still
strictly required for primer synthesis. It was shown
that in this system, s region 3.2 interacts with short
transcripts and stabilizes them, making their further
extension possible [19]. s thus increases the chances of
transition into elongation. This s-induced stabiliza-
tion is needed at least until the second phosphodiester
bond is synthesized, as the product of second phospo-
diester bond formation, a trinucleotide, is bound
tightly enough to be extended even without s, solely
by the core [19].
During transcription initiation from promoters, the s

subunit was also shown to increase the affinity of the
promoter complex to transcription substrates neces-
sary for the synthesis of the first and second phospho-
diester bonds [32, 33], although the mechanisms(s) are
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not defined. One of the possibilities is that s region 3
interacts with template DNA, fixing it in the active
center and thus helping to fix reactants in the active
center. The effect of s here can also proceed through
direct interaction with the initiating nt as suggested by
cross-linking data [34]. To summarize, s is not needed
for the initiation complex formation at the M13 ori,
but it is essential for escape into productive elonga-
tion. The biological significance of this function of the
s subunit may be to prevent RNAP core from
initiating transcription at the wrong i.e., nonspecific,
sites, which would offset the carefully balanced
regulation of gene expression in the cell.
The conceptually similar mechanism of stable com-
plex formation during de novo initiation of primer
synthesis is used by bacterial-type primases. ZBD
strongly stimulates the catalytic activity of the cata-
lytic domain, although the mechanism remains ob-
scure [23, 35]. It seems that ZBD in complex with the
recognition sequence and nt substrates in the active
center of catalytic domain stabilizes the entire struc-
ture [36] (Fig. 1). Thus, ZBD has a function that is
similar to that of the RNAP s subunit and reduces the
probability of nonspecific primer synthesis. That a
stable complex forms before or during the first
phosphodiester bond formation reaction is consistent
with this reaction being a rate-limiting step at this
stage. Failure to destruct the stable complex during
transition into elongation leads to abortive synthesis
[37].
Despite their low sequence specificity, eukaryotic
primases form stable initiation complexes that under-
go abortive initiation reaction [38]. Again, such a
behavior is consistent with a view of abortive synthesis
as a result of the enzyme�s failure to escape into
elongation. It is suggested that euZBD interacts with
DNA (and presumably participates in the recognition
of specific sequences in DNA) downstream of the start
site and thus contributes to stable initiation complex
formation and abortive synthesis [31] (Fig. 1). This is
supported by the finding that the deletion of the
euZBD resulted in reduced abortive synthesis and the
increased transition to elongation. This situation
resembles initiation of transcription by RNAP from
M13 ori, where specific interactions required for
initial complex formation also occur downstream of
the start site and are presumably responsible for
abortive initiation (see above).

Primer synthesis

After the formation of sufficiently long RNA and
disruption of contacts with promoter, RNAP escapes
into elongation phase, in which it processively extends

3’ end of the nascent RNA. Elongating RNAP uses the
nascent RNA as a primer for fast and efficient
elongation in the same manner as DNAPs. The only
difference is that this RNA is initially synthesized by
RNAP itself. Thus, the transcription initiation com-
plex can be regarded as a primase for transcription
elongation stage.
During transcription elongation, RNAP can proces-
sively synthesize RNAs for thousands of nt. What
mechanisms can be responsible for RNAP-catalyzed
synthesis of short replication primer of defined
length? The normally highly processive transcription
elongation complex can pause at defined positions of
the template and then continue elongation or termi-
nate transcription, with release of the transcript,
RNAP, and DNA. Neither of these events results in
formation of a transcript that can serve as a replication
primer, i.e., it contains an exposed 3’ end of the
transcript annealed to the template DNA. The struc-
ture of active and some paused elongation complexes
is such that the 3’ end of RNA, while annealed to the
DNA template, is buried deep in the RNAP active
center cleft and is therefore not accessible (Fig. 1). At
some pause sites, RNAP moves backward, the phe-
nomenon called backtracking [39], and the 3’ end of
the transcript disengages from the RNAP, is threaded
through the RNAP secondary channel and becomes
exposed; however, in this case the 3’ end is not
annealed to DNA and, therefore, cannot serve as a
primer. During termination, the transcription bubble
collapses, restoring the double-stranded DNA and
releasing the transcript. Thus, again no primer-tem-
plate structure suitable for replication initiation is
formed. How then is it possible for an RNAP tran-
script synthesized from the M13 ori to act as a primer?
During elongation, RNAP moves along the dsDNA
maintaining a ~ 12-bp transcription bubble [40]. The
nascent RNA remains largely single-stranded; only
eight to nine 3’-terminal bases remain base-paired
with the template DNA strand in the transcription
bubble, in the main RNAP channel (Fig. 1). The 8 – 9-
bp-long RNA-DNA hybrid is thought to be a prereq-
uisite for stable elongation complex formation [41].
The length of the hybrid is maintained by two factors.
First, the DNA duplex that reforms behind RNAP
peels RNA from the RNA-DNA hybrid. Second, a
small protein domain, the b’ lid, located at the
upstream edge of the hybrid helps to disengage
RNA from the template DNA [42, 43] (Fig. 1).
Single-stranded nascent RNA leaves the transcription
complex through an RNA exit channel [42, 44].
During the priming of M13 replication, RNAP
synthesizes an 18 – 20-nt-long primer RNA [11].
Although ori is recognized as a hairpin, during the
synthesis the double-stranded structure must be
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destructed since the “non-template” strand of the
hairpin is displaced by the transcript synthesized on
the “template” strand. Thus, the synthesis of primer
RNA proceeds on ssDNA. During transcription of
ssDNA, the first determinant of the RNA-DNA
hybrid length, reformation of upstream DNA duplex,
is absent. When a growing RNA molecule reaches a
length of 8 – 9 nt, its 5’ end collides with the lid domain
(Fig. 1). The lid alone is unable to disrupt the RNA-
DNA hybrid, especially if it is G :C rich, as is the case
on the M13 ori. However, the RNAP catalytic center
continues to catalyze phospodiester bond formation
and as a result, an overextended hybrid is formed.
Since a hybrid longer than 10 bp cannot be accom-
modated in the RNAPs active cleft due to steric
constrains, the upstream edge of the hybrid must be
displaced from the cleft (Fig. 1). Presumably, the
addition of each “extra” nt at the 3’ end leads to
further displacement and accumulation of tension in
(and destabilization of) the transcription complex.
When the transcript reaches a critical length of 18 – 20
bases (with correspondingly long hybrid), the complex
undergoes a conformational change: the overextend-
ed hybrid slides within the RNAP molecule forwards
to occupy the downstream DNA-binding channel,
which, during initiation of primer RNA synthesis, is
occupied by on ori hairpin (Fig. 1). As a result of such
sliding, the 3’ end of RNA remains annealed to DNA
template and becomes accessible to DNAP. It remains
unclear whether DNAP recognizes the 3’ end of the
RNA in the context of the priming complex with
RNAP or whether RNAP is displaced from the
complex, similar to situation observed with DnaG
[45], before initiation of new DNA synthesis.
Primers synthesized by bacterial-type primases differ
in length, from 4 nt for bacteriophage primases to
slightly longer than 10 nt for most other primases
[28]. Richardson and co-workers [28, 46] suggested
that the primer length is determined by the size of the
initiation site of the active center, which determines
how many bases can be accommodated within the
enzyme during extension. However, it was shown
that an isolated catalytic domain of bacterial-type
primase is capable of processive synthesis of RNAs
that are much longer than usual-length primers [35],
implying a translocation-like reaction [37]. It was
therefore proposed that the interaction of ZBD with
the catalytic domain and/or primed template is
responsible for cessation of primer synthesis at
defined point. It was further suggested that the
length of a flexible linker between the catalytic
domain and ZBD and the mode of the two domains
interaction (in cis or in trans, i.e. , between domains of
different primase molecules) may be controlling the
primer length [35, 36, 47] . During primer synthesis,

ZBD remains bound to the start site [36] . Therefore,
as in the case of RNAP-catalyzed primer synthesis,
the cessation of primer synthesis is probably caused
by a tension accumulated in the priming complex
when the primer reaches a certain critical length.
This tension is presumably relieved when the elon-
gation complex is disrupted, leading to release of the
primed template. The primed template remains
bound to the ZBD, and is presented to the DNAP
within this complex [23] (Fig. 1).
During eukaryotic replication, only primers that are at
least 7 nt long are utilized by DNAP [48 – 50]. In the
model of elongating complex of eukaryotic primase,
the RNA-DNA hybrid of about 7– 14 bp reaches the
C terminus of large subunit of the enzyme, and the
sterical clash with it may determine the primer length
[31], in a way that is reminiscent of primer length
control by the b’ lid in the case of RNAP-catalyzed
primer synthesis. An alternative model based on the
finding that the C terminus of the large subunit has
strong ssDNA-binding activity [51] envisions the
following scenario (Fig. 1). During primer synthesis,
the large subunit, which possesses high affinity to
ssDNA, remains bound to the DNA template up-
stream of the primase active center, leading to
accumulation of stress in the complex as the primer
length is increased. To release the tension, the RNA-
DNA hybrid, upon reaching a certain threshold
length, slides forward relative to the primase main-
frame, again similar to the situation envisioned for
RNAP-catalyzed priming, thus making the annealed
3’ end of RNA accessible to DNAP. The disengage-
ment of the 3’ end of RNA from the active center of
the primase is supported by the finding that the
primases can further elongate previously synthesized
primers, but to do so, they must dissociate from the
complex first [52]. In a complex formed after disso-
ciation, there is no more tension between the active
center and the DNA-binding domain of the large
subunit and primer synthesis can be continued. The
cycle can be repeated several times, resulting in RNAs
whose lengths equal the integer number of normal
primer length [49, 52]. However, primase dissociation
is not required for primer utilization by DNAP [48],
underscoring a conformational change that occurs at
the end of the primer synthesis cycle and exposes the 3’
end of the primer.

Priming on dsDNA

Neither bacterial nor eukaryotic/archaeal primases
can synthesize primers on dsDNA, and therefore
require the action of helicases. However, in the case of
RNAP, priming on dsDNA is possible. Double-

Cell. Mol. Life Sci. Vol. 65, 2008 Review Article 2285



stranded plasmids with ColE1 replicon rely on RNAP
for replication priming (for review see [13]). In this
case, RNAP synthesizes a 555-nt-long RNA in an
apparently “standard” transcription elongation mode.
During synthesis, the nascent transcript adopts a
secondary structure that makes a part of it, at some
point, interact with the template strand of DNA
upstream of the transcribing RNAP, thus preventing
the reformation of upstream DNA duplex [53]. This
eventually leads to cessation of transcription and
transformation of the transcription elongation com-
plex into the priming complex. The mechanistic
details of this transformation are unknown; however,
the absence of the DNA duplex behind RNAP due to
the interaction of template DNA with upstream RNA
suggests a mechanism similar to the primer complex
formation on M13 ori.
In general, RNAP complexes similar to the priming
complex can occur during transcription of double-
stranded genomes. During RNAP movement along
the DNA, the DNA-linking number immediately
behind RNAP decreases, favoring the melting of
DNA behind RNAP, which in turn should favor the
formation of an overextended hybrid due to the
absence of upstream DNA duplex and subsequent
stalling of the elongation complexes. Such com-
plexes, in principal, could participate in the priming
of replication [54]. Kornberg and colleagues [55, 56]
have shown that in vitro, RNAP can catalyze priming
of replication from bacterial oriC, although this
reaction is less efficient than the one catalyzed by the
primase. Although it is now thought that RNAP does
not participate in primer formation per se in this
system (although this possibility was never dis-
missed), it was shown to participate in the regulation
of replication initiation [55, 56] . It is suggested that it
does so by changing the topology of the DNA at and
around the origin during transcription from adjacent
promoters, possibly through formation of overex-
tended RNA-DNA hybrid that stimulates the origin
unwinding [57]. Although eukaryotic and archaeal
RNAPs are not known to initiate replication, theo-
retically they should be able to do so [58]. Eukary-
otic/archaeal RNAP core enzymes are very similar to
prokaryotic RNAP in sequence, structure, and func-
tion, especially during transcription elongation. Al-
though the structure and sequences of “normal”
promoters of archaea and eukaryotes are very differ-
ent from those used in bacteria, the type of recog-
nition that occurs at the M13 ori is certainly possible
for eukaryotic and archaeal RNAPs, and transcrip-
tion from such templates should lead to the same
structural constrains, leading to formation of pri-
ming-like complexes. Single-stranded origins of rep-
lication were reported for some archaeal plasmids,

although their ability to function as promoters for
cognate RNAPs was not demonstrated yet [59].

Conclusion

While there is no evolutionary relationship between
the three different classes of primases, some func-
tional similarities of the basic mechanisms involved in
de novo template-dependent synthesis of RNA exist.
The principles of formation of a primer-template
structure that can be recognized by DNAPs are also
similar, suggesting that the functional constraints on
primase function led to convergent evolution of
enzymatic activities performing similar function.
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