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Abstract. Parkinson’s disease (PD) is characterized by
the death of dopaminergic neurons and the presence
of Lewy bodies in the substantia nigra pars compacta.
The mechanisms involved in the death of neurons as
well as the role of Lewy bodies in the pathogenesis of
the disease are still unclear. Lewy bodies are made of
aggregated proteins, in which a-synuclein represents
their major component. a-Synuclein interacts with
synphilin-1, a protein that is also present in Lewy
bodies. When expressed in cells, synphilin-1 forms
inclusions together with a-synuclein that resemble
Lewy bodies. Synphilin-1 is ubiquitylated by various

E3 ubiquitin-ligases, such as SIAH, parkin and dorfin.
Ubiquitylation of synphilin-1 by SIAH is essential for
its aggregation into inclusions. We recently identified
a new synphilin-1 isoform, synphilin-1A, that is toxic
to neurons, aggregation-prone and accumulates in
detergent-insoluble fractions of brains from a-synu-
cleinopathy patients. Synphilin-1A inclusions recruit
both a-synuclein and synphilin-1. Aggregation of
synphilin-1 and synphilin-1A seems to be protective
to cells. We now discuss several aspects of the neuro-
biology and pathology of synphilin-1 isoforms, focus-
ing on possible implications for PD.
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Synphilin-1 isoforms: interaction with several
Parkinson’s disease proteins

In the last decade, different gene mutations have been
shown to cause familial Parkinson’s disease (PD) [1].
a-Synuclein was the first gene found to be mutated in
families with PD [2-5]. Although mutations in the a-
synuclein gene represent a rare cause of PD [1], its
robust presence in Lewy bodies [6] and ability to form
fibrils [7] place a-synuclein as a major player in the
pathogenesis of sporadic PD. Despite the central role
of a-synuclein in the disease, the mechanisms by which
a-synuclein promotes neurodegeneration and how its
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aggregation into Lewy bodies takes part in this process
remain unclear.

We and others found that a-synuclein interacts in vivo
with synphilin-1[8—11]. Synphilin-1 is a protein of 919
amino acids, which contains different domains, such as
ankyrin-like repeats, a coiled-coil domain and a
putative ATP,GTP-binding domain [8] (Fig. 1a). Syn-
philin-1 localizes to the presynapse where it binds to
synaptic vesicles [12] and may affect dopamine release
[13].

Various synphilin-1 regions were found to contribute
to the interaction with a-synuclein [9, 12, 14], with
both the N-terminus and the central region involved in
the interaction [12, 14]. The interaction of synphilin-1
with a-synuclein indicates that synphilin-1 may also
play a central role in PD. Supporting this possibility is
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Figure 1. (a) Schematic representation of synphilin-1 and synphilin-1A open reading frames. The ankyrin-like repeats are shown in dark
gray while the coiled-coil domain and ATP,GTP-binding domain are shown in green and black, respectively. Due to differential alternative
splicing, synphilin-1A lacks part of the synphilin-1 N-terminus, including the first and part of the second ankyrin-like domains. In addition,
it contains additional amino acid stretches at the N-terminus (28 amino acids) and C-terminus (51 amino acids), shown in light pink and red,
respectively. (b) Immunofluorescence showing the formation of cytosolic inclusions in untreated HEK293 cells overexpressing synphilin-
1A but not in cells overexpressing synphilin-1 [30]. (c¢) Immunofluorescence showing the formation of cytosolic inclusions in untreated
HEK?293 cells overexpressing synphilin-1 and a-synuclein. Reproduced with permission from Macmillan Publishers Ltd: Chung et al., Nat
Med 7: 1144-50, 2001 [15]. (d) Immunofluorescence showing the formation of cytosolic inclusions in untreated HEK293 cells
overexpressing synphilin-1A and a-synuclein [30]. (¢) Immunofluorescence showing the formation of cytosolic inclusions in HEK293 cells
overexpressing synphilin-1 and SIAH-1 in the presence of the proteasome inhibitor lactacystin [38].

the finding that co-expression of synphilin-1 and a-
synuclein in cells in culture leads to the formation of
Lewy body-like inclusions [8, 11, 15] (Fig. 1c).

Besides interacting with a-synuclein, synphilin-1 in-
teracts with other proteins involved in the patho-
genesis of PD (Fig. 2). Synphilin-1 interacts in vivo
with and is ubiquitylated by parkin [15], an E3
ubiquitin-ligase responsible for the majority of juve-
nile PD cases [16-18]. Ross and co-workers recently
reported that synphilin-1 also interacts with LRRK2
[19, 20], a protein kinase involved in both autosomal
dominant and sporadic PD [21]. The interaction of
synphilin-1 with different proteins involved in PD (o-
synuclein, parkin and LRRK?2) suggests that it may
assemble these proteins into a multi-protein complex.
Synphilin-1 was found to be present in the core of
Lewy bodies from PD brains [22]. The observation
that synphilin-1 is an integral component of Lewy
bodies implies that it may play a role in their
formation. Synphilin-1 was also found in Lewy bodies
of Diffuse Lewy Body Disease and Multiple System

Atrophy [23], suggesting that it may be connected
with the aggregation of a-synuclein in different a-
synucleinopathies. Synphilin-1 mRNA is increased in
the cortex of Diffuse Lewy Body Disease patients
[24], indicating a more widespread role of synphilin-1
in a-synucleinopathies.

The presence of synphilin-1 in Lewy bodies has been
confirmed in different studies using antibodies gen-
erated against different synphilin-1 epitopes [22, 23,
25-27]. The percent of Lewy bodies positive for
synphilin-1 varied from 5 to 96 % depending on the
antibodies used. As pointed out by Bandopadhyay
et al. [27], the high variability in the percent of Lewy
bodies positive for synphilin-1 in the various studies is
probably due to differences in antibody sensitivity and
suitability for immunohostochemistry assays. Never-
theless, the presence of synphilin-1 in a variety of a-
synucleinopathy lesions [23] and its ability to form
Lewy body-like inclusions with a-synuclein in cells [8,
15, 28] suggest that synphilin-1 may nucleate Lewy
body formation.
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Figure 2. Interaction of synphilin-1 isoforms with PD-related proteins, protein kinases and ubiquitin proteasome system-related proteins.
Synphilin-1 interacts with different proteins mutated in familial forms of PD, namely a-synuclein, parkin and LRRK?2 (inred) [8, 15, 19, 20,
27]. Synphilin-1 co-localizes with a-synuclein into Lewy bodies and forms inclusions that resemble Lewy bodies [8, 22]. Parkin, STAH and
dorfin represent E3 ubiquitin-ligases (yellow boxes) that directly polyubiquitylate synphilin-1 [15, 38, 39]. While ubiquitylation by STAH
occurs via K48-linked polyubiquitin chains and leads to synphilin-1 degradation by the proteasome [38, 40], parkin ubiquitylates synphilin-
1 in a nonclassical, proteasomal-independent manner that involves the formation of K63-linked polyubiquitin chains [40]. The type of
synphilin-1 polyubiquitylation promoted by dorfin still needs to be determined [39]. Both STAH and parkin increase the formation of
ubiquitylated synphilin-1 inclusions [15, 38, 40, 47, 69]. Ubiquitylation of synphilin-1 is essential for its aggregation into inclusions since a
synphilin-1 mutant that is unable to be ubiquitylated by SIAH does not form inclusions in the presence of proteasome inhibitors [38]. a-
Synuclein increases synphilin-1 ubiquitylation and inclusion formation, an effect that depends on the levels of a-synuclein phosphorylation
at serine 129 [28]. Synphilin-1A interacts with and recruits synphilin-1 to inclusion bodies [30]. The presence of synphilin-1A in Lewy
bodies and interaction with both synphilin-1 and a-synuclein suggest that synphilin-1A may work as a core for the formation of Lewy bodies
[30]. Synphilin-1 also interacts with various protein kinases (blue boxes). Synphilin-1 interacts with and is phosphorylated by the protein
kinases GSK3f and casein kinase II (CKII) [11,47]. While GSK3p decreases synphilin-1 ubiquitylation and inclusion formation [47], CKII
increases the formation of synphilin-1 inclusion bodies by a mechanism independent of ubiquitylation [11, 47]. The ability of LRRK2 to
phosphorylate synphilin-1 and modulate its ubiquitylation and inclusion body formation is still unknown. Synphilin-1 interacts with the
proteasome subunit/regulators S6 and NUBL1 (green boxes). The interaction of synphilin-1 with the proteasome subunit S6 decreases
proteasome function and promotes the formation of inclusion bodies containing synphilin-1 [48]. The data are compatible with the possible
accumulation of ubiquitylated synphilin-1 leading to inclusion formation. NUB1 seems to accelerate the degradation of synphilin-1 by the
proteasome, leading to decreased synphilin-1 inclusion formation [49]. The interaction of synphilin-1 with several proteins involved in the
disease suggests that it may assemble the PD proteins into a multi-protein complex.

splice variant of synphilin-1. Strikingly, synphilin-1A
has a different start codon that leads to a different

In agreement with the possible role of synphilin-1 in
the formation of Lewy bodies, synphilin-1 was re-

cently shown to co-localize with accumulated a-
synuclein in the brain of homozygous AS3T a-
synuclein mice [29]. A mutation in the synphilin-1
protein (R621C) was identified in two apparently
unrelated German PD patients [10]. This further
suggests that synphilin-1 may play a role in the disease.
Screening different populations for the R621 mutation
will be important to confirm the genetic association of
synphilin-1 with PD.

We have recently identified a new isoform of synphi-
lin-1, synphilin-1A [30]. Synphilin-1A is an unusual

initial reading frame. It lacks the first 394 amino acids
of synphilin-1 and contains an additional 28 amino
acids at the N-terminus as well as 51 additional ones at
the C-terminus [30] (Fig. 1a). These two new amino
acid stretches present in synphilin-1A display no
homology to any other protein in the database.
Synphilin-1A is an aggregation-prone and neurotoxic
protein [30] (Fig. 1b). It interacts with a-synuclein and
synphilin-1, and promotes their recruitment to inclu-
sion bodies [30] (Figs 1d and 2). Moreover, synphilin-
1A accumulates into detergent-insoluble protein
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fractions from brains of a-synucleinopathy patients
but not in controls [30].

The synphilin-1A isoform is also present in Lewy
bodies of PD and Diffuse Lewy Body Disease patients
[30]. Although the exact percent of Lewy bodies
positive for synphilin-1A is still not known, the
findings that synphilin-1A interacts with both o-
synuclein and synphilin-1 and that it is insoluble in
a-synucleinopathies brains suggest that synphilin-1A
may play a role in the formation of Lewy bodies as
well. Moreover, due to its intrinsic neurotoxicity,
changes in the strength of interaction between syn-
philin-1A and a-synuclein may influence not only the
formation of Lewy bodies but also the death of
dopaminergic neurons.

Synphilin-1 isoforms, ubiquitylation and inclusion
formation

Several findings point to a dysfunction of the ubig-
uitin-proteasome system in PD. Proteasomal activity
in the substantia nigra is decreased in sporadic PD
patients [31]. Furthermore, parkin and UCH-LI1
proteins, that belong to the ubiquitin-proteasome
system, were found mutated in some familial forms of
PD [16-18, 32]. Moreover, Lewy bodies can be easily
detected by antibodies against ubiquitin [33], indicat-
ing that they are heavily ubiquitylated. Accordingly,
a-synuclein isolated from Lewy bodies was shown to
be monoubiquitylated [34-36].

Synphilin-1 has been shown to be robustly ubiquity-
lated and degraded by the ubiquitin-proteasome
system [37, 38]. Synphilin-1 interacts with and is
ubiquitylated by various E3 ubiquitin-ligases: parkin,
dorfin, STAH-1 and SIAH-2 [13, 15, 38, 39] (Fig. 2).
While SIAH-1 and SIAH-2 promote the proteasomal
degradation of synphilin-1, parkin does not cause its
degradation [38, 40].

The inability of the proteasome to degrade SIAH-
ubiquitylated synphilin-1 elicits the formation of
synphilin-1 inclusions [38]. These inclusions are
ubiquitin positive and recruit a-synuclein. Ubiquity-
lation of synphilin-1 is essential for its inclusion
formation, since a synphilin-1 mutant that is unable
to be ubiquitylated by SIAH does not undergo
aggregation into inclusion bodies [38]. These data,
together with the finding that a-synuclein isolated
from Lewy bodies is monoubiquitylated, suggest that
ubiquitylation might represent a primary event for
inclusion formation in PD.

Further supporting the role of ubiquitylation in the
formation of Lewy bodies is the finding that most
Lewy bodies (79-96%) in Diffuse Lewy Body
Disease are positive for ubiquitin [41]. On the other
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hand, the lack of ubiquitin staining in some Lewy
bodies [41, 42] indicates that ubiquitylation is not the
major determinant for protein aggregation. However,
it is still possible that small amounts of ubiquitylated
proteins, below the sensitivity threshold of anti-
ubiquitin antibody, could suffice to trigger Lewy
body formation.

The findings that STAH monoubiquitylates a-synu-
clein and is present in Lewy bodies [38] raise the
possibility that SIAH is a novel component of the
ubiquitin-proteasome system involved in PD and that
its dysregulation may play a role in the pathology.
Although no SIAH-1 mutation was identified in
screenings of 209 familial and sporadic PD patients
[43], additional STAH-1 and possibly SIAH-2 screen-
ings will be important to ascertain the genetic
association of SIAH with PD.

Degradation of ubiquitylated proteins by the protea-
some occurs when polyubiquitin chains are linked via
lysine 48 (K48) [44]. Some proteins are ubiquitylated
with polyubiquitin chains linked via lysine 63 (K63),
which are not targeted for degradation but, rather,
regulate intracellular signaling [45]. In contrast to the
ubiquitylation of synphilin-1 promoted by SIAH,
which occurs via K48-linked polyubiquitylation [38,
40], parkin ubiquitylates synphilin-1 via K63-linked
polyubiquitin chains [40] (Fig.2). Dawson and co-
workers have shown that synphilin-1/a-synuclein in-
clusions promoted by parkin contain predominantly
polyubiquitin chains linked via K63 [40]. In addition,
the formation of K63-linked polyubiquitin augments
the number of synphilin-1/0-synuclein inclusions,
suggesting that K63-linked ubiquitylation of synphi-
lin-1 by parkin may also be involved in the formation
of Lewy bodies. The fact that synphilin-1 is modified
by two forms of polyubiquitylation, K48-linked and
K63-linked chains, indicates that ubiquitylation may
modulate distinct aspects of synphilin-1 function and
aggregation. Further understanding of synphilin-1
physiological function will help determine the role of
K63-linked polyubiquitylation. It is conceivable that
K63-linked polyubiquitylation may represent an ini-
tial event that leads to the aggregation of synphilin-1
in the absence of proteasome impairment.

In addition to being ubiquitylated, synphilin-1 seems
to interfere with proteasomal function. Overexpres-
sion of synphilin-1 in cells in culture decreases the
degradation of a reporter protein (GFPu) that is
highly degraded by the proteasome, indicating an
inhibition of proteasomal function [46, 47]. More
recently, Kriiger and co-workers demonstrated that
synphilin-1 interacts with the regulatory proteasomal
protein S6 ATPase (Fig.2), providing a molecular
target for synphilin-1 effects on the proteasome [48].
Co-expression of synphilin-1 and S6 protein inhibits
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the proteasomal activity and increases the number of
aggresome-like inclusions containing synphilin-1 [48].
The interaction of synphilin-1 and S6 protein is the
first evidence that synphilin-1 may directly interfere
with the proteasomal function.

Synphilin-1 was recently shown to interact with NUB1
protein [49] (Fig. 2). NUB1 increases the proteasomal
degradation of the ubiquitin-like protein NEDDS§
[50]. NUBI1 also decreases synphilin-1 steady-state
levels, indicating that it may help target synphilin-1 to
the proteasome [49]. The exact mechanism by which
NUBI accelerates the degradation of synphilin-1 and
the E3 ubiquitin-ligases involved in this process have
not been investigated.

Similar to synphilin-1, proteasomal inhibitors increase
the number of synphilin-1A inclusion bodies in
primary neuronal cultures, suggesting that synphilin-
1A may be ubiquitylated in vivo [30]. These ubiquity-
lated synphilin-1A inclusions contain a-synuclein,
implying that synphilin-1A may also recruit o-synu-
clein to Lewy bodies. Future studies will be important
to establish both the identity of the E3 ubiquitin-
ligase(s) that endogenously ubiquitylate synphilin-1A
and the cellular implications caused by synphilin-1A
ubiquitylation.

Although the extent of a-synuclein degradation by the
ubiquitin-proteasome system is still controversial [S1—
54], ubiquitylation may also directly influence a-
synuclein aggregation, as a-synuclein is monoubiqui-
tylated in Lewy bodies. We have previously shown that
SIAH monoubiquitylates a-synuclein [38]. Monoubi-
quitylation of a-synuclein by SIAH increases its
aggregation and inclusion formation [our unpublished
observation], indicating a role for ubiquitylation per
se in Lewy body formation. Parkin, UCH-L1 and
PINK1 also form intracellular inclusions when ubig-
uitylated [55-57]. Thus, ubiquitylation of different
proteins involved in PD may also contribute to the
formation of Lewy bodies.

Proteasomal dysfunction and accumulation of ubig-
uitylated proteins also occur in other neurodegener-
ative diseases [58, 59]. In Huntington’s disease (HD),
mutant huntingtin forms inclusions when ubiquitylat-
ed [60]. Likewise, tau accumulates into aggregates
caused by proteasome inhibitors in cellular models of
Alzheimer’s disease (AD) [61]. Moreover, similar to
Lewy bodies, both HD intranuclear inclusions and
AD tangles are heavily ubiquitylated [62, 63]. Togeth-
er, these data suggest that ubiquitylation may be
involved in the formation of protein aggregates in
several neurodegenerative diseases.

Synphilin-1 in Parkinson’s disease

Modulation of synphilin-1 ubiquitylation

Phosphorylation is a post-translational modification
known to modulate the ubiquitylation of a variety of
proteins [44]. a-Synuclein purified from Lewy bodies
is both phosphorylated and monoubiquitylated [35,
36], suggesting a connection between these two events
in PD. In support, most proteins linked to familial PD
belong to the ubiquitin-proteasome system or work as
protein kinases [1].

a-Synuclein is phosphorylated in vivo at serine 129
[64]. This phosphorylated form of a-synuclein dis-
plays an increased ability to form fibrils in vitro and is
enriched in a-synucleinopathy lesions [65]. Ross and
co-workers established that a phosphorylation-defi-
cient o-synuclein mutant (S129A) decreases the
ubiquitylation of synphilin-1 and the formation of
intracellular inclusions [28], suggesting that phosphor-
ylation of a-synuclein at serine 129 modulates syn-
philin-1 ubiquitylation and aggregation by a still
unclear mechanism.

Several kinases phosphorylate synphilin-1 in vivo and
alter its aggregatory activity. Mouradian and co-
workers found that casein kinase II phosphorylates
synphilin-1 in vivo [11]. Phosphorylation of synphilin-
1 by casein kinase II decreases its interaction with o-
synuclein and inclusion formation [11], but does not
change synphilin-1 ubiquitylation [47] (Fig. 2). These
results imply that the formation of synphilin-1 inclu-
sions may depend on other factors in addition to
ubiquitylation, such as phosphorylation and strength
of interaction with a-synuclein.

There are several reports showing that protein kin-
ases, such as GSK3f and Cdk5, modulate the death of
dopaminergic neurons in pharmacological models of
PD [66, 67]. We have recently demonstrated that
endogenous synphilin-1 is phosphorylated by GSK3[3
[47] and that this phosphorylation decreases synphi-
lin-1 ubiquitylation and inclusion formation [47]
(Fig. 2). When the phosphorylation of synphilin-1 by
GSK3p at serine 556 was prevented by the use of
siRNA to GSK3p, a significant increase in synphilin-1
inclusion formation was observed [47]. These results
further strengthen the notion that ubiquitylation of
synphilin-1 is important for its aggregation into
inclusions in a phosphorylation-dependent manner.
Parkin decreases synphilin-1 and a-synuclein toxic-
ities and promotes the formation of inclusions con-
taining both proteins [28, 68], supporting the idea that
synphilin-1 inclusions are not toxic to cells. The ability
of parkin to increase the formation of synphilin-1/a-
synuclein inclusions has been ascribed to its ability to
ubiquitylate synphilin-1, since parkin ubiquitylates
synphilin-1 but not a-synuclein [15, 28].
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We recently found that parkin is phosphorylated in
vivo by CdkS5 at serine 131, located in its linker region
[69]. Phosphorylation of parkin by CdkS decreases its
autoubiquitylation and ability to ubiquitylate synphi-
lin-1 [69]. Thus, a phosphorylation-deficient parkin
mutant (S131A) was more efficient in ubiquitylating
synphilin-1 and promoted higher inclusion body
formation [69]. These data confirm the role of parkin
in the formation of synphilin-1 inclusions.

Taken together, these findings imply that different
protein kinases modulate directly and indirectly the
levels of synphilin-1 ubiquitylation and may contrib-
ute to Lewy body formation.

Cellular effects of synphilin-containing inclusions

Concentrated efforts have been spent to determine
the role of Lewy bodies in the viability of neurons.
Since a pharmacological or transgenic mouse model
that recapitulates all the pathological events of PD is
still not available, it has not been possible to ascertain
definitively the role of Lewy bodies. Different cellular
models of PD suggest a protective role for intra-
cellular inclusion bodies against cell death [38, 70, 71].
The possibility that PD inclusions are neuroprotective
is in accordance with cell models of other neuro-
degenerative diseases, such as HD, where inclusion
bodies were not correlated with toxicity promoted by
mutated soluble huntingtin [72].

In PD, the toxicity of a-synuclein has been attributed
to its soluble rather than fibrillar forms [73, 74]. For
example, a-synuclein protofibrils were shown to cause
membrane permeabilization [75]. In addition, dopa-
mine prevents the conversion of protofibrils to fibrils,
implying that the death of dopaminergic neurons in
the disease may be triggered by accumulation of
intracellular a-synuclein protofibrils [76].
Synphilin-1 strongly increases a-synuclein toxicity in
cultured cells [68, 77]. Interestingly, cells that exhibit
synphilin-1/a-synuclein inclusion bodies are relatively
spared, implying that the inclusions are cytoprotective
[70]. Likewise, the neurotoxicity of synphilin-1A is
alleviated by its aggregation into inclusions, indicating
an inverse correlation between inclusion formation
and cell toxicity in PD [30]. Conceivably, inclusions
may prevent a-synuclein and synphilin-1 isoform
toxicity by sequestering them in an insoluble structure.
Electron microscopy analysis revealed that synphilin-
1/a-synuclein inclusions contain fibrils as well as
amorphous and granular aggregates, resembling
Lewy bodies [28]. The amount of fibrils present in
the synphilin-1/a-synuclein inclusions is less than that
observed in Lewy bodies in vivo [28], suggesting that
a-synuclein fibrils may take longer to accumulate.
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A synphilin-1/o-synuclein cell model may be useful to
screen for therapeutic compounds for PD that affect
inclusion formation [78]. Recently, Kazantsev and co-
workers demonstrated that the drugs B2 (5-[4-(4-
chlorobenzoyl)-1-piperazinyl]-8-nitroquinoline) and
a sirtuin 2 inhibitor decrease a-synuclein-mediated
toxicity while increasing the number of synphilin-1/a-
synuclein inclusions [79, 80].

The investigation as to how additional PD-related
proteins affect synphilin-1 isoform toxicity and inclu-
sions will be key to understanding the pathological
role of synphilin-1 proteins. Understanding how
different cellular stresses, such as oxidative and
endoplasmic reticulum stress, influence the formation
of synphilin-1 isoforms inclusions will be valuable for
understanding the formation of Lewy bodies as well.
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