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Abstract. All organisms respond to changes in their
environment by activating complex signaling cas-
cades. The “hypoxia-signaling cascade” is activated
in response to low oxygen availability and this
activation is central to maintaining oxygen homeo-
stasis and hence to survival. By regulating the tran-

scriptional complex hypoxia-inducible factor, hypoxia
is associated with several physiopathological process-
es. Several strategies, based on the targeting of the
hypoxia-signaling cascade, have been developed to
treat these pathologies. Our review summarize differ-
ent aspects of the hypoxic pathway.
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Introduction

In 1774, the scientist Joseph Priestley realized that “a
mouse kept in a jar cannot survive in the absence of air
renewal”. Without knowing it, he had just discovered
the oxygen molecule (O2) and highlighted its absolute
requirement for survival. All organisms rapidly re-
spond to changes in oxygen availability. This response,
triggered by many oxygen-sensing systems located at
different levels in the organism, activates complex
signaling networks, which culminate in the control of
gene expression.
The signaling pathways activated by low oxygen
availability, or hypoxia, allow cell adaptation and
survival in the hypoxic environment. Among them,
activation of the transcriptional complex hypoxia-
inducible factor (HIF) contributes significantly to this
adaptative response and constitutes a major regulator
of oxygen homeostasis [1]. Since its discovery, the HIF

cascade has been extensively studied and its role
appears clearly evident in both physiological and
pathological processes such as embryogenesis, tissue
repair, ischemia and cancer.
This review summarizes our current knowledge of the
HIF signaling cascade, its implication in physiopa-
thology and the different therapeutic strategies de-
veloped so far to target this pathway.

The hypoxia inducible factor

HIF is a transcriptional factor composed of the
constitutively expressed HIF1b subunit and one of
the three HIFa subunits (HIF1a, HIF2a, HIF3a)
[2–4]. Among them, HIF1a is the most extensively
studied isoform. O2-dependent HIFa regulation is
essentially post-transcriptional and involves both
regulation of its stability and its activity by a mech-
anism that is inherently O2 dependent: the hydrox-
ylation of proline (Pro) or asparagine (Asn) residues
[5–7]. Indeed, hydroxylation of the Asn803 (in the
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human HIF1a), within the C-terminal transactivation
domain (C-TAD) by factor inhibiting HIF (FIH),
inhibits the binding of the p300/CBP co-activators,
and hence the transcriptional activity of the protein [7,
8]. Moreover, an oxygen-dependent degradation
domain (ODDD) is involved in the O2-dependent
regulation of HIFa proteasomal degradation, which
constitutes the limiting step in HIFa regulation, and
consequently HIF activation [9, 10].
In well-oxygenated cells, HIFa is an exceptionally
short-lived protein (half-life<5 min) and steady-state
levels are very low [9]. In contrast, reduced O2

availability accumulates HIFa by relaxing its ubiqui-
tin-proteasome degradation. More precisely, ubiqui-
tination and proteasomal degradation of HIFa re-
quire pVHL, the product of the von Hippel-Lindau
tumor suppressor gene, which functions as an ubiq-
uitin E3 ligase [11, 12]. The hydroxylation of two
conserved proline residues (Pro402 and Pro564, in the
human HIF1a sequence), contained within the
ODDD, triggers pVHL binding and thus HIF1a

proteasome targeting [5, 6]. Stabilization of HIFa is
due to disruption of the pVHL/HIFa interaction
under hypoxic conditions (Fig. 1). Two independent
groups identified the enzymes catalyzing the hydrox-
ylation reaction: the HIF prolyl hydroxylases or prolyl
hydroxylase domain-containing proteins (PHDs) [13,
14]. These enzymes belong to the superfamily of the
Fe(II) and 2-oxoglutarate-dependent dioxygenases.
They need the O2 as a co-substrate, providing the
molecular basis for their O2-sensing function (in vitro
Km values for O2= 230–250 mM) [15]. In addition,
PHDs use Fe(II) and ascorbate as co-factors [16].
Fe(II) is critical for activating O2 and as a template for
the orderly binding of reactants. The ascorbate is
necessary for maximal prolyl hydroxylase activity
because it reduces the Fe(III) into Fe(II), and thus
reactivates the enzymes.
Epstein et al. [14] identified three human and mouse
phd genes (phd1, phd2, and phd3). The three isoforms
are ubiquitously expressed, albeit at different levels
[17, 18]. Fused to a green fluorescent protein (GFP),

Figure 1. O2-dependent regulation of hypoxia-inducible factor (HIF)a stability: Low oxygen availability stops the otherwise permanent
HIFa degradation pathway, which implicates the proteasome and the product of the tumor suppressor gene von Hippel-Lindau (pVHL).
The degradation pathway is triggered by hydroxylation of two proline residues within the oxygen-dependent degradation domain
(ODDD) of the HIFa subunit by the prolyl hydroxylase domain-containing proteins (PHDs). These enzymes, acting as O2 sensors, play a
major role in the regulation of O2 homeostasis and thus survival. Immunofluorescence inserts show the expression of HIF1a in well-
oxygenated cells (normoxia) or upon low O2 availability (hypoxia).
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PHD1 appears exclusively located in the nucleus,
PHD2 mainly in the cytoplasm, and PHD3 in both
compartments [19]. The contribution of each PHD to
HIFa regulation depends on their relative abundance
[20]. Nevertheless, we have shown that PHD2 is the
rate-limiting enzyme that sets the low steady-state
levels of HIF1a in normoxia, whereas PHD1 and
PHD3 contribute to HIF1a regulation only upon a
chronic hypoxia [21]. Furthermore, the expression
and the activity of PHDs are tightly regulated at both
transcriptional and post-transcriptional level [16, 22].
Initially identified as the regulator of the epo gene
expression, HIF was further shown to control many
hypoxia-target genes [22]. Indeed, by promoting the
transcription of all these genes, HIF helps to maintain
O2 homeostasis. Among them, the vascular endothe-
lial growth factor (VEGF) is essential for angiogen-
esis, inducible nitric oxide synthase (iNOS) and Heme
Oxygenase 1 (HO1) favor vasodilatation, tyrosine
hydroxylase (TH) regulates respiratory frequency, the
glucose transporter GLUT-1 is involved in the anae-
robic glycolysis and EPO is essential for erythropoi-
esis.
The activation of the HIF complex can be of major
importance in certain physiological and pathological
situations.

Physiology of the HIF cascade

Embryonic development
Hypoxia constitutes an important feature of the
embryonic development by promoting the establish-
ment and the differentiation of the vascular and
hematopoietic systems. Indeed, as early as 1 week
after fertilization, the nutrients and O2 supplied by
passive diffusion are not sufficient for the growing
embryo and hypoxic gradients are subsequently
established. This process, by promoting the expression
of HIF-dependent genes such as epo and vegf, is
absolutely required since mice deficient in these genes
die during the embryo development as a consequence
of severe hematopoietic and vascular defects [23–25].
Indeed, the phenotypic features of the knockout mice
for hif1a, hif2a, hif1b, and phds agree with the central
role of the HIF signaling pathway in the establishment
of key physiological systems during the embryonic
development.

HIF1a. In normal embryos, HIF1a expression in-
creases between embryonic day (E) 8.5 and E9.5.
HIF1a knockout mice stop their development at E8.5
and die at E10.5 because of vascular deficiencies and
cardiac and neuronal abnormalities [26–28]. The
vascular reduction in hif1a–/– embryos is associated

with a decrease in VEGF production. However, these
vascular abnormalities occur at E9.25, whereas in
vegf–/+ embryos similar defects appear earlier, at E8.5
[23, 24]. It seems that hif1a–/– mice produce enough
VEGF to initiate the vasculogenesis and to form the
vascular plexus but the following formation and
maturation of the vasculature established from this
plexus (angiogenesis) cannot occur in the absence of
HIF1a expression.

HIF2a. hif2a–/– mice also present a high embryonic
lethality between E9.5 and E16.5 [29–32]. HIF2a

seems to be required for the remodeling of the
vascular network in the embryo and the heart function
due to the catecholamines produced by the Zucker-
land organ [30, 32]. Two independent laboratories
successfully obtained live hif2a–/– embryos [29, 31].
However, the respiratory, cardiac and hematopoietic
functions of these mice were strongly affected. In
addition, the replacement of HIF1a by HIF2a ex-
pression in knockout mice cannot rescue embryo
survival [33]. Thus, in spite of the high sequence
similarities, HIF1a and HIF2a have distinct and non-
redundant functions that are essential, at least, for the
embryo development.

HIF1b. The invalidation of HIF1b in mice also
promotes a delayed embryo development together
with vascular and placenta formation abnormalities
leading to death at E10.5 [34, 35].

PHDs. The invalidation of the PHDs isoforms in mice
highlighted specific functions for each PHD in the
embryonic development [36, 37]. Indeed, phd2 knock-
out promotes severe defects in the placenta and heart
formation, leading to embryonic lethality between
E12.5 and E14.5, whereas phd1–/– and phd3–/– mice are
viable and apparently normal. Hence, PHD1 and
PHD3 expression cannot rescue the phd2–/– pheno-
type. Accordingly to our previous report showing the
key and unique role of PHD2 in the HIF1a stability
regulation in cellulo, these results highlight the critical
role of PHD2 during embryonic development.

Postnatal life
Hypoxia, by activating the HIF transcription factor,
controls the expression of several genes involved in
the regulation of essential cellular processes during
postnatal life.

Growth. The development of Drosophila flies in
hypoxic conditions is normal but the size of the adults
is smaller, due to a reduced cell growth [37]. In
Drosophila, the Cdk4/CycD signaling pathway regu-
lates cell growth. In Cdk4/CycD mutants whose
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growth is impaired, the ectopic expression of the
dmPHD (named Fatiga) is sufficient to rescue the
normal phenotype [38, 39]. Cdk4/CycD induces the
ribosomal protein mRpL12 that is required for cell
growth stimulation and, in the case of mRpL12
mutants, in spite of normal Fatiga protein level, Fatiga
activity is blocked promoting HIF activity [40]. The
role of Fatiga involves the dmHIF1a (named Sima)
since its mutants are able to rescue the phenotype
observed in those of Fatiga [41].

Proliferation. The activation of the angiogenic process
and the anaerobic glycolysis via HIF stimulate cellular
proliferation. However, Carmeliet et al. [26] reported
that proliferation of tumors derived from ES HIF1a–/–

cells is more important that those from ES HIF1a+/+

cells. This discrepancy could be due in part to an
increased p21 expression that promotes cell cycle
arrest in hypoxia [42].

Differentiation. Hypoxia, in general, helps to main-
tain cells in an undifferentiated state. Indeed, hypoxia
inhibits the differentiation of preadipocyte fibroblasts
into adipocytes and myoblasts into myocytes [43, 44].
Nevertheless, some studies have shown that it can
promote the differentiation of certain cell types [45,
46].
Recently, a link has been established between the HIF
signaling and the Notch signaling, implicated in the
differentiation of many stem cells; this link could
explain, at least partially, the mechanism of dediffer-
entiation under hypoxia [47]. Indeed, under hypoxia,
HIF1a interacts with the intracellular domain (ICD)
of Notch and so promotes the recruitment of HIF on
the Notch-induced genes promoters and their expres-
sion. Furthermore, the Notch ligand DII4 is up-
regulated under hypoxia [48]. In endothelial progen-
itor cells, the hypoxic inductions of the arterial factors
DII4 and hey2 repress the expression of the venous
regulator COUP-TFII and block the differentiation in
veins of these cells. In addition, as a negative feedback
loop, the factors hey1 and hey2 are able to repress
HIF1a transcriptional activity.
HIF-target genes can also regulate the functions of
stem cells under hypoxia in a direct way. Indeed, during
the embryonic development, the hypoxic induction of
HIF2a controls the expression of the Oct-4 transcrip-
tion factor, which is essential to maintain the hema-
topoietic stem cells in an undifferentiated state and to
regulate the embryonic stem cell differentiation [33].
Oct-4 is also expressed in several cancer cell lines and is
induced under hypoxia in a renal carcinoma cell line
strongly expressing HIF2a [49].
In addition, two recent studies have also revealed
some cross talk between HIF and the transforming

growth factor b (TGF-b) and Wnt-dependent signal-
ing pathways [50, 51].

Migration. The ability of the leukocytes to migrate is
enhanced by the HIF-dependent induction of CD11b/
CD18, a member of the integrins superfamily [52, 53].
Hypoxia also favors the migration of dermal fibro-
blasts and keratinocytes [54, 55].

Death. The mechanisms regulating cell death under
limited oxygenation conditions are complex. Indeed,
not only the O2 level, but also the degree of activation
of certain oncogenes and nutrient deprivation deter-
minate the future behavior of the cells [56].
In general, drastic oxygen conditions (0.1% O2 or
anoxia) triggers cell death through the activation of
pro-apoptotic proteins, like Bax, cytochrome c re-
lease, and caspases activation [57]. More precisely,
this cell death is mediated by HIF. Indeed, HIF1
promotes the expression of the pro-apoptotic protein
BNIP3, a member of the Bcl-2 family (Bcl2/adenovi-
rus E1B 19Kda interacting protein 3), as well as the
expression of NIX, homologous to BNIP3 [58]. The
absence of HIF1 prevents cells from up-regulating
BNIP3 and reduces the apoptotic process induced by
anoxia [59]. Anoxia also activates the JNK pathway
(c-Jun NH2-terminal kinase), which can promote the
apoptotic process [60].
Contrary to anoxia, moderate hypoxia (�1 % O2) does
not affect cell proliferation and cell survival [61]. This
cell survival is ensured by the PI3K/Akt activation,
which inhibits the pro-apoptotic protein, Bad and
favors NF-kB activity [62, 63]. In a same way,
Degenhardt et al. [56] have recently shown that cells
are able to survive by inducing the autophagic process.
Hypoxia can also favor apoptotic resistance. In renal
epithelial cells, Dong Z et al. [64] reported a better
resistance of cells under hypoxia to a pro-apoptotic
treatment such as staurosporine. In these cells, the
hypoxic induction of the apoptotic inhibitory protein
IAP-2 prevents Bax mitochondrial translocation.
All these cellular functions regulated by the hypoxic
signaling pathway are integrated in several biological
processes such as inflammation or wound healing.

Inflammation. Low O2 and glucose levels often
characterize the environment of inflammatory sites
such as the cutaneous infection, arthritis, or the
necrotic regions of solid tumors [65–68]. At these
sites, the myeloid cells have to evolve in spite of
reduced oxygenation.
Hypoxia profoundly affects many properties of the
myeloid cells: phagocytosis capacity, migration, adhe-
sion, cytokines secretion, etc. More precisely, func-
tional inactivation of the HIF1-dependent signaling
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pathway has been shown to inhibit cell aggregation,
motility, invasion and the capacity of cells to finally
destroy the pathogen bacteria after their phagocytosis
[69].
In addition, hypoxia promotes the secretion of in-
flammatory chemokines that attract neutrophils and
monocytes. Furthermore, the macrophages-secreted
cytokines interleukin 1 (IL-1) or tumor necrosis
factor-a (TNF-a) favor the expression and DNA
binding of HIF1a via the MAPK and PI3K pathways
[70]. They also promote the production of reactive
oxygen species, and thus contribute to HIF1a protein
stabilization [71].
Finally, hypoxia, by inhibiting PHDs, increases also
the IKKb activity that is involved in the inflammatory
process by activating the NF-kB pathway [72].

Wound healing. Hypoxic regions are also present
around the wound healing sites. The O2 reduction in
the wounded tissue is due in part to the modification of
the vascular network but also, in a large part, to the O2

consumption of the cells that strongly proliferate and
are metabolically over-activated. These low-oxygen-
ated areas contribute to the stimulation of the
angiogenic process and tissue repair by the induction
of several genes, such as tgfb1, pro-collagen a1, vegf,
and pdgf (platelet-derived growth factor) [73]. Hypo-
xia around the wound promotes also the motility of
the skin cells such as keratinocytes and favors wound
closure by activating re-epithelialization [55]. Re-
cently, Li et al. [74] have shown that hypoxia, by
inducing HSP90a secretion in the extracellular envi-
ronment, promotes dermal fibroblasts migration.
More precisely, HSP90a, whose secretion is induced
by HIF1 appears sufficient to increase fibroblasts
motility.

Pathology of the HIF cascade
HIF activity is involved in several pathologies. In the
case of ischemia or amyotrophic lateral sclerosis
(ALS), the insufficient activation of HIF, in spite of
reduced oxygenation, promotes the progression of the
disease, whereas in Alzheimer�s disease (AD), cancer
or pre-eclampsia, the sustained and strong activation
of the pathway forms part of the basis of these
pathologies.

Neurological diseases
Mounting evidence shows a crucial role for hypoxia in
neurological disorders such as ALS, Parkinson dis-
ease, AD or schizophrenia [75]. However, the impli-
cation of the HIF transcription factor has only been
shown for the ALS and AD.

ALS. This is a late-onset progressive neurodegener-
ative disease affecting the motor neurons of the brain
and the spinal cord [76]. Denervation of the respira-
tory muscles and diaphragm is generally the fatal
event. The lifetime risk is at about 1 in 1000. Even now,
10 years after the approval of Riluzole, there is no
effective therapy, although a few drugs are presently in
Phase I, II and III clinical trials.
In mice, ALS can be mimicked by the deletion of the
vegf HRE sequence [77]. Indeed, this disorder seems
to be caused by a reduced blood perfusion of the
neurons. Moreover, in ALS-affected rats, the direct
administration of VEGF in the brain extends the
motor neurons survival, protects the neuro-muscular
junctions and finally favors the lifespan of these
animals. These data highlighted the role of the HIF-
dependent VEGF induction on motor neurons sur-
vival. Furthermore, Subramanian et al. [78] have
recently identified a mutation in the gene coding for
angiogenin (another hypoxia-induced protein in-
volved in angiogenesis) in patients showing sporadic
and familial ALS.

AD. An important feature of the AD is the formation
of extracellular senile plaques in the brain, the major
components of which are small peptides called b-
amyloid (Ab) derived from b-amyloid precursor
protein (APP) [79, 80]. APP is sequentially cleaved
first by the b-secretase (b-site amyloid precursor
protein cleaving enzyme, BACE) and then by the g-
secretase complex to generate Ab. The molecular
mechanism of this sporadic disease is still unknown.
However, a reduced cerebral perfusion is a classical
feature and one of the major contributors for the AD
pathogenesis development. Ischemia or stroke gives
rise to hypoxic conditions, which greatly increase the
incidence of AD. Indeed, activation of the HIF1
signaling pathway could favor AD development at
different levels: (i) APP, the expression of which is up-
regulated in the post-ischemic brain [81]; (ii) the
isoform 1 of the BACE b-secretase (BACE 1), which
contains a functional HRE sequence [82]; (iii) the
aph-1a promoter gene, which is a key component of
the g-secretase complex, and also contains an HRE
site [83]. Thus, the hypoxic inductions of APP, BACE 1
and aph-1 would promote the production and the
deposition of Ab and consequently affect the learning
and memory capacities, as observed in AD patients.

Pre-eclampsia
Pre-eclampsia is a human pregnancy-specific disorder
affecting 2–10 % of pregnancies. It is a leading cause of
prenatal morbidity and mortality for the fetus and the
mother, and the only intervention that effectively
reverses the syndrome is giving birth. During the early
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stages of pregnancy, the cytotrophoblasts play a major
role in the placentation process: the differentiation of
the proliferative cytotrophoblasts into invasive cyto-
trophoblasts is absolutely required for this process
[84]. In the case of pre-eclampsia, it does not occur
and the cytotrophoblasts are blocked in their prolif-
erative state. Consequently, the utero-placental circu-
lation is impaired and promotes a placental ischemia.
This defect in adequate vascular network formation
can be rescued by the use of HIF1a antisense [85].
Thus, sustained activation of HIF, by inhibiting
cytotrophoblasts differentiation, promotes the devel-
opment of the disease.

Ischemia
Several diseases, such as cerebral, cardiac or vascular
ischemia, occur when cells do not adapt correctly to a
reduced oxygenation [1]. Atherosclerosis leads to a
decrease in oxygen tissue perfusion and thus to the
formation of a hypoxic area. Although HIF is acti-
vated in these hypoxic regions, its activation is not
sufficient to restore oxygen homeostasis. In coronary
arteries, atherosclerosis lesions cause a cardiac ische-
mia due to the decreased delivery of oxygen and
nutrients to the heart and can lead to a myocardium
infarction.

Cancer
Tumor progression is characterized by an anarchic
proliferation of the cancer cells. This proliferation is so
major that the tumor is rapidly deprived of oxygen and
nutrients, leading to the appearance of hypoxic
regions. This process occurs in most solid tumors. At
the cellular level, intra-tumoral hypoxia is associated
to several phenomena that ensure survival and growth
of the cancer cells. Tumor hypoxia promotes a radio-
and chemo-resistant environment [86, 87]. Hypoxia
stimulates the angiogenic process to increase tumor
perfusion, switches tumor cells metabolism, and keeps
their proliferative rate constant by increasing the
transport of glucose and the glycolytic pathway to
maintain a suitable ATP production [22]. Further-
more, hypoxia deregulates the pro- and anti-apoptotic
balance to favor cell survival and also increases the
invasive properties of cancer cells by up-regulating
different genes. In all these processes induced by
hypoxia, the HIF transcription factor plays a decisive
role.

HIFa expression in tumors
HIF1a is overexpressed in many different types of
human cancers [88]. Its expression is associated to an
aggressive phenotype and is a marker for a poor
prognosis for many types of tumors, such as prostate
tumor, oropharyngeal, esophageal or head and neck

tumors, lung cancer, ovarian cancer and breast cancer
[89, 90].
HIF2a is more frequently overexpressed in hepatic
primary or metastatic cancer and in the macrophages
associated to the tumor (tumor-associated macro-
phages, TAMs) whose invading rate is correlated to
the tumor progression and to a poor prognosis [91, 92].
The topography of HIFa subunit expression in tumors
is usually focal and mainly restricted around hypoxic/
necrotic areas, even if there is not always a strict co-
localization of HIFa and the hypoxic regions (Figs. 2,
3). Nevertheless, in certain tumors, such as in clear cell
renal carcinoma (RCCs), mutation in gene coding for
the pVHL protein leads to a constitutive stabilization
of HIF1a and/or HIF2a [12]. In paragangliomas with
a mutation in the gene for the succinate dehydrogen-
ase kinase, HIF1a levels are also up-regulated due to
the PHD inhibition [93]. More recently, in endome-
trial tumor, mutation in the phd2 gene has also been
reported and shown to over-activate HIF1 [94].

HIFa contribution to tumor progression
As previously mentioned, hypoxia-induced HIF acti-
vation controls the expression of several genes
involved in many aspects of cancer progression.

Tumor angiogenesis. The angiogenic switch that
represents one of the major events in tumor progres-
sion is triggered by hypoxia and HIF by inducing the
expression of VEGF and its receptors (Flt1, Tie2).
These results agree with findings of in vivo experi-
ments by Carmeliet et al. [26]: HIF1a–/– ES-derived
tumors are smaller and poorly vascularized compared
to those from HIF1a+/+ ES cells. In contrast, Ryan et
al. [28] showed that HIF1a inactivation affects tumor
growth but has no impact on vascular density.
Furthermore, it seems that the role of HIF is strongly
dependent on the tumor environment [95]. HIF1a–/–

astrocytes injected subcutaneously induce some poor-
ly perfused and very necrotic tumors, whereas the
same astrocytes injected into the brain give rise to
highly vascularized tumors.

Tumor invasion. Several genes that induce extracel-
lular matrix remodeling and basal membrane diges-
tion are regulated by hypoxia and HIF, such as
vimentin, fibronectin, keratin 14, 18, 19, matrix metal-
loproteinase 2, cathepsin D, and urokinase plasmino-
gen activator receptor. In parallel, HIF1a stabilization
triggers the lose of E-cadherin expression and pro-
motes epithelial-mesenchymal transition [96]. In-
deed, HIF1 induces the expression of the lysyl oxidase,
which regulates the SNAIL transcription factor whose
activation represses the E-cadherin expression
[97–99]. Moreover, several genes favoring cancer
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cells migration, and metastatic properties are also
regulated by the activation of the HIF complex: the
proto-oncogene c-MET, the receptor CXCR4 and its
unique chemokine ligand stromal cell-derived factor1
(SDF1 also called CXCL12).

Metabolic adaptation. HIF stimulates the expression
of the glucose transporters and the glycolytic en-
zymes to assure the ATP delivery inside the tumor.
Because the anaerobic glycolysis leads to an acid-
ification of the tumoral microenvironment, tumor
cells also induce, via HIF, the expression of ex-
changers such as the Na+/H+ exchanger (NHE1) or
transporters such as the monocarboxylate transport-

er (MCT4) to maintain the pH homeostasis [100,
101]. In addition, tumor cells up-regulate the ex-
pression of carbonic anhydrases CAIX and CAXII,
which are linked to the extracellular membrane and
catalyze the conversion of CO2 in HCO3

– [102, 103].
The bicarbonates are then driven into the cells by the
Cl–/HCO3

– exchangers and restore the intracellular
compartment pH assuring the adaptation of these
cells to the acidic environment.

Hypoxia and HIF cascade as therapeutic targets
The role of hypoxia and HIF in several pathologies is
clearly established, particularly in cancer and cardio-
vascular diseases. For this reason, their modulation

Figure 2. HIF1a expression in tumors. (A) HIF1a shows nuclear staining surrounding necrotic areas (n) in a sarcoma xenograft model;
(B) HIF1a is constitutively expressed in a human renal clear cell carcinoma (RCC) because of the inactivating vhl mutation.

Figure 3. Staining of HIF1a pro-
tein and hypoxic regions in human
tumors. Xenograft tumor of
human melanoma: HIF1a stain-
ing (A) co-localizes with the hy-
poxic marker, pimonidazole (B).
Xenograft tumor of human breast
carcinoma: HIF1a staining (C) is
not perfectly correlated to the
hypoxic marker staining, pimoni-
dazole (D).
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might be a good strategy for treating hypoxic tumors
or ischemia-related pathologies.

Cancer

In this section, we present an overview of the most
relevant approaches established to improve survival
based on the targeting of hypoxia and/or the HIF
cascade.

Hypoxia as a therapeutic target in cancer
Tumor hypoxia has been exploited as a way to activate
some drug compounds.

Hypoxia-activated drugs. Some anti-cancer agents (N-
oxides, quinones, nitro-aromatics) have been explored
as drugs that exploit the hypoxia itself. The most
widely studied of these compounds is tirapazamine
[104]. This �hypoxic cytotoxin� is bioreductively acti-
vated in hypoxic cells and potentiates the cytotoxicity
of radiation and chemotherapy, in particular that of
platinum and taxanes family [105–107]. Tirapazamine
has been studied in a Phase III clinical trial in
combination with cis-platin and paclitaxel for non-
small-cell lung cancer [108]. However, the association
of this hypoxia-activated drug to the chemotherapy
did not improved response rates and survival. These
data are in contradiction with another study of head
and neck cancer where the adjunction of tirapazamine
increases the 3-year failure-free survival rate [109].
Consequently, other evaluations and studies are
justified.
In addition, the capacity of anaerobic bacteria to
proliferate under hypoxic conditions has been ex-
ploited as a tool for hypoxia-targeted anticancer
therapy. In this context, the bacteria Clostridium
acetobutylicum has been modified to overexpress
cytosine deaminase, which is able to metabolize the
5-fluorocytosine into the toxic 5-fluorouracile (5-FU).
Following the administration of these bacteria to
rhabdomyosarcoma-bearing rats, cytosine deaminase
is detected in the tumor, suggesting that this original
approach might be useful [110].
Therapeutic failure is associated with hypoxic tumors
and thus several approaches have been explored to
reduce tissue hypoxia. The most obvious strategy to
enhance radio- and chemo-sensitivity is the admin-
istration of high-pressure oxygen. In addition, the
development of sensitizers is another method to
potentiate the effect of classical therapies.

Erythropoietin. The administration of erythropoietin
(Epo, the glycoprotein hormone endogenously se-
creted by renal fibroblasts under hypoxic conditions

via an HIF-dependent mechanism) is used to increase
tumor oxygenation [111]. Recombinant human Epo
(rHuEpo) is indeed a crucial therapeutic tool in cancer
therapy for patients suffering from anemia. Many
studies have shown that correction of anemia, and
consequently of hypoxia, is a prognostic factor of
disease control and survival. Thus, in preclinical and
clinical studies, rHuEpo may improve radio- and
chemo-sensitivity of solid tumor possibly by increas-
ing tumoral oxygenation [112, 113].

Hyperbaric oxygen therapy. Hyperbaric oxygen
(HBO) therapy involves the administration of pure
oxygen at a pressure superior than 1 atmosphere.
Experimental studies suggest that hypoxia reduces the
radio-sensitivity of cells as they require three times
more radiation [114]. By increasing the oxygen
tension of hypoxic cells, HBO may sensitize radiation
therapy. However, it is known that reoxygenation of
hypoxic tumor cells may stimulate tumor growth.
Nevertheless, Feldmeier�s group elegantly concluded,
from clinical and preclinical studies, that intermittent
HBO therapy has no stimulatory effect on tumor
growth and dissemination [115]. Furthermore, inter-
mittent HBO therapy increased the radio-curability of
several cancers. In particular, it improved local tumor
control and reduced mortality in head and neck cancer
[116].
As seen for radiotherapy, HBO therapy is able to
sensitize chemotherapy by increasing tumor perfusion
and cellular sensitivity. This has been demonstrated in
vitro with 5-FU, doxorubicin, and taxol [117]. Thus,
HBO therapy could be considered as adjuvant therapy
in hypoxic tumors.

ARCON. Accelerated radiotherapy with carbogen
and nicotinamide is another approach that makes it
possible to circumvent the mechanisms of radio
resistance. In this method, radiotherapy is associated
with inhalation of hyperoxic gas to decrease diffusion-
limited hypoxia and nicotinamide to decrease perfu-
sion-limited hypoxia. In a breast xenograft model the
radiation dose is decreased by 50 % with ARCON
[118]. However, the results obtained with ARCON in
clinical studies have been disappointing. In non-small-
cell lung cancer, there were no significant responses
with ARCON [119]. Nevertheless, in bladder cancer,
ARCON showed significant gains on local control,
disease-free survival and overall survival compared
with a group control [120].

Sensitizer agents. By simulating the action of oxygen,
sensitizer agents compensate the low oxygen concen-
tration and increase radiation-induced damage. The
compounds most frequently used in clinical studies

1140 E. Benizri, A. Ginouv�s and E. Berra Hypoxia, physiopathology and therapy



over the last few years were nitroimidazoles, but these
again have had disappointing results. In carcinoma of
cervix, Grigsby et al. [121] did not show any difference
in a study comparing irradiation with or without
misonidazole. On the other hand, in head and neck
carcinomas, a randomized study showed encouraging
results with nimorazole [122]. Indeed, in association
with radiotherapy, nimorazole induced a better loco-
regional control and cancer-related survival than the
control group. In the same way, a meta-analysis
suggested that radio-sensitization with misonidazole
for astrocytomas increases 1-year survival by 8 %
[123].

HIF cascade as a therapeutic target in cancer
The inhibition of HIF1a expression impairs tumor
growth when using HIF1a–/–-derived ES cells [26].
Similarly, the expression of a dominant negative
mutant of HIF1 (deprived of the two TAD domains)
in PCI43 cells leads to the inhibition of tumor growth
[124]. Inhibiting the hypoxia signaling cascade as a
therapeutic approach to block tumor progression
might target different processes: HIF1a protein
stability, nuclear translocation, DNA-binding capacity
or even the association with transcriptional repressors
and/or co-activators. Several approaches have been

developed using not only conventional strategies (as
molecular screenings) but also more innovative strat-
egies, such as RNA interference (Table 1).

HIF-targeting drug screening. High-throughout
screenings have led to the discovery a certain number
of efficient molecules targeting the HIF cascade:

• PX-478 is a drug developed by ProlX Pharmaceut-
icals. PX-478 suppresses HIF1a protein expression
under normoxic and hypoxic condition, although its
precise mechanism of action remains unclear.
Moreover, PX-478 showed anti-tumor activity in a
variety of xenograft animal models [125]. This
effect correlates with a reduction of HIF1a protein
level measured by immunohistochemistry. Further-
more, toxicological studies showed a moderated
toxicity. To date, no clinical trial is being carried out
with this promising drug.

• Topoisomerase-I inhibitors: Out of the 2000 agents
tested by Rapisarda et al. [126], 4 were identified as
HIF1 inhibitors. Three of these compounds are
related to camptothecin, which inhibits topoiso-
merase-I activity. The best characterized in clinical
study is NSC-609699 (topotecan). In a glioma
xenograft model, topotecan inhibits tumor growth,

Table 1. Summary of the most relevant anti-cancer therapeutic approaches targeting the HIF cascade developed so far.

Molecular screenings

Target Compound Mechanism of action Efficacy

HIF-targeting high-
throughout

PX-478 ? Inhibition of tumor growth in animal models
Topotecan
ARC-111

Topoisomerase-1
inhibitors

Inhibition of tumor growth in animal models
Inhibition of HIF1a expression in cellulo

Echinomycin HIF DNA-binding
activity

Disappointing results in clinical trials

Chetomin HIF / p300 binding Inhibition of tumor growth in animal models

PHDs Cyclosporine A
R59949

PHDs activators Inhibition of HIF1a expression in cellulo
(Doubts about future application because of the
immunosuppressive effect)
Inhibition of HIF1a expression in cellulo

Others Rapamycin
CCI-779
Trastuzumab
LY294002,
Wortmannin

PI3K/AKT/mTor
pathway inhibitors

Disappointing results in clinical trials
Used in clinic against Breast cancer
Inhibition of tumor growth in animal models

PD98059
GL331

MAPK
pathway inhibitors

Inhibition of HIF1a expression in cellulo

YC-1 ? Inhibition of tumor growth in animal models
Geldanamycin
Radicicol

Hsp90 inhibitor Inhibition of tumor growth in animal models

2ME2 Microtubules Inhibition of tumor growth in animal models

Gene therapy

Strategies Efficacy

Antisense therapy
Gene suicide
RNA interference

Inhibition of tumor growth in animal models
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with a concomitant and dramatic reduction of the
protein levels of HIF1a and HIF1-target gene
products [127]. Recently, another topoisomerase
I-inhibitor (ARC-111) has been tested in cellulo,
showing inhibition of HIF1a expression upon
hypoxia [128]. However, no clinical or preclinical
studies are available at this moment using these
drugs.

• Echinomycin is an antibiotic derived from quinoxa-
line family, which inhibits HIF1a DNA-binding
activity [129]. This is not the only effect of this small
molecule. This drug has been evaluated in numer-
ous preclinical and clinical trials; however, with
disappointing results [130, 131].

• Chetomin is small molecule that is able to disrupt
HIF1 binding to the p300 co-activator. In vivo, this
transcriptional inhibition reduces tumor growth by
increasing the number of necrotic regions in treated
xenograft tumors [132]. These effects seem to be
specific for HIF1, since the expression of a p300-
independent form of HIF1a in tumor cells rescues,
at least partially, the phenotype induced by cheto-
min. This molecule is on standby for clinical
evaluation.

PHDs activators. PHDs are clearly implicated in the
regulation of HIF1a protein stability. The activation
of these PHDs could be an interesting anti-HIF
therapeutic strategy:

• Cyclosporin A is an immunosuppressive agent used
in organ transplantation. Cyclosporin A also acti-
vates PHD activity [133], through this mechanism
this drug inhibits hypoxia-induced HIF1a stabiliza-
tion and HIF1-mediated cellular responses in
glioma cells. However, these results observed in
cellulo cannot be extrapolated to the in vivo
situation. Indeed, because of its immunosuppres-
sive functions, cyclosporin should not be used in
cancer therapy where immunity is crucial.

• R59949 is a PHD activator. This agent is an
inhibitor of diacylglycerol kinase [134]. In cellulo,
R59949 inhibits HIF1a protein accumulation by
stimulating PHD activity. This molecule offers a
new possibility against cancer but has not yet been
tested in vivo.

Indirect inhibitors of the HIF complex
Inhibitors of the PI3K/Akt/mTor cascade. Drugs
interfering with the PI3K/Akt/mTor pathway can
block the expression of HIF1a protein and HIF1-
dependent gene products. Rapamycin inhibits HIF1a

expression in cellulo [135]. An ester analogue of

rapamycin, CCI-779, inhibits tumor growth in a
rhabdomyosarcoma xenograft model [136]. This in-
hibition is related to the reduction of HIF1a and
VEGF expression. CCI-779 has, however, shown
contradictory results in numerous clinical studies
[137, 138]. Other example is trastuzumab (herceptin).
This humanized monoclonal antibody targets the
human EGF receptor-2 (HER2) [139]. HER2 induces
the expression of HIF1a and VEGF in breast cancer
cells via the PI3K/AKT pathway [140]. Treatment of
breast cancer cells with the HER2 inhibitor induces a
dose-dependent inhibition of EGF levels but the
impact on HIF1a still remains controversial [141].
LY294002 and wortmannin represent other tested
agents that reduce HIF1a expression in cellulo [142].
In vivo and in clinical studies, these drugs reduce
tumor growth but the impact on the HIF pathway has
not yet been elucidated [143].

Inhibitors of the MAPK cascade. Some inhibitors
have been developed, such as PD98059 that inhibits
the transactivation ability of HIF1a but does not
change the stabilization or DNA binding ability of
HIF1a [144]. GL331 is a plant-derived MAPK
inhibitor (the podophylotoxin). GL331 is known to
block the ERK pathway and inhibit HIF1a expression
in human lung cancer cells [145]. Nevertheless, there
are no reported data on its use as an anticancer drug.

YC-1. YC-1 [3-(5�hydroxymethyl-2�-furyl)-1-benzy-
lindazole] is another molecule that can inhibit
HIF1a. Initially developed for circulatory disorders,
YC-1 inhibits platelet aggregation and vascular con-
traction by activating soluble guanylyl cyclase [146].
The precise mechanism of HIF1a inhibition is not
clear: NF-kB and Mdm2 may contribute to this
inhibition. In cellulo, YC-1 inhibits HIF-1a accumu-
lation at the post-translational level in hepatoma cells
upon hypoxia [147]. In vivo, YC-1 reduces the tumor
growth in five independent xenograft models, and
inhibits the expression of HIF1a and HIF1-regulated
genes [148]. Given that no serious toxicity was high-
lighted in mice, this drug could be a good candidate for
a Phase I study.

Heat-shock protein 90 (Hsp90) inhibitors. Hsp90 is a
chaperone protein required for the stability and/or
maturation of numerous proteins, including key
mediators of signal transduction and cell cycle control.
Among these proteins, Hsp90 regulates HIF1a acti-
vation [149]. Moreover, in vivo, geldanamycin (an
Hsp90 inhibitor) induces HIF1a protein degradation
under normoxia or hypoxia [150]. In the same manner,
radicicol is another Hsp90 inhibitor that inhibits DNA
binding of the HIF1 complex and reduces hypoxia-
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induced VEGF expression [151]. These compounds
have shown preclinical efficacy in xenograft model
and clinical trials [152]. Nevertheless, up to date, there
is no reported data related to their impact on the HIF
pathway.

Microtubule-disrupting agents (MDAs). Another in-
teresting group of cytotoxic agents that target HIF1a

are those that induce disruption of microtubule
architecture. Among these drugs, 2-methoxyestradiol
(2ME2) is an endogenous metabolite of estrogen that
has an anti-angiogenic and anti-proliferative activity
[153]. Recent data have shown that this anti-angio-
genic effect is mediated through the inhibition of
HIF1a expression in endothelial and cancer cells.
Other agents that stabilize (taxol) or destabilize
(vincristine) microtubules cause a similar ef-
fect. 2ME2 reduces tumor growth and angiogenesis
in vivo, but the impact on HIF1a expression is still
unclear [154].
These data are, however, in contradiction with the
results reported by Jung et al. [155] showing that
certain MDAs (vinblastine, colchicine or nocodazole)
increase HIF1 activation through an NF-kB-depend-
ent pathway. Further studies are necessary to clarify
this point and validate the potential interest of these
compounds.

Gene therapy
Antisense therapy. Several groups have evaluated the
inhibition of HIF activity by antisense therapy. Sun et
al. [156] were the first to show the efficacy of this
treatment in a mouse lymphoma model. Intratumoral
injection of a plasmid vector containing an HIF1a

antisense led to the regression of small tumors
(<1 mm) and slowed the growth of large tumors
(>4 mm). This effect correlated to the inhibition of
HIF1a and VEGF expression. The same team showed
an excellent anti-tumor efficacy of the HIF1a anti-
sense therapy in combination with pVHL overexpres-
sion in a glioma model [157]. Antisense therapy used
in pancreatic cancer xenograft models similarly re-
duced tumor size and weight [158]. Accordingly, gene
transfer techniques using antisense plasmids may
provide future anti-cancer therapy but, to date, this
anti-HIF1a strategy has not been tested in clinical
trials.

Suicide gene therapy. This strategy is based on the
administration into the tumor cells of a gene encoding
for an enzyme that is able to transform a non-toxic
pro-drug into a cytotoxic agent. HRE-controlled gene
suicide therapy has shown interesting data in cellulo
and in vivo. For example, an adenoviral vector under
the control of an optimized HRE promoter has been

used to express the gene encoding the human cyto-
chrome P450 (CYP2B6) and shown to delay tumor
growth upon treatment with cyclophosphamide [159].
Several teams have used similar strategies but, for the
moment, no clinical data are available.

RNA interference. RNA interference (RNAi) is an
alternative strategy to inhibit the HIF1 signaling
pathway. This innovative technology is particularly
interesting since RNAi triggers sequence-specific
gene silencing. This approach is well controlled in
cellulo but the conditions of administration are not yet
well established in vivo. Mizuno et al. [160] reported
the impact of HIF1a silencing on a xenograft model of
pancreatic and hepatobiliary carcinoma cells stably
transfected with a plasmid producing siHIF1a, and
showed that this silencing significantly reduced tumor
growth. More recently, Gillepsie et al. [161] showed, in
a mouse model of glioma, the reduction of tumor
growth and HIF1 activity following intratumoral
injection of siHIF1a. All these results are very
promising and suggest the efficacy of this strategy
but, to date, no systemic administration has been
evaluated.

Ischemic cardiovascular diseases

Many angiogenic factors (VEGF, FGF, PDGF) have
been tested in preclinical studies, but in clinical
practice the results are either modest or disappointing.
Activating HIF, which induces angiogenesis via the
expression of many angiogenic factors, might be more
effective than targeting a single factor. Thus, the
development of HIF stimulants may be helpful for the
treatment of ischemic disease. However, all the
strategies that improve systemic angiogenesis might
induce side effects in patients with cancer, angioma,
arthritis, retinopathies or atherosclerotic plaque pro-
gression. Consequently, we have to be very careful
with the use of such agents. Two main strategies have
been developed to activate HIF by either inhibiting
the endogenous degradation pathway or by over-
expressing the protein.

Inhibiting HIF degradation as a therapeutic approach
in ischemia
PR39. This molecule was identified as a macrophage-
derived peptide that induces HIF1a by inhibiting the
proteasome [162]. In a pig model of chronic myocar-
dial ischemia, the intracardial delivery of an adeno-
viral construction (Ad)-PR39 improves myocardial
blood flow and collateral formation by a mechanism
implicating HIF1a overexpression and induction of
VEGF, VEGFR-1 and 2, syndecan and FGFR-1 [163].
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Dibenzoylmethane. This product is a natural dietary
compound and iron chelator, and inhibits HIF1a

degradation and induces VEGF secretion under
normoxia [164]. This agent might be of interest in
ischemic disease but, to date, no clinical or preclinical
data are available.

siPHDs. Another innovative strategy is the RNAi to
silence PHD2 to increase HIF1 transcriptional activ-
ity. Indeed, intraperitoneal injection of siPHD2 in a
mouse model of myocardial ischemia reperfusion
injury induces up-regulation of cardiac iNOS expres-
sion [165]. This is translated clinically by a higher
ventricular function and a lower infarct size than seen
in the control group.

DMOG. Dimethyloxalylglycine (DMOG) is a small
molecule that inhibits the oxoglutarate-dependent
dioxygenase and thus induces HIF1a stabilization. In
a mouse model of hind limb ischemia, administration
of DMOG increased VEGF levels and capillary
density [166]. Other PHDs inhibitors have shown
similar results: P4-H, L-Mim, 3,4-DHB and S956711
[167].

Ectopic expression of HIF as a therapeutic approach
in ischemia
A constitutively active form of HIF1a has been
constructed associating the DNA-binding and dime-
rization domains from HIF1a and the transactivation
domain from herpes simplex virus VP16 protein (HIF-
1a/VP16). In preclinical studies, the administration of
this strong constitutive transcriptional activator im-
proved angiogenesis in a rabbit hind limb ischemia
model (increasing the blood flow and the collateral
vessel development) and in a rat myocardial infarction
(reduction of the infarct size and increasing capillary
density) [168].
Another recombinant replication-deficient adenovi-
rus Ad2/HIF-1a/VP16 has been evaluated in a Phase I
for critical limb ischemia patients with promising
results and particularly with no major adverse effect
[169].
AdCA5 is another replication-defective recombinant
adenovirus encoding a constitutive form of HIF1a. In
preclinical studies, ocular injection of AdCA5 in mice
induced neovascularization of retinal vessels via the
expression of multiple angiogenic factors [170]. In the
same way, this construction injected in a rabbit model
of limb ischemia stimulates the recovery of limb
perfusion by increasing capillary density and luminal
area of arteries [171].
All these results support our particular interest in the
understanding of the molecular mechanisms under-
lying the hypoxia-signaling cascade to improve our

basic knowledge and also to identify new prognostic
and/or predictive clinical markers, as well as thera-
peutic targets against the pathologies in which hypo-
xia is implicated.
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