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Abstract. Secretion is a fundamental biological activ-
ity of all eukaryotic cells by which they release certain
substances in the extracellular space. It is considered a
specialized mode of membrane trafficking that is
achieved by docking and fusion of secretory vesicles to
the plasma membrane (i.e., exocytosis). Secretory
vesicle traffic is thought to be regulated by a family of
Rab small GTPases, which are regulators of mem-
brane traffic that are common to all eukaryotic cells.
Classically, mammalian Rab3 subfamily members

were thought to be critical regulators of secretory
vesicle exocytosis in neurons and endocrine cells, but
recent genetic and proteomic studies indicate that
Rab3 is not the sole Rab isoform that regulates
secretory vesicle traffic. Rather, additional Rab iso-
forms, especially Rab27 subfamily members, are
required for this process. In this article I review the
current literature on the function of Rab isoforms and
their effectors in regulated secretory vesicle traffic.
(Part of a Multi-author Review)
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Introduction

Rab small GTPases constitute the largest family of the
known membrane trafficking proteins [e.g., soluble N-
ethylmaleimide-sensitive factor attachment protein
receptors (SNAREs) and coat proteins] that are
common to all eukaryotic cells (reviewed in [1– 3]).
The same as other monomeric Ras-like GTPases, Rab
functions as a molecular switch by cycling between
two nucleotide-bound states, a GDP-bound inactive
state and a GTP-bound active state, and the cycling is
controlled by two regulatory enzymes, guanine nu-
cleotide exchange factor (GEF) and GTPase-activat-
ing protein (GAP). The GTP-bound active form of
Rab is recruited to transport vesicles/organelles, and it
promotes their trafficking (such as vesicle budding,
vesicle motility, vesicle docking to specific mem-
branes, and/or vesicle fusion) by interacting with
specific effector molecules (Fig. 1A) [1 – 3]. The
number of Rab isoforms varies from species to species,
ranging from 11 in budding yeasts to 29 in Caeno-
rhabditis elegans and Drosophila melanogaster, and to
more than 60 in humans and mice [4 – 6] (Fig. 1B).

Only five Rab isoforms, Rab1/Ypt1, Rab5/Ypt5,
Rab6/Ypt6, Rab7/Ypt7, and Rab11/Ypt31, presum-
ably �housekeeping Rabs� (blue in Fig. 1B), are
conserved from yeasts to humans, and 17 Rab isoforms
are shared by Caenorhabditis elegans, Drosophila, and
humans (magenta in Fig. 1B). By contrast, most other
Rab isoforms are vertebrate- or mammalian-specific
(green in Fig. 1B), and they may have unique roles in
cell-type-specific or tissue-specific membrane traf-
ficking events, i.e., be specialized for membrane
trafficking pathways in specialized cell types in higher
eukaryotes; however, their functions are poorly
understood.
The large number of Rab isoforms in mammals has
often been considered a major obstacle to identifying
the Rab isoforms involved in specific types of mem-
brane trafficking events, and until recently analysis of
even the well-known regulated secretory pathway in
which secretory vesicles are docked and fused to the
plasma membrane in response to stimulation has been
limited to specific Rab isoforms, i.e., members of the
Rab3 subfamily (reviewed in [7, 8]). Although more
than 400 papers have been published on the vesicle
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localization of Rab3 subfamily members (Rab3A/B/
C/D in humans and mice) and their involvement in
regulated secretion [7, 8], complete absence of all four
Rab3s, but not of a single isoform, results in only a
30 % reduction in the probability of Ca2+-triggered
neurotransmitter release (however, quadruple knock-
out mice die shortly after birth) [9 – 11], suggesting
that additional Rab isoforms are also involved in
regulated secretory vesicle traffic. Consistent with this

notion, recent proteomic analysis of several types of
secretory vesicles has revealed the presence of an
unexpectedly large number of Rab isoforms on
secretory vesicles (e.g., >28 Rabs on neuronal synap-
tic vesicles [12], >20 on natural killer (NK) cell
secretory lysosomes [13], 14 Rabs on pancreatic b-cell
insulin secretory granules [14], and >16 Rabs on
pancreatic acinar zymogen granules [15]), although
the number of Rab isoforms involved in the control of

Figure 1. Rab family members in
mammals. (A) Schematic repre-
sentation of the general role of
Rab protein and its effector in
membrane traffic (see text for
details). (B) Phylogenetic trees of
mouse and human Rab family
members [5, 74]. Rabs conserved
from yeasts to humans are shown
against a blue background, and
Rabs shared by C. elegans, Dro-
sophila, mice, and humans are
shown against a magenta back-
ground. Rabs shown against a
green background are presumed
to be vertebrate- or mammalian-
specific [5]. Red branches indi-
cate Rab isoforms involved in
regulated secretory vesicle traf-
fic, indicating that they contain a
Rab functional group specialized
for secretory vesicle traffic (i.e.,
�secretory Rabs�, including Rab3,
Rab26, Rab27, and Rab37; dot-
ted box) [5, 6]. Five Rabs are
known to be associated with
human and/or mouse (parenthe-
ses) diseases (indicated by ar-
rows), but regulated secretion
defects have only been reported
in type 2 Griscelli syndrome pa-
tients and the corresponding
mouse model ashen [16, 17, 21,
44–46]. The phylogenetic tree
was drawn by using the ClustalW
program (available at http://clus-
talw.ddbj.nig.ac.jp/top-e.html)
set at the default parameters.
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secretory vesicle traffic is still unclear. Among the Rab
isoforms associated with secretory vesicles, consider-
able attention has recently been paid to Rab27
subfamily members, i.e., Rab27A/B in humans and
mice, for the following reasons. (i) Rab27-deficient
animals display clear secretion defects in certain
secretory cells [16 –21]. (ii) Rab27A/B proteins are
present on a variety of secretory vesicles in mice [18,
20 – 22], and (iii) Rab27 is the closest isoform of Rab3
in the phylogenetic tree (Fig. 1B) and has been
retained from C. elegans to humans [5, 23]. In this
article I provide an overview of the function of Rab
proteins on secretory vesicle traffic, with a special
focus on recent advances (later than 2000) in research
on the molecular mechanisms of regulated secretory
vesicle traffic mediated by Rab3/27 and their regu-
lators.

Rab proteins associated with secretory vesicles

As mentioned above, a large number of Rab isoforms
(more than 10 different Rabs) are usually present on
isolated secretory vesicles, but the majority of them
are not exclusively present on secretory vesicles, and
well-characterized Golgi-resident Rabs (e.g., Rab1
and Rab2) and endosomal Rabs (e.g., Rab5 and
Rab21) have also been identified on secretory vesicles
by recent proteomic studies [12– 15]. The latter Rabs
are probably traces of immature vesicles that emerged
from the Golgi and/or endosomes, and they may not
be involved in regulated secretion itself. Although
proteomic analysis of secretory vesicles by tandem
mass spectroscopy is a powerful method of determin-
ing how many Rab isoforms are present on them, it is
virtually impossible to determine which of the Rab
isoforms identified are specifically localized on secre-
tory vesicles and actually control regulated secretion.
Systematic screening for Rab isoforms that are
specifically targeted to secretory vesicles by express-
ing fluorescently labeled Rabs has recently been
employed to overcome this problem [24]. Expression
of green fluorescent protein (GFP)-tagged Rab1 – 43
in neuroendocrine PC12 cells has indicated that only
seven Rab isoforms (Rab3A/B/C/D, Rab27A/B, and
Rab37) are specifically targeted to dense-core vesicles
(some other Rab isoforms, e.g., Rab33A, are also
targeted to dense-core vesicles, but they are present
too on other organelles, e.g., the Golgi apparatus). It
should be noted that the Rab isoforms identified by
this screening method were also identified by proteo-
mic analysis of secretory vesicles: Rab3A/B/C, Rab26
and Rab27B on synaptic vesicles [12]; Rab3A/C/D
and Rab37 on insulin secretory granules [14]; Rab3A,
Rab26, and Rab27A on pancreatic acinar zymogen

granules [15]; and Rab27A and Rab37 on NK cell
secretory lysosomes [13].
To date, 11 Rab isoforms (Rab3A/B/C/D, Rab4A,
Rab8B, Rab11B, Rab26, Rab27A/B, and Rab37;
summarized in Table 1) have been shown to be
involved in regulated secretion by certain secretory
cells. Three of them, Rab4A (endosome-resident),
Rab8B (Golgi-resident), and Rab11B (endosome-
resident), are unlikely to be general regulators of
stimulated secretion and may be involved in a specific
type of secretion (e.g., involvement of Rab4A in a-
granule secretion by platelets) [25 – 27], whereas the
other Rabs (Rab3A/B/C/D, Rab26, Rab27A/B, and
Rab37) are predominantly present on �mature� secre-
tory vesicles and form a small branch on the phylo-
genetic tree (red branch in Fig. 1B) [5, 6]. Since these
phylogenetically similar Rab isoforms are not con-
served in yeasts, which possess only a constitutive
secretion pathway and do not have any regulated
secretion pathways, they have been classified as
specialized Rabs that control regulated secretion in
animals and are referred to as �secretory Rabs� below
(dotted box in Fig. 1B). As summarized in Table 1,
both Rab3 and Rab27 subfamily members are present
on a variety of secretory vesicles, including neuronal,
endocrine, exocrine, and immune cell secretory vesi-
cles ([7, 8, 20, 22, 28] and references therein), whereas
Rab26 and Rab37 seem to be present on secretory
vesicles in specialized cell types [14, 29 –31]. Although
overexpression of Rab3 or Rab27 protein has pre-
viously been reported to have an inhibitory role in
regulated secretion [32– 36] (but see [37– 40], which
report a positive role of Rab27), endogenous Rab3
and Rab27 proteins should play positive roles in
regulated secretion, because both Rab3- and Rab27-
mutant animals display clear secretion defects [10, 11,
16 – 20]. For example, mutations in the RAB27A gene
cause a human hereditary disease (type 2 Griscelli
syndrome; Fig. 1B), and the corresponding murine
model ashen, and both type 2 Griscelli syndrome
patients and ashen mice have defects in lytic granule
exocytosis in cytotoxic T lymphocytes (CTLs) [16, 17].
Rab27B knockout (KO) mice and Rab27A/B double-
knockout (DKO) mice also exhibit secretion defects
in some secretory cell types, although DKO mice are
viable [18 – 20]. In addition, reduced expression of
Rab3A and Rab27A has been suggested to be
associated with defective insulin release in type 2
diabetes [41].
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Table 1. Rab isoforms that control regulated secretion.

Names Cell types/types of secretion
or membrane trafficking

Putative Rab effectors
or binding proteins

Human diseases or mutant
mice

GEF or GAP

Rab3A neurons/neurotransmitter release

endocrine cells/hormone secretion
chromaffin and PC12 cells

pituitary and AtT-20 cells
pancreatic b cells and cell lines

sperm cells/acrosome reaction
eggs/cortical granule exocytosis

rabphilin, Rim1/2,
synapsin I

rabphilin,Noc2,Rim1/2
Munc18-1, Rabin3

rabphilin
Slp4, rabphilin, Noc2,

Rim1/2, calmodulin
ND
rabphilin

earlybird or Rab3A KO mice
Rab3A/B/C/D KO mice

Rab3-GAP
Rab3-GEP/AEX-3,
GRAB

Rab3B pituitary cells/gonadotrophin release
chromaffin and PC12 cells/hormone

secretion
platelets/granule exocytosis
epithelial cells/basolateral transport of

LDLR
MDCK cells/transport of pIgR

ND
rabphilin, PI3K

calmodulin
Noc2

pIgR

Rab3A/B/C/D KO mice
Rab3-GAP
Rab3-GEP/AEX-3

Rab3C neurons/neurotransmitter release
chromaffin and PC12 cells

rabphilin
rabphilin Rab3A/B/C/D KO mice

Rab3-GAP
Rab3-GEP/AEX-3

Rab3D chromaffin and PC12 cells
pancreatic acinar cells/zymogen granule

exocytosis
parotid acinar cells/amylase release
AtT-20 cells/ACTH release
mast cells/histamine release
endothelial cells/vWF secretion
intestinal goblet cells/Golgi trafficking
osteoclasts/osteoclastic bone resorption

rabphilin
ND

ND
ND
ND
ND
rabphilin
ND

Rab3D KO or
Rab3A/B/C/D KO mice

Rab3-GAP
Rab3-GEP/AEX-3

Rab4A platelets/a-granule secretion
pancreatic acinar cells/amylase release
3T3-L1 adipocytes/Glut4 transport

ND
ND
kinesin?

GAP-CenA

Rab8B AtT-20 cells/ACTH release TRIP8b ND

Rab11B neurons/neurotransmitter release
PC12 cells/hormone secretion

ND
ND

ND

Rab26 parotid acinar cells/amylase release ND ND

Rab27A endocrine cells/hormone secretion
chromaffin and PC12 cells

pituitary cells
pancreatic b cells and cell lines

pancreatic a cells and their cell lines
gastric surface mucous cells/mucus secretion
melanocytes/melanosome anchoring
platelets/dense granule exocytosis
CTLs/cytotoxic granule exocytosis
mast cells/histamine release
granulocytes/azurophilic granule

exocytosis
endothelial cells/Weibel-Palade body

exocytosis
prostate carcinoma cells/prostate-specific

marker secretion
epithelial cells/epithelial sodium channel

transport

Slp4, rabphilin, Slac2-c,
Noc2

Slp4
Slp4, Slp5, Slac2-c,

Noc2
Slp2-a
Slp2-a
Slp2-a
Munc13-4
Munc13-4
Munc13-4
ND

ND

Slp1

Slp5, Munc13-4

human type 2 Griscelli
syndrome

ashen or Rab27A/B KO mice

AEX-3
Rab27A-GAPa/EPI64
Rab27A-GAPb/

FLJ13130
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Which step in secretory vesicle traffic is regulated by
Rab proteins?

Regulated secretion consists of at least four distinct
steps: recruitment of secretory vesicles to the release
site, docking of secretory vesicles to the plasma
membrane, priming, and stimulus-dependent fusion
of secretory vesicles to the plasma membrane. Al-
though the alterations of the level of expression of
mammalian Rab proteins by overexpression or knock-
down shown in Table 1 have been demonstrated to
increase or decrease stimulated secretion, the involve-
ment of the proteins in specific steps of secretory
vesicle traffic is still poorly understood and is a matter
of controversy (e.g., different roles of Rab3A have
been reported in the past [42, 43]). However, recent
imaging techniques that use total internal reflection
fluorescence (TIRF) microscopy have made it possi-
ble to directly analyze the involvement of Rab
proteins in each step of the secretory vesicle exocy-
tosis that occurs just beneath the plasma membrane.
As a result, Rab3A and Rab27A proteins have been
shown to be involved in the recruitment/docking of
secretory vesicles to the plasma membrane, rather
than in the priming/fusion step [24, 44]. For example,
the results showed that siRNA-mediated knockdown
of either Rab3A or Rab27A protein in PC12 cells
reduced the number of plasma membrane-docked
dense-core vesicles and stimulated hormone secretion
[24]. Similar docking defects have been observed at
the electron microscopic level in CTLs from Rab27A-
defective ashen mice [45, 46] and in pituitary cells from
Rab27A/B DKO mice [20]. In contrast to Rab27
mutant mice, no clear docking defects have been
observed in Rab3 mutant mice, even at the electron
microscopic level [9– 11] (but see [47]; Rab3A dele-
tion reduced vesicle docking at the neuromuscular
junction), and Rab3 mutant animals seem to lack
activity-dependent recruitment of synaptic vesicles to
the active zone [48, 49].

In addition to the role of Rab3 and Rab27 proteins in
the recruitment and/or docking step of secretory
vesicle traffic, they are also likely to be involved in
the formation and/or maturation of secretory vesicles.
For instance, the secretory vesicles in both the
exocrine pancreas and parotid gland of Rab3D KO
mice are significantly larger [9], and the number of
dense granules in the platelets of Rab27B KO mice is
significantly smaller [18]. Similar abnormalities in the
size and number of secretory vesicles have been
observed in granuphilin/Slp4 KO mice [50] and Slp2-a
KO mice [51]. Since Rab27A, and possibly Rab27B
and Rab3 subfamily members, tend to be localized on
mature secretory vesicles, they may also function as a
maturation sensor during the formation of fusion-
competent mature secretory vesicles [52] (but see
[53], according to which both Rab3A and Rab27A are
rapidly recruited to newly synthesized immature
secretory vesicles in PC12 cells).

Domain structure of Rab3 and Rab27 effectors in
vertebrates and invertebrates

Identifying specific Rab effector molecules is one of
the most important steps toward understanding the
role of Rab protein in specific steps of regulated
secretion at the molecular level (Fig. 1A), and the
domain structures of candidate Rab3 and Rab27
effector molecules that have been identified thus far
are summarized in Fig. 2A and Table 1 (precise
structures are described in [28]), which include
synaptotagmin-like proteins (Slp1 – 5) [54– 58], rab-
philin [6, 59], Slp homologue lacking C2 domains
(Slac2-a-c) [55, 60 – 63], Noc2 [6, 23, 64 –66], Munc13-
4 [67 – 69], and Rim [6, 70, 71]. All Rab3/27-binding
proteins in Fig. 2A except Munc13-4 contain a con-
served Rab-binding domain (RBD) at their N termi-
nus (often referred to as the Slp homology domain
(SHD) for Slps and Slac2s [72]), and their Rab-

Table 1 (Continued)

Names Cell types/types of secretion
or membrane trafficking

Putative Rab effectors
or binding proteins

Human diseases or mutant
mice

GEF or GAP

Rab27B pituitary and AtT-20 cells
mast cells/histamine release
parotid acinar cells/amylase release
pancreatic acinar cells/zymogen granule

exocytosis
platelets/dense granule exocytosis

Slp4
ND
Slp4-a, Slac2-c, Noc2
ND

Munc13-4

Rab27B KO
or Rab27A/B KO mice ND

Rab37 pancreatic b cells and cell lines/insulin
secretion

mast cells/secretory granule exocytosis

ND

ND
ND

Rab3/27 isoforms are known to be expressed in a variety of secretory cells, but some secretory cell types have not been included in this table.
The details concerning expression of Rab27A and Rab27B on secretory vesicles were reported in [20, 22]. ND, not determined.
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binding specificity has been determined in vitro by
using �Rab panels� [6, 73, 74] (their Rab-binding
specificity is shown in Fig. 2A). Other Rab3-binding
proteins, including synapsin I [75], Munc18-1 [76],
Rabin3 [77], calmodulin [78], and phosphoinositide 3-
kinase (PI3K) [79], have been reported, but their Rab-
binding specificity has never been thoroughly inves-
tigated. Specific effector molecules for other secre-
tory-vesicle-associated Rabs, including Rab26 and
Rab37, have not yet been elucidated.
Since Rab3 and Rab27 are found in lower inverte-
brates, e.g., C. elegans [5, 23, 80], their effector
molecules were expected to have been conserved
during evolution. Surprisingly, however, no homo-
logues of most of the Rab27 effectors (e.g., Slps and
Slac2s) have been found in C. elegans or Drosophila,
and only one Drosophila Slp homologue Btsz (bite-
size) has been reported, although it lacks an N-
terminal RBD (or SHD) [81, 82] (Fig. 2A). A single
isoform of rabphilin and Rim has been found in C.
elegans and Drosophila [71, 81, 83 –85], although the
Drosophila Rim protein lacks a putative RBD [83]
and the invertebrate rabphilin interacts with Rab27

alone, and not with Rab3, even when assessed in an in
vitro overexpression study [23]. Thus, in contrast to
mammalian rabphilin, C. elegans rabphilin is likely to
function as an in vivo Rab27 effector, and not as a
Rab3 effector [80].

Rab effectors that control docking of secretory
vesicles to the plasma membrane

Three Rab effectors, Slp2-a, Slp4-a/granuphilin-a, and
rabphilin, have been found to be involved in the
docking process of secretory vesicle traffic in neuro-
endocrine cells and gastric surface mucous cells
(Fig. 3) (reviewed in [73]). Single knockdown of either
Rab3A or Rab27A in PC12 cells reduced both the
number of dense-core vesicles docked to the plasma
membrane and hormone secretion, and simultaneous
knockdown of both Rabs further reduced the number
of plasma membrane-docked vesicles, indicating that
Rab3A and Rab27A cooperatively regulate the
docking of dense-core vesicles to the plasma mem-
brane [24]. This finding suggests that Rab3A and

Figure 2. Structure of proteins
that function as Rab effectors or
regulators. (A) Rab3 and/or
Rab27 effectors previously re-
ported. All of them except
Munc13-4 contain a conserved
N-terminal Rab-binding domain
(RBD), and most of them contain
zinc finger motifs (Zn2+). The
Rab27-binding site of Munc13-4
has been mapped to the region
between the C2 domain and
MHD1 [69]. The RBD of the
Slp and Slac2 family members
(sometimes called exophilins) is
often referred to as Slp homology
domain (SHD) [28]. MBD, my-
osin Va/VIIa-binding domain;
ABD, actin-binding domain;
and MHD, Munc13 homology
domain. (B) Rab3 and/or Rab27
GEF previously reported. (C)
Rab3 and/or Rab27 GAP previ-
ously reported. All proteins ex-
cept dm-Slp (from Drosophila)
and AEX-3 (from C. elegans) are
from mice.
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Rab27A share some of the same effector molecules.
Actually, rabphilin, Noc2, and Slp4-a/granuphilin-a
bind both Rab3A and Rab27A in vitro, although Noc2
and Slp4-a prefer Rab27A to Rab3A in vivo [6, 23, 37,
66, 86]. All three proteins are endogenously expressed
in PC12 cells, but only rabphilin expression promotes
both dense-core vesicle-docking to the plasma mem-
brane and hormone secretion [87]. This effect is
mediated by the intact C2B domain of rabphilin [87,
88], which directly interacts with t-SNARE SNAP-25
(synaptosome-associated protein of 25 kDa) on the
plasma membrane (Fig. 3, inset) [87, 89]. The rabphi-
lin·SNAP-25 interaction is increased by Ca2+ ions, and
it is likely to mediate dense-core vesicle-docking to
the plasma membrane in PC12 cells [90, 91]. Rabphi-
lin also regulates neurotransmitter release in a
SNARE-dependent manner [85, 89], especially at
the refilling step of the readily releasable pool of
synaptic vesicles, when the pool has been exhausted.
Slp4-a/granuphilin-a is expressed in certain endocrine
cells, most abundantly in pancreatic b-cells [37, 38, 86],
and promotes dense-core vesicle-docking to the
plasma membrane [50, 92, 93]. Unlike rabphilin,
however, Slp4-a/granuphilin-a functions as a negative
regulator of dense-core vesicle exocytosis [37, 38, 50,
86, 92– 95], because deletion of Slp4-a/granuphilin-a
increases hormone (e.g., insulin) secretion despite

reducing the number of docked dense-core vesicles
[50, 93]. The mechanism by which Slp4-a/granuphilin-
a increases the number of inert plasma membrane-
docked dense-core vesicles at the molecular level is a
matter of controversy [86, 92 –96], but it is likely to
regulate hormone secretion through interaction with
Munc18-1·syntaxin-1a complex.
Slp2-a is most abundantly expressed in the exocrine
surface mucous cells of the mouse stomach, and
deletion of Slp2-a reduces both the total number of
mucus granules and the number of plasma membrane-
docked granules [51]. Slp2-a is also expressed in
pancreatic a-cells, and overexpression of Slp2-a
promotes docking of glucagon granules to the plasma
membrane [97]. In addition, Slp2-a has been found to
be expressed on mature melanosomes in cultured
melanocytes [60], and it promotes melanosome-
anchoring to the plasma membrane through interac-
tion of the C2A domain with phosphatidylserine [98].

Rab effectors associated with other steps in secretory
vesicle traffic

Expression or deletion of certain other Rab3/27
effector molecules also affects secretory vesicle traffic,
but the molecular mechanisms underlying the proc-

Figure 3. Proposed function of
Rab·effector complex in regulat-
ed secretory vesicle traffic. After
the formation and maturation of
immature secretory vesicles
(ISV), mature secretory vesicles
(SV) are recruited to the release
site (recruitment step) and
docked to the plasma membrane
(docking step). After an ATP-
dependent priming step, secreto-
ry vesicles fuse to the plasma
membrane in response to stimu-
lation (fusion step). Possible in-
volvement of Rab3/27 effectors
in each step of secretory vesicle
traffic is indicated by thin arrows
(see text for details). Inset shows
the proposed model of the dock-
ing machinery composed of
Rab3/27 and Slp2-a or rabphilin
[51, 87, 90]. These Rab effectors
function as linker proteins be-
tween Rab3/27 on secretory vesi-
cles and proteins/lipids in the
plasma membrane [73].
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esses largely remain unknown. For example, deletion
or functional ablation of Noc2 reduced stimulated
secretion both in endocrine and exocrine cells [66, 99,
100]. Failure to secrete amylase and marked accumu-
lation of secretory vesicles have been observed in the
exocrine pancreas of Noc2 mutant mice [99]. MyRIP
(myosin-VIIa- and Rab-interacting protein), also
identified as the third member of the Slac2 family
(Slac2-c) [62, 63], is abundantly expressed on secre-
tory vesicles in neurons, some endocrine cells, and
parotid acinar cells, and it positively regulates stimu-
lated secretion [101, 102] (but see ref. [36], which
reports that overexpression of MyRIP attenuates
hormone secretion). By analogy to the function of
Slac2-a/melanophilin in melanosome transport in
melanocytes [28, 103 –105] and of Slac2-c/MyRIP in
melanosome transport in retinal pigment epithelial
cells [62, 106 – 108], Slac2-c has been hypothesized to
regulate recruitment and/or tethering of secretory
vesicles to the release site through interaction with
myosin Va [109], actin [36, 101, 102], and/or Sec6/8
[110]. Rab27A-binding protein Munc13-4, mutations
of which cause familial hemophagocytic lymphohis-
tiocytosis subtype 3 (FHL3) [111], controls lysosome
secretion in hematopoietic cells [25, 68, 69]. In
contrast to the docking defects observed in the CTLs
of ashen mice (i.e., Rab27A-defective), lytic granules
are clearly docked to the plasma membrane in
Munc13-4-deficient CTLs [111], suggesting that
Munc13-4 functions at a step after the docking step
(presumably a priming step or fusion step). Expres-
sion of either Slp3-a or Slp5 (i.e., Ca2+-dependent Slps
[56, 112], but not of other Slps, in PC12 cells promotes
stimulated hormone secretion by increasing the re-
cruitment of dense-core vesicles to the plasma mem-
brane after stimulation, not by increasing the number
of plasma membrane-docked vesicles [93, 95], al-
though the precise tissue distribution and function of
Slp3-a and Slp5 protein remain largely unknown.
Rim1a and Rim2a have been established to be active
zone proteins that regulate neurotransmitter release
and synaptic plasticity through interaction with a
variety of presynaptic active zone proteins, including
Munc13-1 and CAST (reviewed in [113, 114]). Al-
though Rim1a was originally described as an in vitro
Rab3A-binding protein [70], Rim1a and Rab3A are
distinctively localized at presynaptic active zone
membranes and at synaptic vesicles, respectively, in
contrast to the synaptic vesicle-localization of rabphi-
lin described above. Curiously, interaction between
endogenous Rim1a and Rab3A molecules in vivo has
never been reported, and all the binding experiments
have been performed by using recombinant proteins
[6, 70, 71, 115– 117]. In addition, expression of the
Rab3A-binding-deficient mutant of Rim1 is still

capable of increasing stimulated hormone secretion
by chromaffin cells [115] and PC12 cells [71], the same
as the wild-type protein, suggesting that Rim1 mod-
ulates hormone secretion independent of Rab3A.
Although Rim actually plays an important role in
synaptic vesicle traffic [84, 118], it will be necessary to
determine whether the Rab3A·Rim1/2a interaction
itself is important to the regulation of neurotransmit-
ter release in a future study (e.g. , whether Rim1a/
Rim2a DKO mice will be rescued by a Rab3A-
binding deficient mutant of Rim).

Regulators of Rabs associated with secretory vesicle
traffic

In contrast to Rab effectors that function in secretory
vesicle traffic, very little is known about the specific
regulators (GEF and GAP) for secretory Rabs. To
date, two Rab3-GEFs, Rab3-GEP [119] and GRAB,
guanine nucleotide exchange factor for Rab3A [120],
and one Rab3-GAP [121] have been identified in
mammals (Fig. 2B and C). Rab3-GEP has also been
identified as DENN/MADD [differentially expressed
in normal versus neoplastic (DENN)/mitogen-acti-
vated protein kinase-activating death domain
(MADD)], and the N-terminal DENN domain [122]
is thought to be required for Rab3 GEF activity [123].
Consistent with the roles of Rab3 members in the
recruitment and docking of secretory vesicles to the
release site described above, a greatly reduced num-
ber of synaptic vesicles docked to the presynaptic
plasma membrane at the neuromuscular junction has
been observed in Rab3-GEP KO mice (the total
number of synaptic vesicles is also reduced) [124]. In
mouse hippocampal neurons, however, Rab3-GEP
has been shown to act as a post-docking step in
synaptic vesicle exocytosis [125]. The C. elegans aex-3
mutant, which encodes a Rab3-GEP orthologue, also
exhibits a severe synaptic transmission defect [126],
and AEX-3 has recently been shown to exert GEF
activity toward both C. elegans Rab3 and Rab27 [80].
Although no mammalian Rab27-GEF has been
reported thus far (but see [127], which reports
constitutive Rab27A-GEF activity in unstimulated
platelets), Rab3-GEP is likely to function as a dual
GEF toward Rab3 and Rab27. Although deletion of
Rab3-GEP/AEX-3 causes severe secretion defects,
knockdown of another Rab3A-GEF, GRAB, increas-
es stimulated hormone secretion by PC12 cells,
whereas overexpression of GRAB decreases it [120].
GRAB contains a Sec2 homology domain, a guanine
nucleotide-exchange domain for the yeast Rab
GTPase Sec4 [128] (Fig. 2B). Rabin3, originally
identified as a Rab3A-binding protein [77], also
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contains a Sec2 homology domain and has been
reported as Rab8 GEF [129].
Rab3 GAP consists of two subunits, catalytic subunit
p130 [121] and noncatalytic subunit p150 [130], and it
is concentrated in the presynaptic terminals (espe-
cially in the synaptic soluble fraction) [131]. Interest-
ingly, mutations in the catalytic subunit of Rab3-GAP
cause Warburg Micro syndrome, which includes
severe mental retardation [132], and mutations in
the non-catalytic subunit cause Martsolf syndrome
[133], which includes mild mental retardation. Unlike
the humans with these diseases, however, p130-
deficient mice are viable and fertile, and their hippo-
campal CA1 region exhibits increased short-term
plasticity, although Ca2+-stimulated secretion by the
synaptosomes is greatly impaired [134]. Rab3-GAP
seems to act as a specific GAP toward Rab3 subfamily
members, and not to act as a GAP toward other
secretory Rabs, including Rab27A [135].
It has recently been proposed that the TBC (Tre-2/
Bub2/Cdc16) domain functions as a GAP domain for
small GTPase Rab (reviewed in [136]). Except for the
Rab3-GAP described above, all Rab GAP proteins
identified thus far contain the TBC domain. More
than 40 distinct TBC domain-containing proteins have
been identified in humans [136], and some of them
have been shown to function as a specific Rab-GAP.
Two TBC proteins, EPI64 and its homologue,
FLJ13130 (Fig. 2C), exhibit GAP activity toward
Rab27A in vitro and in cultured melanocytes, and
they are localized in the actin-rich cell periphery [135].
However, whether these TBC proteins are involved in
regulated secretion is unknown. Although it has been
pointed out that the number of TBC proteins in
humans is almost the same as the number of Rab
subfamilies, it remains to be determined whether
TBC-domain-containing Rab3-GAP is present in
mammals in addition to Rab3-GAP (p130+p150).

Concluding remarks and perspectives

Recent studies point to the existence of a functional
group of Rab isoforms that are specialized for
regulated secretion (i.e., �secretory Rabs�, including
Rab3A/B/C/D, Rab26, Rab27A/B, and Rab37) (dot-
ted box in Fig. 1B). Rab26 and Rab37 are presumed to
be involved in specialized secretion events in speci-
alized cell types [29 – 31], whereas Rab3 and Rab27
seem to function as general regulators of stimulated
secretion in a variety of secreting cells [7, 8, 20, 22].
Analysis of Rab3A/B/C/D quadruple KO mice (or
Rab27A/B DKO mice) has shown that some of these
secretory Rabs, i.e., Rab3 subfamily members (or
Rab27 subfamily members), are redundant in some

forms of regulated secretion [10, 18, 20]. Since
simultaneous knockdown of Rab3A and Rab27A in
PC12 cells reduced stimulated hormone secretion
even more than single knockdown [24] and some
effectors are capable of binding both Rabs [6, 28],
Rab3 and Rab27 are likely to have overlapping rather
than completely redundant roles in regulated secre-
tion. Such overlapping roles of Rab3 and Rab27 may
account for the mild phenotype of Ca2+-triggered
neurotransmitter release by quadruple Rab3s KO
mice [10] (or the absence of abnormal brain function
in Rab27A/B DKO mice [18, 20]). Producing and
analyzing Rab3/27-deficient animals in the future will
clarify the functional overlap and diversity of two
phylogenetically related Rabs, Rab3 and Rab27, in
regulated secretion. Additional studies will also be
needed to determine how Rab, Rab effector, and Rab
regulators work together to control specific steps in
regulated secretory vesicle traffic at the molecular
level.

Note added in proof. While this review was being prepared for
publication, possible involvement of Slp1 and Slp2-a in CTL
secretion was reported (see [137] for details).
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