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Canavan Disease

Canavan disease is a recessively inherited vacuolar leukodystrophy caused by ASPA 

mutations [1–3]. ASPA encodes aspartoacylase, an oligodendroglial enzyme required for 

cleavage of the abundant brain amino acid N-acetyl-L-aspartate (NAA) to acetate and 

L-aspartate [4]. ASPA mutations are relatively common in Ashkenazi Jews, with carrier 

frequency estimates ranging between 1:40 and 1:60, but also occur, though substantially 

less often, in many other human populations [3, 5, 6]. The disease classically presents in 

infancy with ataxia, hypotonia, and failure to acquire normal developmental milestones, 

often in association with macrocephaly and seizures [3]. In atypical cases in which some 

aspartoacylase enzymatic activity remains, disease onset is delayed until several years after 

birth [2, 7, 8]. Neuroimaging shows brain white matter signal abnormalities, and, at later 

time-points, ventricular enlargement [9, 10]. In vivo proton nuclear magnetic resonance 

spectroscopy (1H-MRS) documents a 30% or greater elevation in brain NAA concentration 

([NAAB]) [10]. Histological studies reveal brain “spongiform” vacuolation, astrogliosis, and 

dysmyelination [7, 11–13]. These neuropathological abnormalities are most prominent in 

superficial white matter and neighboring gray matter of the forebrain, cerebellum, and upper 

brainstem. In more advanced cases, the cerebral ventricles become enlarged, and numbers 

of brain neurons diminish [7, 12, 13]. No therapies have yet been proven to be effective in 

preventing or reversing progression of leukodystrophy in Canavan disease.
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Aspa Mutant Mice

Aspartoacylase-deficient mice are useful for exploring the pathophysiology of Canavan 

disease and for preliminary evaluation of new treatment options. The histologically best 

characterized aspartoacylase-deficient mice are homozygous for an ethyl-N-nitrosourea-

induced Aspa nonsense mutation (“Nur7”, Q193X) [14]. These AspaNur7/Nur7 mice, which 

do not express immunochemically detectable aspartoacylase, and maintain an elevated 

[NAAB], develop ataxia by postnatal day 21, usually survive into adulthood, but have a 

diminished median lifespan. Brain astroglial and intramyelinic vacuolation begin between 

postnatal days 7 and 14 (Fig. 1), followed by cerebral ventricular enlargement and loss of 

cerebral cortical and cerebellar neurons [14–18].

Linking Aspartoacylase Deficiency with Vacuolar Leukodystrophy

Two alternative, not mutually exclusive, hypotheses have been advanced to explain how 

aspartoacylase deficiency might cause vacuolar leukodystrophy in Canavan disease and 

in aspartoacylase-deficient mice. The “oligodendroglial starvation” hypothesis proposes 

that dysmyelination results from the inability by aspartoacylase-deficient oligodendroglia 

to derive acetate from NAA for synthesis of the myelin lipid precursor acetyl-CoA, and 

perhaps also from an inadequate oligodendroglial supply of NAA-derived L-aspartate to 

support production of high-energy phosphate compounds [19, 20]. The “NAA toxicity” 

hypothesis proposes, instead, that astroglial and intramyelinic vacuolation in Canavan 

disease are caused by impaired brain osmolar homeostasis resulting from elevated [NAAB] 

[21].

Two sets of data support the oligodendroglial starvation hypothesis. First, in vitro and 

in vivo isotope studies indicate that carbon atoms derived from NAA are incorporated 

into CNS myelin lipids [22]. Second, brain acetyl-CoA and ATP concentrations are 

diminished in aspartoacylase-deficient mice [19, 20]. But the oligodendroglial starvation 

hypothesis has been somewhat weakened by the demonstration that reducing [NAAB] 

to undetectably low levels in aspartoacylase-expressing (Aspa+/+) mice by homozygous 

constitutive deletion of Nat8l, which encodes neuronal N-acetyl transferase 8-like (also 

referred to as N-acetylaspartate synthetase), an enzyme essential for NAA synthesis [23, 24], 

does not prevent the mice from achieving full brain myelination [15]. Note, however, that 

initial central nervous system (CNS) myelination is slowed and CNS myelin composition 

and structure are altered in Nat8l−/− mice [25, 26].

In support of the “NAA toxicity” hypothesis, homozygous constitutive Nat8l knockout 

prevents vacuolar leukodystrophy in AspaNur7/Nur7 mice [15, 16] (Fig. 2a–c). Total ablation 

of NAA synthesis does not ensure a normal lifespan for A spaNur7/Nur7 mice, and blocks 

their synthesis of the CNS peptide neuromodulator/neurotransmitter NAAG [16, 27]. 

However, lowering [NAAB] toward the normal range in AspaNur7/Nur7 mice by constitutive 

knockout of a single Nat8l allele, or by brain delivery of an Nat8l inhibitory short hairpin-

RNA via intracerebroventricular administration of an adeno-associated viral vector (AAV), 

markedly diminishes the severity of vacuolar leukodystrophy (Fig. 2a, b, d), but does not 

appear to lengthen lifespan [16, 18].

Pleasure et al. Page 2

Neurochem Res. Author manuscript; available in PMC 2024 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The mechanism responsible for the toxicity of elevated [NAAB] has not been established. 

Cultured neural cells are not harmed by direct exposure to purified NAA [28], and 

oligodendroglial numbers are not diminished in A spaNur7/Nur7 or Canavan brain white 

matter [7]. Also, elevating [NAAB] in Aspa+/+ mice to an extent comparable to that in 

aspartoacylase-deficient mice by feeding NAA methyl ester or by engineering transgenic 

neuronal overexpression of Nat8l does not elicit clinical or neuropathological abnormalities 

[29, 30]. Thus, elevated overall [NAAB], is not sufficient to elicit vacuolar leukodystrophy in 

mice that express aspartoacylase.

Astroglia, but not oligodendroglia, express a sodium-coupled plasma membrane 

dicarboxylate transporter (NaDC3, encoded by Slc13a3) with sufficient affinity for NAA 

to maintain normal brain extracellular NAA concentration below 30μM [31, 32]. If 

astroglia do accumulate NAA from neurons via the action of NaDC3, and then transfer 

it to oligodendroglia, perhaps via astroglial/oligodendroglial gap junctions, then in the 

absence of oligodendroglial aspartoacylase, astroglia might over-accumulate NAA and 

therefore become vacuolated. Providing indirect support for this hypothesis, spontaneous 

mutations that inactivate ion channel-associated astroglial proteins, or disrupt astroglial/

oligodendroglial gap junctions, are sufficient to elicit vacuolar leukodystrophy in A 

spa+/+ brains [33–35]. This hypothesis could be tested by examining the effects on 

brain morphology in A spaNur7/Nur7 and A spa+/+ mice of ablating astroglial NaDC3 by 

constitutive or conditional Slc13a3 knockout.

Future Directions

Advances in in vivo gene editing may ultimately make it possible to correct ASPA mutations 

in vivo. Until that approach becomes feasible, AAV-mediated brain ASPA transduction 

is likely to be the most promising avenue to pursue, based on the good results reported 

with this approach in aspartoacylase-deficient mice. Interestingly, administration of an 

AAV-ASPA designed to target either oligodendroglia or astroglia has been successful in 

preventing vacuolar leukodystrophy in neonatal aspartoacylase-deficient mice [36, 37]. It 

should be noted that the success of ASPA gene therapy in aspartoacylase-deficient mice is 

compatible with both the oligodendroglial starvation and NAA toxicity hypotheses, since 

brain aspartoacylase reconstitution normalizes both brain acetyl-CoA content and [NAAB].

An initial attempt at direct brain intraparenchymal AAV2-mediated ASPA gene therapy in a 

Canavan disease cohort was unsuccessful in preventing progression of clinical neurological 

deficits and cerebral ventricle enlargement, though it did achieve a slight lowering of 

[ NAAB] [9]. Among the possible explanations for this disappointing result are that vacuolar 

leukodystrophy was already far advanced in some patients in the cohort; and that direct brain 

parenchymal vector administration, while successful in preventing vacuolar leukodystrophy 

in aspartoacylase-deficient mice, did not elicit sufficiently widespread oligodendroglial and 

astroglial aspartoacylase expression in the much larger human brains.

Aspartoacylase contributes to acetyl-CoA generation from NAA in various non-neural 

tissues as well as in oligodendroglia, and aspartoacylase deficiency also causes dysfunction 

of those tissues. For example, the rate of apoptosis by peritoneal macrophages is increased, 
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and renal distal convoluted tubules are vacuolated, in aspartoacylase-deficient mice. These 

and other deficits attributable to a lack of extraneural aspartoacylase may contribute to the 

shortening in median lifespan that has been documented in AspaNur7/Nur7 mice, and would 

not be expected to be corrected by ASPA gene therapy that is directed solely to the CNS [16, 

38–40].

Lowering [NAAB] may provide another effective therapy for Canavan disease, as has 

been shown in aspartoacylase-deficient mice [15, 16]. Oral lithium citrate administration, 

a therapy currently advocated for Canavan disease, does lower [NAAB] slightly in children 

with this leukodystrophy, but this effect, with usually clinically tolerable dosages, was 

too weak to be more than minimally clinically effective [41]. Instead, it should be 

possible to lower [NAAB] toward normal in infants and children with Canavan disease by 

suppressing brain N-acetyltransferase 8-like activity, either via NAT8L knockdown [18] or 

by development of a druggable N-acetyltransferase 8-like inhibitor [42].
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Fig. 1. 
AspaNur7/Nur7 mouse cerebellar vacuolation and astrogliosis. Cryostat sections through 

cerebellum of a 14 days old wild-type (Aspa+/+) mouse (a) and of a 14 days old 

aspartoacylase-deficient (AspaNur7/Nur7) mouse (b) were immunostained for calbindin 

(white) and vimentin (green), then counterstained with DAPI, then viewed by laser scanning 

confocal microscopy. In the section from the AspaNur7/Nur7 mouse, the Purkinje cell layer is 

disorganized, and there is a vacuole between two Purkinje cells (asterisk) that is surrounded 

by vimentin+ fibrils. Also in the AspaNur7/Nur7 section, there is a vimentin+ hypertrophic 

astrocyte (arrow) in the internal granule cell layer mouse, and Bergmann glial vimentin+ 

fibrils appear to be fragmented. Scale bar = 20μ m in both panels
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Fig. 2. 
Cerebellar vacuolation and dysmyellnation in AspaNur7/Nur7 mice is prevented by 

homozygous constitutive Nat8l knockout, and substantially diminished in severity by 

neonatal brain Nat8l knockdown. Cryostat sections through cerebellum were prepared from 

brains of 2 months old wild-type (Aspa+/+/Nat8l+/+) (a), a 2 months old untreated A spaNur7/

Nur7/Nat8l+/+ mouse (b), a 2 months old Aspa Nur7/Nur7/Nat8l−/− mouse (c), and a 2 months 

old A spaNur7/Nur7/Nat8l+/+ mouse that had been given an intracerebroventricular AAV 

carrying an Nat8l short hairpin inhibitory RNA (iNat8l-V) on postnatal day 1 (d). The 

sections were immunostained for myelin basic protein (MBP) and calbindin, counterstained 

with DAPI, and viewed by laser scanning confocal microscopy. Cerebellar vacuolation 

and dysmyelination were prominent in the untreated AspaNur7/Nur7 mouse, but these 

abnormalities were prevented by homozygous constitutive Nat8l knockout, and diminished 

in severity by Nat8l knockdown. Scale bar = 50μ m in all panels
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