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Abstract 
The genome of a microorganism encodes its potential functions that can be implemented through expressed proteins. It remains 
elusive how a protein’s selective expression depends on its metabolic essentiality to microbial growth or its ability to claim resources as 
ecological niches. To reveal a protein’s metabolic or ecological role, we developed a computational pipeline, which pairs metagenomics 
and metaproteomics data to quantify each protein’s gene-level and protein-level functional redundancy simultaneously. We first 
illustrated the idea behind the pipeline using simulated data of a consumer-resource model. We then validated it using real data from 
human and mouse gut microbiome samples. In particular, we analyzed ABC-type transporters and ribosomal proteins, confirming that 
the metabolic and ecological roles predicted by our pipeline agree well with prior knowledge. Finally, we performed in vitro cultures 
of a human gut microbiome sample and investigated how oversupplying various sugars involved in ecological niches influences 
the community structure and protein abundance. The presented results demonstrate the performance of our pipeline in identifying 
proteins’ metabolic and ecological roles, as well as its potential to help us design nutrient interventions to modulate the human 
microbiome. 
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Introduction 
Metagenomic sequencing has enabled the measurement of the 
genomic content and functional potential of microbial commu-
nities at an unprecedented rate, aiding the understanding of 
their role in host health [1–3] and biogeochemical cycling [4– 
6]. Although various computational approaches based on these 
genomes quantify interactions within microbial communities [7– 
12] and analyze the functional redundancy (FR) and functional 
stability of microbial communities [10–12], they focus on potential 
rather than actual function, as microorganisms only express a 
subset of genes as proteins [13]. Recent advancements in high-
throughput metaproteomics allow us to quantify protein abun-
dances in human gut microbiomes [14], offering insights into gene 
expression in response to environmental changes when paired 
with metagenomic data. 

From the metabolic perspective, some genes and their encoded 
proteins are indispensable for cell metabolism under any 
conditions, as microbial growth halts without these essential 
functions—aminoacyl-tRNA synthetase [15, 16], ribosomal 

proteins [17–19], and enzymes involved in glycolysis [20, 21]. 
From the ecological perspective, gene expression is influenced 
by ecological selection, with specific proteins indicating which 
resources a microbe can utilize and defining its ecological niche. 
For instance, Escherichia coli prefers glucose over lactose due to the 
repressed expression of lactose-utilizing enzymes, even though it 
can use both sugars [22, 23]. Such specialization of consuming one 
resource caused by the selective gene expression may reduce the 
niche overlap with other species and allow microbial coexistence, 
as seen with two E. coli strains where one expresses acetyl-
coenzyme synthetase (Acs) [24, 25] to consume acetate produced 
by the other [26–29]. 

Understanding the selective expression of microbial genes is 
an outstanding question in microbiology. Does the behavior of 
selective expression of microbial genes differ between metabolic 
function (e.g. essential for microbial growth metabolism) and 
ecological function (e.g. claiming resources as a niche)? To 
answer this, we developed a computational method to analyze 
paired metagenomic and metaproteomic [14, 30–33] data,
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constructing the gene content network (GCN) or protein content 
network (PCN)—a bipartite graph that connects microbial taxa to 
their genes or expressed proteins, respectively (Fig. 1A and B). For 
each gene and its encoding protein, we compared its gene-level 
(or protein-level) FR, revealing each protein family’s metabolic 
or ecological role. Our method, validated with several gut 
microbiome data, accurately predicts that ABC-type transporters 
are related to ecological niches [34–36], and ribosomal proteins 
are essential [17–19]. Finally, we performed in vitro culture 
experiments using human gut microbiome samples to investigate 
how oversupplying sugars involved in ecological niches influence 
community structure and protein expression. 

Materials and methods 
In vitro human gut microbiota culture and 
metaproteomics 
Three healthy individual microbiota samples were collected and 
biobanked [37]. The frozen microbiome samples were cultured 
in our optimized culture medium [38] with or without the 
presence of different sugars in technical triplicates, and were 
taken at different times for optical density and metaproteomic 
analyses. For single-strain samples, proteins were extracted 
with 4% Sodium Dodecyl Sulfate (SDS) 8 M urea buffer in 
100 mM Tris–HCl buffer, followed by precipitation and acetone 
washing. Proteins were digested with trypsin desalted [39] for  
Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) 
analysis using an Orbitrap Exploris 480 mass spectrometer. For 
the cultured microbiomes, an automated process extracted 
and purified proteins, which were then digested, desalted, and 
quantified using TMT11plex [40], ensuring mixed representation 
in labeling to avoid bias. Samples underwent a 2-h LC gradient 
and were analyzed by mass spectrometry. More details can be 
found in Supplemental Methods. 

Datasets 
Metagenomics data from four individual microbiomes were 
obtained from the previous MetaPro-IQ study [14, 33] (accessible 
from the National Center for Biotechnology Information (NCBI) 
sequence read archive under the accession of SRP068619), 
and the same samples were reanalyzed by an ultra-deep 
metaproteomics approach [14] via the PRIDE partner repository 
[41] with the dataset identifier PXD027297. Proteomics dataset 
of the cultured singles strain samples has been deposited to 
ProteomeXchange Consortium with the identifier PXD037923. 
Metaproteomic dataset of the RapidAIM-cultured microbiome 
samples has been deposited to ProteomeXchange Consortium 
(identifier PXD037925). The metaproteomic dataset of the mouse 
gut microbiome comprising 20 gut microbes is derived from 
a previous study  [42] that was deposited to ProteomeXchange 
Consortium with the dataset identifier PXD009535 and to MassIVE 
with the dataset identifier MSV000082287. 

Database search and data processing 
Proteomics database searches used FASTA databases of the indi-
vidual strains downloaded from NCBI and MaxQuant [43] 1.6.17.0 
for analysis, without the label-free quantification. Metaproteomic 
database searches of cultured microbiome samples were per-
formed using MetaLab V2.2, and the [44] MaxQuant option was 
used to search the Tandem Mass Tag (TMT) dataset against the 
integrated gene catalog (IGC) database of the human gut micro-
biome. The resulting data table was normalized using R package 
MSstatsTMT [45], and missing values were imputed using R pack-
age DreamAI [46]. The “fraction” of each taxon-specific protein 

is computed by dividing the protein intensity by the sum of the 
intensities of all proteins assigned to the same taxon. The log2 
fold change of each protein is obtained by taking log2 of the ratio 
between its fraction in the treatment group (with added sugars) 
and its fraction in the control group (without added sugars). 

Statistics 
To calculate correlation throughout the study, we used Pearson’s 
correlation coefficient. All statistical tests were performed 
using standard numerical and scientific computing libraries in 
the Python programming language (version 3.7.1) and Jupyter 
Notebook (version 6.1). 

Results 
Specialist function, niche function, and essential 
function 
Here, we define three types of functions for protein families that 
we would like to categorize: (i) “Specialist function”: specialized by 
only a few taxa and not widely shared within a community. (ii) 
“Niche function”: arising from ecological competition, widespread 
among genomes of numerous taxa but selectively expressed 
under specific ecological conditions. (iii) “Essential function”: 
metabolically indispensable for and widely shared by many 
taxa within a microbial community. We emphasize that our 
definition is not exhaustive; some proteins may display attributes 
of multiple categories or not align precisely with any single 
category. 

Using a simple hypothetical example of two competing species 
(Fig. 1A and B), we demonstrated the three function types: (a) the 
blue protein is a specialist function since it is solely encoded in 
the pink species’ genome; (b) the red protein belongs to a niche 
function due to its selective expression by the yellow species even 
though the protein is encoded in the genomes of both species; (c) 
the green protein is an essential function because both species 
need it for biomass synthesis. In coexistence, the pink species 
specializes in the blue resource, avoiding competition with the 
yellow species for the red resource. 

GCN, PCN, and network degree 
We can identify the functional types of proteins in this hypo-
thetical case by comparing the structure of the GCN and PCN 
(Fig. 1A and B). For example, consider the protein responsible for 
converting red resource to green metabolite (red broken circle in 
Fig. 1A and B), its degree in the GCN kGCN = 2, while its degree 
in the PCN kPCN = 1. This degree reduction is due to distinct 
ecological niches being occupied by two species when they are 
cocultured. By contrast, the protein responsible for assimilating 
critical green metabolites (green broken circle in Fig. 1A and B) 
into biomass does not show a degree reduction (kGCN = kPCN = 2) 
because it is essential for microbial growth. Similarly, since the 
blue protein is only specialized by the pink species, its kGCN = 
kPCN = 1. Thus, three function types occupy different regions in 
the kGCN vs. kPCN plot (Fig. 1C). 

Quantifying gene- and protein-level FR of each 
gene and its encoded protein 
However, the network degree does not consider the significant 
impact of the microbial taxonomic profile, which provides details 
about the makeup of a microbial community. This profile is 
represented by p = (

p1, . . .  , pN
)
, where  pi is the relative abundance 

of taxon-i and
∑N 

i=1pi = 1. For a given gene and its encoded protein, 
we can define its gene-level FR (FRg) and protein-level FR (FRp)
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Figure 1. Protein functions involved in determining ecological niches are postulated to have larger discrepancies between the gene-level functional 
redundancy FRg and protein-level functional redundancy FRp; here we use a hypothetical example with three representative proteins (three broken 
circles with complementary shapes to their substrates) to demonstrate this point; (A) schematic of the genomic capacity of two microbial taxa (oval 
vs. indented oval); two resources (pentagon and triangle) are externally supplied to the community; the round-shaped metabolite can be transformed 
from either resource and further utilized in biomass synthesis; the taxon on the left has the capacity of converting either supplied resource into the 
metabolite, while the taxon on the right can only convert the pentagon-shaped resource; (B) schematic of expressed proteins for two microbial taxa 
after their competition in the same community; after the competition, the reduced resource conflict (represented by the taxon on the left choosing the 
triangle-shaped resource as the sole one to consume) can promote their coexistence; GCN and PCN can be used to capture genomic capacity and 
expressed protein functions for all taxa; alternatively, this network can be represented as incidence matrices on the bottom (i.e., the presence/absence 
of edges connecting taxa to proteins); (C and D), the comparison between kGCN and kPCN or between FRg and FRp helps to classify proteins into three 
protein functional types: specialist function, essential function, and niche function. In the calculation of FRg and FRp, we assume equal abundances of 
the two species, i.e. p1 = p2 = 0.5; (E) the comparison between FRg and FRp when p1 = 0.9 and p2 = 0.1; (F) the pipeline of assigning the functions 
(specialist, niche, or essential) to protein families based on the paired metagenomes and metaproteomes; each individual’s gut microbiome sample was 
subjected to DNA and protein extraction; then a protein-peptide bridge approach can be used for generating the GCN based on the metagenome and 
PCN based on the metaproteome; when matched metagenomes are available, taxonomic and functional annotations of the metagenomes can be used 
for PCN generation; based on the generated GCN, PCN, and taxonomic profile, FRg and FRp can be computed and used for the function assignment. 
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within this sample as 

FRg = 
N∑

i=1 

N∑
j �=i

(
1 − dGCN 

ij

)
pipj, (1)  

and 

FRp = 
N∑

i=1 

N∑
j �=i

(
1 − dPCN 

ij

)
pipj. (2)  

dGCN 
ij (or dPCN 

ij ) is the distance between taxon-i and taxon-j 
based on their genomic capacity to express this gene (or the 
presence of the protein). For simplicity, we assume dGCN 

ij is binary, 
i.e. dGCN 

ij = 0 if and only if both taxa share the potential to express 
the gene, and dGCN 

ij = 1 otherwise. dPCN 
ij = 0 if and only if both 

taxa have expressed the protein. Here, we define FRg and FRp 

for each protein, different from our previous studies where FR 
was calculated by including all genes or proteins in a microbial 
community [12, 14]. 

Comparing FRg and FRp provides deeper insight into proteins’ 
function types. For the red protein in our hypothetical example, 
dGCN 

12 = 0 and dPCN 
12 = 1 because both species share the potential to 

express the gene, while only the yellow species have expressed it 
(Fig. 1A and B). As a result, FRg = 2 (1 − 0) p1p2 = 2p1p2 and FRp = 
2 (1 − 1) p1p2 = 0 (Fig. 1D and E). Following the same analysis, 
FRg = FRp = 2p1p2 for the green protein, and FRg = FRp = 0 
for the blue protein (Fig. 1D and E). Different from composition-
independent kGCN and kPCN, FRg and FRp take the microbial com-
position into account and thus are more ecologically meaningful. 
Notably, a more uneven abundance distribution would lead to 
smaller FRg and FRp (p1 = p2 = 0.5 in Fig. 1D; p1 = 0.9 and 
p2 = 0.1 in Fig. 1E). The influence of relative abundances on FR can 
be mitigated by using the normalized FR: nFR = FR / TD, where TD 
= 1−∑

i p
2 
i (Supplementary Fig. 1; see Supplementary Information 

for the definition). 

Overview of our computational pipeline 
Following the idea of comparing FRg with FRp, we developed 
a computational pipeline to assign the function types (spe-
cialist, niche, or essential) to protein families based on the 
paired metagenome and metaproteome (Fig. 1F). This pipeline 
starts with DNA sequences from metagenomes and peptides 
sequences from metaproteomes. Using the “protein-peptide 
bridge” approach that maps peptides to their taxonomic origins 
and protein families (i.e. orthologous protein clusters), it generates 
the GCN, PCN, and taxonomic profile, from which we compute 
FRg and FRp. Details about this approach can be found in the 
Supplementary Information. Finally, based on the scatterplot of 
FRg vs. FRp, each protein family is categorized into one of the three 
function types. Note that the computational pipeline assigns the 
function type without leveraging the known biological functions. 
Instead, we validate these assignments against the knowledge 
about biological functions. 

Illustration of our computational pipeline using 
synthetic data 
To illustrate the pipeline’s workflow, we utilized synthetic data 
generated by a consumer-resource model (CRM). Each niche (or 
specialist) function is modeled as the consumption of a unique 
and externally supplied resource (Fig. 2A1), whose loss would 
make a species unable to consume the corresponding resource 
(Fig. 2A2 and A3). The loss of an essential function is modeled as 
reducing a species’ growth rate by 5% (Fig. 2A4). 

For each species, each niche (specialist, or essential) function 
was assigned to the species’ genome with probability pn (ps or 
pe), respectively (Fig. 2B, left). We  set  pn = pe = 0.7 to ensure 
that we cannot distinguish niche functions from essential func-
tions only based on their kGCN. We  set  ps = 0.2 < pn = pe 

so that specialist functions were assigned to fewer species than 
niche and essential functions. Species’ actual expressed functions 
were determined by randomly sampling a subset of its potential 
functions (Fig. 2B, middle). This behavior of sub-sampling was 
observed when we cultured single microbial strains in different 
environments (Supplementary Fig. 21). We simulated community 
dynamics until reaching a steady state, for which we constructed 
the PCN of the surviving species (Fig. 2B, right; see Supplementary 
information for technical details). More technical details of CRM 
are in Supplementary Information. 

In our model with 10 000 species and 20 functions for each of 
the three function types, each species randomly sampled a subset 
of potential functions (Fig. 2C, left) to express (Fig. 2C, middle). We 
demonstrated a simulation example with 35 species surviving in 
the final steady state after the community assembly initialized 
with 10 000 species (Fig. 2C, right). 

We applied the taxonomic profile, GCN, and PCN for the sur-
viving 35 species to our computational pipeline, finding that 
the three modeled protein function types were correctly classi-
fied as three clusters (60 out of 60 were correct) by the Gaus-
sian mixture model in both the comparison of network degree 
(Fig. 2D) and  FR  (Fig. 2E). We emphasize that the observed three 
functional clusters arise from community assembly. When we 
randomly picked 35 species (same as the number of surviving 
species) from the initial pool with equal abundances without 
assembly, niche functions cannot be distinguished from essential 
functions (Fig. 2F and G). Even when assigning the same ran-
domly picked 35 species with the same abundances of surviving 
species, we still cannot differentiate these two functional types 
(Supplementary Fig. 2). Our findings held when varying (1) the 
number of species and functions or (2) model parameters pn, 
ps, and  pe, affirming the method’s robustness in distinguishing 
function types (Supplementary Figs 3–5). 

Three protein functional clusters observed in 
human gut microbiomes 
Next, we validated our computational pipeline on real data of 
human mucosal-luminal interface samples previously collected 
from the ascending colon of four children [14, 33]. Here we 
focused on the genus level and annotated the identified proteins 
from metagenomic and metaproteomic data via the clusters 
of orthologous genes (COGs) database [47, 48]. We chose the 
genus level due to widely shared peptide sequences across 
species (Supplementary Fig. 6). We searched metagenomic reads 
and metaproteomic peptides against the IGC database of the 
human gut microbiome [49] to generate the GCN and PCN 
[14] and took the intersected COGs between the two networks. 
Taxonomic assignment was performed using the “protein-
peptide bridge” method as described previously [14]. Our analysis 
centers on subject HM454, identifying 1542 intersected COGs 
in both the GCN and PCN and obtaining a taxonomic profile 
of 85 genera using MetaPhlAn2 [50]. The connectance (i.e. the 
number of edges divided by the maximal number of possible 
edges) of the GCN (or PCN) is 0.220 (or 0.049), respectively 
(Fig. 3A and B). The GCN displayed a higher nestedness (nested-
ness metric NODF [51]=0.667) than the PCN (NODF = 0.453). More 
details about data processing and NODF are in Supplementary 
Information.

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
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Figure 2. Three protein functional clusters (specialist function, essential function, and niche function) considered in the community assembly model 
form three distinct clusters when the network degree and FR are compared between the GCN and PCN in model-generated synthetic data; (A1–A4) 
three types of functions modeled have different ecological and metabolic roles; the niche function (the protein missing in A2) and specialist function 
(the protein missing in A3) are modeled as abilities to consume externally supplied resources; the role of essential functions (the protein missing in 
A4) is considered as a reduction in the overall growth rate for each missing essential function; (B) a schematic diagram of the community assembly; 
species (ovals and indented ovals) with expressed gene functions selected via the sub-sampling of their genomic capacity; then all species are 
co-cultured together to simulate their ecological competition; (C) a simulation example of the community assembly, and the construction of GCN and 
PCN for the survived species; (D and E), the comparison of network degree and FR, respectively, based on the GCN and PCN of survived species in the 
simulation example in panel-C; a Gaussian mixture model with three clusters is used to identify three protein functional clusters; ellipses around 
clusters cover areas one standard deviation away from their means; (F–G) the comparison of network degree and FR, respectively, based on the GCN 
and PCN of 35 species randomly selected from the 10 000 species in the initial pool; all points/functions are colored red (niche functions), green 
(essential functions), and blue (specialist functions) according to their types of functions in the model; kGCN (or kPCN) is the network degree of each 
function in the GCN (or PCN); FRg (or FRp) is the FR of each function on the gene level (or protein level), respectively. 
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Figure 3. Real data of the human gut microbiome showing three clusters on the plot that compares FRg with FRp; metagenome and metaproteome of 
subject HM454 mucosal-luminal interface samples [33] were used to construct GCN and PCN, respectively; (A) the GCN shows if a genus owns (or 
doesn’t own) a COG as its genomic capacity, which is filled (or empty); the GCN matrix is ordered to have decreasing network degrees for both genera 
and COGs; (B) the PCN shows if a genus expresses (or doesn’t express) a COG as its protein function, which is filled (or empty); the PCN matrix follows 
the same order as the GCN; (C) differences in network degree for most COGs are large; kGCN is the network degree of each COG in the GCN (i.e. the 
number of genera owning each COG in the GCN); kPCN is the network degree of each COG in the PCN (i.e. the number of genera owning each COG in 
the PCN); (D) FRg is larger than FRp for most COGs; three functional clusters are predicted by the Gaussian mixture model with three clusters fitted on 
synthetic data; the transparent large circles represent centroids of three clusters; (E) the relationship between FRp and network degree of PCN for 
COGs is not monotonic. 

The network degree analysis revealed a general decline from 
GCN to PCN, with 804 out of 1542 COGs having kPCN < 0.2kGCN 

(Fig. 3C; Supplementary Data 1). This decline greatly influences 
FR but does not fully explain why many COGs have FRp ∼ 0 (744 
out of 1542 have FRp < 0.01 in Fig. 3D) and kPCN nonlinearly cor-
relates with FRp (Fig. 3E). For example, for L-arabinose isomerase 
(COG2160), its kPCN [7] is fairly close to kGCN [8], but its FRp (0.04) 
is much lower than FRg (0.23) since the genus Blautia (relative 
abundance = 22%) did not express L-arabinose isomerase, even if 
it has this capacity encoded in its genome. 

Using the Gaussian mixture model fitted on simulated data, we 
categorized all protein families into three clusters (Fig. 3C and D). 
Although clusters on real data are not as distinct as on simulated 
data, the relative positioning of the three clusters (shaded areas 
in Fig. 3C and D) agrees well with our hypothesis (Fig. 1). The 
weaker clustering might result from a greater variation in kGCN 

(or FRg) for real data (Fig. 3C and D) than that for simulated data 
(Fig. 2D and E). 

Some COGs have FRp > FRg (Fig. 3C and D), contradicting the 
sub-sampling argument for the gene expression. FRp should not 
exceed FRg if the PCN was a proper subgraph of the GCN. This con-
tradiction may stem from limitations in metagenomic sequencing 
and metaproteomic identification depths, as both metagenomics 
and metaproteomics require sufficient depth to detect genes or 

proteins, respectively. We tested how the lower detection capa-
bility of metaproteomics or metagenomics influences the FR 
by varying the protein or gene abundance percentile threshold 
(PAPT or GAPT), which denotes the percentage of most abun-
dant proteins or genes being kept. As PAPT or GAPT decreases, 
FRp or FRg drops respectively (Supplementary Fig. 15). When 
GAPT decreases, we observed more proteins with FRp greater than 
their FRg. 

Validating three functional clusters observed in 
human gut microbiomes 
Our computational pipeline accurately assigns functional 
clusters for protein families, agreeing with their known biolog-
ical functions. For example, COG0539 (ribosomal protein S1) 
was assigned as the essential function, which is essential for 
translational initiation [17–19, 52, 53]. Another example is the 
assignment of COG1116 (ABC-type nitrate/sulfonate/bicarbonate 
transport system) [34] as a niche function, whose expression has 
been shown to be selectively enriched for a few microbial species 
[54]. 

The pipeline’s classifications were systematically validated 
against well-established biological roles of specific protein 
families: (i) ABC-type transporters are niche proteins due to 
their connection with ecological metabolic niches [34–36];

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data


Proteins’ ecological and metabolic roles | 7

(ii) ribosomal proteins are essential proteins because they 
are indispensable for the microbial growth [55, 56]; (iii) PTS 
(phosphotransferase system) proteins are specialist proteins 
because an evolutionary study has shown that various species 
within the same genus even possess a different set of PTS proteins 
[57]. To evaluate our pipeline’s performance, we quantified its 
accuracy in assigning these protein families (ABC-type trans-
porters, ribosomal proteins, or PTS proteins) against the assumed 
“ground-truth” functions (niche, essential, or specialist functions, 
respectively). 

For HM454, our computational pipeline based on the FRg/FRp 

plot correctly categorizes 81 of 122 COGs belonging to ABC-type 
transporters, ribosomal proteins, or PTS proteins. In comparison, 
when classifying functions based on the kGCN/kGCN plot, 74 COGs 
were correctly assigned, slightly worse than that based on the 
FRg/FRp plot. Specifically, 26 of 53 COGs belonging to ABC-type 
transporters are classified as niche functions. The fraction of 
ribosomal proteins classified to the cluster of essential functions 
is 83.0%(=44/53). For the PTS proteins, among the identified 16 
COGs, 11 are classified as specialist functions. 

Alternative clustering and classification methods 
Alternatively, we explored the unsupervised K-mean clustering 
with K = 3, which captured the three representative functional 
clusters with their positions agreeing with our expectations 
(Supplementary Fig. 13). We also designed a supervised classifier 
based on quadratic discriminant analysis (QDA). QDA, trained on 
ABC-type transporters, PTS proteins, and ribosomal proteins as 
the niche, specialist, and essential functions, generated clusters 
closely resembling those from the Gaussian mixture model 
(Supplementary Fig. 14). For HM454, the K-mean clustering 
categorizes 48 of these 122 COGs that are ABC-type transporters, 
ribosomal proteins, or PTS proteins into clusters, respectively, 
representing niche, essential, or specialist functions (i.e. the 
accuracy is 39.3%). For the QDA classifier, the accuracy is 
59.0% (=72/122). Thus, we select the Gaussian mixture model 
as the classification method because of its superior accuracy 
(66.4% = 81/122). 

Comparing FRg with FRp identifies ecological 
niches and metabolic essentiality 
We focused on analyzing ABC-type transporters [34–36] and  
ribosomal proteins [17–19]. ABC-type transporters are energy-
requiring transporter proteins that allow microbes to exploit 
specific niches like glucose uptake [34–36]. For HM454, we indeed 
found that kGCN for all ABC-type transporters is much larger 
than their kPCN (Fig. 4A). Similarly, we also found that their FRg 

values are much larger than their FRp values, classifying many 
transporter proteins as niche functions (Fig. 4B). Some transporter 
proteins were classified as specialist functions (blue dots in 
Fig. 4B) due to the specialization on the gene level, which is carried 
to the protein level. Some transporter proteins were classified as 
essential functions (green dots in Fig. 4B). One example is the 
ABC-type Fe3+/spermidine/putrescine transporter (COG3842), as 
iron is essential for bacteria to function as a co-factor in iron-
containing proteins [58, 59]. 

Ribosomal proteins, critical for protein synthesis and microbial 
growth [55, 56], showed little variance between kGCN and kPCN 

(the mean and the standard deviation of the relative difference 
kGCN−kPCN 

kGCN 
is 0.09 ± 0.41; Fig. 4E), with most correctly classified 

as essential (44 out 53 COGs in Fig. 4F). Notably, two ribosomal 

proteins (L28 and L34), which have been reported as non-essential 
to microbes such as E. coli [17, 53, 60], were accurately classified 
as non-essential proteins (red dots in Fig. 4E). Certain specialized 
ribosomal proteins in microbial genomes continue to be special-
ized on the protein level and thus were classified as specialist 
functions. 

Alternatively, we looked at the distribution of network degrees 
(Fig. 4C and G) and FR (Fig. 4D and H). For ABC-type transporters, 
the distribution of kPCN is close to 0 (median of 2), while the 
median of kGCN is 25. For ribosomal proteins, the distribution of 
kPCN (median is 12) is similar to kGCN (median is 14). For ABC-
type transporters, the distribution of FRp is close to 0 (with a 
median ∼ 0.01), while the median of FRg is around 0.30. For ribo-
somal proteins, the distribution of FRp (median ∼ 0.20) is similar 
to the distribution of FRg (median ∼ 0.21). 

The similar patterns are also true for the other three individ-
uals (Supplementary Figs 8–10; Supplementary Data 2–4). Varia-
tions in the FRg /FRp plot across individuals (Supplementary Figs 8– 
10) are likely due to differences in gut environments, diets, 
and microbial composition. Note that HM503 is an outlier due 
to its lower diversity (36 genera versus the average of 56.7) 
(Supplementary Fig. 11). Similarly, the Shannon diversity index 
for HM503 is only 1.41, lower than other individuals (mean and 
standard deviation are 2.05 and 0.18). The lower diversity in 
HM503 leads to fewer taxa owning the same function on average, 
resulting in lower FRg and FRp values. 

Extending our analysis to additional protein families, we dis-
covered that proteins linked to glycolysis, RNA polymerase, and 
the Tricarboxylic Acid cycle (TCA) cycle displayed patterns similar 
to ribosomal proteins (Fig. 4I and J). By contrast, proteins asso-
ciated with sugar utilization, glycosyl hydrolase, and aromatic 
amino acid biosynthesis exhibited patterns more akin to ABC-
type transporters. We also analyzed the classification results 
for the unknown COG functions (with the category “S: Function 
Unknown”). Out of the 104 unknown COGs in our analysis, the 
majority are classified as specialist (43/104) or niche functions 
(40/104), with a smaller portion identified as essential functions 
(21/104). 

We also confirmed our results using the KEGG Orthology 
(KO) annotation [61–64], which has a lower annotation rate 
(78%) than COG (92%). For HM454, our computational pipeline 
categorizes 75 of these 126 KOs that are ABC-type transporters, 
ribosomal proteins, or PTS proteins into clusters, respectively, 
representing niche, essential, or specialist functions, similar to 
the classification accuracy based on the COG. The contrasting 
difference between ABC-type transporters and ribosomal proteins 
is well preserved (see Supplementary Fig. 7). Additionally, the 
distribution of FRp shows a dramatic difference across KO 
groups (Supplementary Fig. 12). Some ecologically strongly 
selected KO groups such as ABC transporters have small 
FRp(Supplementary Fig. 12). As a comparison, proteins from 
aminoacyl-tRNA biosynthesis [15, 16], glycolysis [20, 21], and 
ribosomes [17–19] have large FRp and huge variations within 
each group (Supplementary Fig. 12). 

Validating our method on the mouse gut 
microbiome 
In testing our method’s feasibility in other microbial communi-
ties, we leveraged a metaproteomic dataset from mice gavaged 
with a synthetic microbiome comprising 20 sequenced bacteria 
[42]. Since this study lacks paired metagenomes, we used its 16S 
rRNA gene sequencing data with individual genomes to infer

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
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Figure 4. Comparison of network degree and FR between the gene and protein level for many protein families including ABC-type transporters and 
ribosomal proteins from the human gut microbiome; (A) network degrees in GCN are larger than network degrees in PCN for most ABC-type 
transporter COGs; kGCN (or kPCN) is the network degree of each COG in the GCN (or PCN); (B) FRg is larger than FRp for most ABC-type transporter 
COGs; (C and D) the distribution of network degrees and functional redundancies (violin plots and boxplots) for ABC-type transporter COGs shows a 
significantly huge reduction from kGCN to kPCN or from FRg to FRp; (E) network degrees in GCN are comparable with that in PCN for most ribosomal 
protein COGs; (F) FRg is comparable with FRp for most ribosomal protein COGs; points in scatter plots are colored by the same colors used in Fig. 3d; 
(G and H) the distribution of network degrees and functional redundancies (violin plots and boxplots) for ribosomal protein COGs shows no significant 
reduction from kGCN to kPCN or from FRg to FRp; (I) the fraction of assigned specialist, niche, or essential functions based on comparing network 
degrees kGCN and kPCN for many protein families; (J) the fraction of assigned specialist, niche, or essential functions based on comparing functional 
redundancies FRg and FRp for many protein families; in all boxplots, the middle white dot is the median, the lower and upper hinges correspond to the 
first and third quartiles, and the black line ranges from the 1.5 × IQR (where IQR is the interquartile range) below the lower hinge to 1.5 × IQR above 
the upper hinge; all violin plots are smoothed by a kernel density estimator and 0 is set as the lower bound; all statistical analyses were performed 
using the two-sided Mann–Whitney-Wilcoxon U test with Bonferroni correction between genomic capacity (GCN) and protein functions (PCN); 
P-values obtained from the test is divided into five groups: (1) P > .05 (ns), (2) .01 < P ≤ 0.05 (∗), (3) 10−3 < P ≤ .01 (∗∗), (4) 10−4 < P ≤ 10−3 (∗∗∗), and (5) 
P ≤ 10−4 (∗∗∗∗); network degree comparison of ABC transporters: P = 7.11 × 10−16; network degree comparison of ribosomal proteins: proteins: P = .10; 
redundancy comparison of ABC transporters: P = 2.19 × 10−11; redundancy comparison of ribosomal proteins: P = 1.00. 
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Figure 5. Comparison of network degree and FR between the gene and protein level for many protein families including ABC-type transporters and 
ribosomal proteins from the synthetic mouse gut microbial community; (A) comparison between network degrees of all COGs in the GCN (kGCN) and  
network degrees of all COGs in the PCN (kPCN); (B) comparison between functional redundancies of all COGs in the GCN (FRg) and functional 
redundancies of all COGs in the PCN (FRp); (C and D) the distribution of network degrees and functional redundancies (violin plots and boxplots) for all 
COGs; (E–H) comparison between kGCN and kPCN, comparison between FRg and FRp, the distribution of network degrees, and the distribution of 
functional redundancies for ABC-type transporter COGs; (I—L) comparison between kGCN and kPCN, comparison between FRg and FRp, the distribution 
of network degrees, and the distribution of functional redundancies for ribosomal protein transporter COGs; (M) the fraction of assigned specialist, 
niche, or essential functions based on comparing network degrees kGCN and kPCN for many protein families; (N) the fraction of assigned specialist, 
niche, or essential functions based on comparing functional redundancies FRg and FRp for many protein families; in all boxplots, the middle white dot 
is the median, the lower and upper hinges correspond to the first and third quartiles, and the black line ranges from the 1.5 × IQR (where IQR is the 
interquartile range) below the lower hinge to 1.5 × IQR above the upper hinge; all violin plots are smoothed by a kernel density estimator and 0 is set 
as the lower bound; all statistical analyses were performed using the two-sided Mann–Whitney-Wilcoxon U test with Bonferroni correction between 
genomic capacity (GCN) and protein functions (PCN); P-values obtained from the test are divided into five groups: (1) P > .05 (ns), (2) .01 < P ≤ .05 (∗), 
(3) 10−3 < P ≤ .01 (∗∗), (4) 10−4 < P ≤ 10−3 (∗∗∗), and (5) P ≤ 10−4 (∗∗∗∗). 
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its metagenome. Here we focused on the strain level because 
peptides of different strains in this simple synthetic gut micro-
biome can be distinguished. We relied on the comparison between 
FRg and FRp to generate the distribution of functional clusters 
across many protein families for this dataset (Fig. 5N). The 
results mirrored those of human gut microbiomes, especially the 
contrasting patterns between ABC-type transporters and riboso-
mal proteins (Fig. 5). 

Response of community and protein abundance 
to the introduction of sugars 
After identifying niche functions through our computational 
pipeline, we explored using nutrients associated with niche 
functions to manipulate the community structure. In ecology, 
a niche is often defined as an abiotic and biotic factor that 
supports the survival of species [9, 65–67]. Therefore, niche 
functions are associated with corresponding limiting resources 
involved in those functions. For example, COG1879 (ABC-type 
sugar transporter) is categorized as a niche function due to 
microbial competition for sugars (Supplementary Fig. 17). Here, 
we leveraged the in vitro community and studied how expression 
levels of ATP-type transporters respond to supplied sugars so that 
a microbial taxon can achieve a better living strategy. 

Using the RapidAIM V2.0 approach [68], which replicates the 
functional profiles of individual gut microbiomes in vitro [38], 
we cultured three individual human gut microbiota samples and 
used a semi-automated metaproteomics workflow to observe 
how taxon-specific proteins respond to the presence of glucose, 
fructose, and kestose (Fig. 6A). Samples were cultured in technical 
triplicates, and protein abundances were quantified at 0, 1, 5, 
12, and 24 h using 11-plex tandem mass tag (TMT11plex) [40] 
for a total of 189 samples. We analyzed the Bray–Curtis dissim-
ilarity of metaproteomes over time, finding that more complex 
sugars induce more pronounced alterations in protein profiles 
(Supplementary Fig. 16). 

To reflect the effect of introduced sugars on protein abun-
dances, we used log2 of fold change in normalized protein 
abundances/intensities (see Supplemental Methods for details) 
between the treatment and control group (Fig. 6). We hypoth-
esized that excessive sugars remove the growth limitation 
on carbon resources, prompting microbes to upregulate other 
transporters for uptaking more other scarce resources (e.g. 
nitrogen or amino acids) for better growth (Fig. 6A). We analyzed 
log2 fold changes of ABC-type transporters 5 h later after sugar 
introduction (Fig. 6B–D), with most COGs close to zero. Among 
seven significantly influenced COGs, COG1126 (ABC-type polar 
amino acid transport system) is the only one that is revealed to 
be a niche function. Focusing on COG1126, we found that it is 
specialized by the genus Holdemanella. Holdemanella benefits from 
upregulating COG1126, as the proportion of Holdemanella proteins 
significantly increases from 13.5%(± 0.06%) for the control to 
15.8%(± 0.08%) with the added glucose (P-value = .04, Mann– 
Whitney U test applied). 

We observed that adding fructose, glucose and fructose, or 
kestose alters ABC-type transporters’ expression similarly to 
glucose alone (Fig. 6). The correlation in log2 fold changes of ABC-
type transporters between different added sugars is significant 
(Supplementary Fig. 18). Notably, complex sugars trigger more 
significant fold changes in microbial protein expression. This 
pattern persists for metaproteomic measurements 12 and 24 h 
later, while the fold changes 1 hour later are less significant 
(Supplementary Fig. 19; P value <.01 for four sugar-adding 
scenarios, Mann–Whitney U test applied). Additionally, the 

overwhelmingly positive log2 fold changes of ribosomal proteins 
(Supplementary Fig. 20; P-value <10−4 for four sugar-adding 
scenarios, one-sample Wilcoxon test applied) probably imply 
faster microbial growth when simple sugars are supplied 
[69, 70]. 

Discussion 
We developed a computational pipeline to classify protein fami-
lies as specialist, niche, and essential functions by comparing FRg 

with FRp. This approach supplements traditional methods that 
test metabolic essentiality by gene knockout [17–19] and identify 
limiting resources by measuring biomass changes upon resource 
supplies [71–74]. We first illustrated this method on synthetic data 
and then validated it using real datasets of human and mouse 
gut microbiomes. We acknowledge a limitation in our validation 
process—the reliance on limited available literature. Hence, our 
classification should be seen as a preliminary framework that 
is open to refinement as the investigation of protein families’ 
functions improves. 

Our findings bridge the gap between the ecological niche 
theory, which posits that each resource (or niche) can only be 
occupied by one species for steady-state conditions [67, 75, 
76], and the FR revealed by shared functions among microbial 
genomes [11, 12]. We solved this dilemma by showing niche 
proteins usually have very small FRp and large FRg. Additionally, 
our ecological framework combines genomic capacity and 
protein functions together by introducing species with sub-
sampled functions. The model framework accounts for selective 
expression due to different environmental conditions [77–79] 
or evolved strains with distinct metabolic niches [26, 27, 80], 
reconciling phenotype-focused ecological models with genetic 
data. 

The observed case of FRp > FRg for some COGs could stem 
from using MetaProIQ, a general microbiome catalog, for metapro-
teome analysis. Although MetaProIQ facilitates the identification 
of proteins from various gut microbes, the general search against 
it may cause anomalies. In contrast, directly searching metapro-
teomic data against the gene calls from the paired metagenome 
may deliver more accurate identifications. However, this strategy 
suffers when the metagenomic sequencing is incomplete, leading 
to undetected proteins due to missing genes. In our human gut 
microbiome datasets, limited sequencing depth might cause such 
issues. For the synthetic mouse gut communities with complete 
genomes for each microbial strain, we matched metaproteome to 
microbial genomes and did not encounter any case of FRp > FRg, 
highlighting the effectiveness of this approach in contexts with 
complete genomic data. 

In this work, we only validated our pipeline on gut-related 
biomes due to the limited accessibility of paired metagenome-
metaproteome in other environments. In nutrient-poor envi-
ronments, where ribosomal proteins are less expressed [81, 
82], essential proteins like ribosomes may be harder to detect, 
causing potential detection biases. This aspect warrants further 
investigation to ensure the robustness and applicability of our 
method in diverse ecological settings. Other technical limitations 
can also impact clustering accuracy. Smaller ribosomal proteins 
L28 and L34 could be detected less frequently in metaproteomics, 
and post-translational modifications may also result in missed 
cleavage and identification of peptides. Advances such as 
metaproteomics-assembled proteomes [83] may improve taxon-
specific functional annotations and the accuracy of our clustering 
outcomes.

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae063#supplementary-data
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Figure 6. Microbes modify their expression for ABC-type transporters to adapt to added sugars; all heatmaps share the same color bar on the right; (A) 
schematic of in vitro cultures of a collected human gut microbiome; in the treatment group, one sugar is added to the community; metaproteomic 
measurements 5 h later were used to compare the intensity of each taxon-specific protein using the log2 fold change of each protein’s fraction (i.e. 
normalized intensity over each genus) from the treatment group divided by that from the control group; Log2 fold changes of ABC-type transporters 
were computed 5 h after (B) glucose, (C) fructose, (D) kestose, or (E) glucose and fructose is added; the transported metabolites for each COG are added 
to the brackets.
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