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Abstract 
Background: Individuals living with human immunodeficiency virus (HIV) who experience virological failure (VF) after combination 
antiretroviral therapy (cART) initiation may have had low-frequency drug resistance mutations (DRMs) at cART initiation. There are 
no data on low-frequency DRMs among cART-naïve HIV-positive individuals in Botswana.

Methods: We evaluated the prevalence of low-frequency DRMs among cART-naïve individuals previously sequenced using 
Sanger sequencing. The generated pol amplicons were sequenced by next-generation sequencing.

Results: We observed low-frequency DRMs (detected at <20% in 33/103 (32%) of the successfully sequenced individuals, of 
whom four also had mutations detected at >20%. K65R was the most common low-frequency DRM detected in 8 individuals. 
Eighty-two of the 103 individuals had follow-up viral load data while on cART. Twenty-seven of the 82 individuals harbored low-
frequency DRMs. Only 12 of 82 individuals experienced VF. The following low-frequency DRMs were observed in four individuals 
experiencing VF: K65R, K103N, V108I, and Y188C. No statistically significant difference was observed in the prevalence of low-
frequency DRMs between individuals experiencing VF (4/12) and those not experiencing VF (23/70) (P = .97). However, individuals 
with non-nucleoside reverse transcriptase inhibitors-associated low-frequency DRMs were 2.68 times more likely to experience 
VF (odds ratio, 2.68; 95% confidential interval, 0.4–13.9) compared with those without (P = .22).

Conclusion: Next-generation sequencing was able to detect low-frequency DRMs in this cohort in Botswana, but these DRMs 
did not contribute significantly to VF.

Abbreviations: ANCs = antenatal clinics, BHP = Botswana Harvard AIDS Partnership, cART = combination antiretroviral therapy, 
DRMs = drug resistance mutations, DTG = dolutegravir, EFV = efavirenz, FTC = emtricitabine, HIV = human immunodeficiency 
virus, IDCC = infectious disease care clinics, KRISP = Kwazulu-Natal Research Innovation and Sequencing Platform, NGS = 
next generation sequencing, NNRTI = non-nucleoside reverse transcriptase inhibitors, NRTI = nucleoside reverse transcriptase 
inhitors, OR = odds ratio, PASeq = polymorphism analysis sequencing, PCR = polymerase chain reaction, PI = protease inhibitors, 
PR = protease, RNA = ribonucleic acid, RT = reverse transcriptase, TB = tuberculosis, TDF = tenofovir disoproxil fumarate, VF = 
virological failure, VL = viral load.
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1. Introduction

Treatment of human immunodeficiency virus (HIV) with com-
bination antiretroviral therapy (cART) is life-long and has high 
success in suppressing HIV-1 replication.[1,2] However, cART 
success can be negatively impacted by the emergence of HIV 

drug resistance mutations (DRMs), leading to virological fail-
ure (VF).[3–6] Dolutegravir (DTG)-based regimens have been 
adopted as the preferred first-line treatment for HIV, replacing 
non-nucleoside reverse transcriptase (RT) inhibitor (NNRTI)-
based regimens.[7,8] However, concerns have emerged about 
the safety of DTG[9] and its reduced efficacy in patients with 
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DRMs in RT.[10] Furthermore, some countries are opting to con-
tinue using efavirenz (EFV)-based first-line cART, especially in 
patients receiving tuberculosis (TB) treatment due to the risk of 
increased DTG metabolism, leading to subtherapeutic concen-
trations.[11,12] With expanded access to cART, there is increased 
potential for the development and transmission of drug-resis-
tant HIV variants, leading to treatment failure.[13] Population-
based Sanger sequencing is widely used in HIV drug resistance 
testing.[14] However, population-based Sanger sequencing only 
detects the most dominant viral variants (>20% of the viral qua-
sispecies) and is unable to detect low-frequency DRMs (minority 
variants).[15,16] Next-generation sequencing (NGS) allows for the 
effective detection of low-frequency DRMs as low as 1% of the 
viral population[17–23] and can be cost-effective by using the pool-
ing strategy, which pools index samples into a single library.[24–26]

Previous studies[27–39] have reported that individuals initiating 
cART with preexisting HIV low-frequency DRMs have a higher 
likelihood of VF, particularly among those initiating NNRTIs. It 
has also been reported that individuals with preexisting low-fre-
quency DRMs at baseline have the same DRMs at the time 
of VF.[40,41] However, other studies have found no association 
between baseline low-frequency DRMs and VF on cART.[40,42,43]

Conflicting results on the clinical importance of low-fre-
quency DRMs indicate the need for further investigations on 
the clinical impact of low-frequency DRMs in different settings.

We sought to determine the prevalence of low-frequency 
DRMs among cART-naïve HIV-positive individuals in Botswana 
and to assess the impact of baseline pretreatment low-frequency 
DRMs on VF outcomes once the participants initiated cART.

2. Materials and Methods

2.1. Study design and study population

This was a retrospective longitudinal study aimed at determin-
ing the prevalence and impact of low-frequency HIV DRMs in 
baseline samples of antiretroviral naïve individuals in Botswana. 
The amplicons used in this study were obtained from a previous 
Botswana Harvard AIDS Partnership study (BHP063- with pro-
tocol title: A novel strategy for HIV drug resistance monitoring 
in developing countries).[44] Participants were recruited for the 
study from antenatal clinics and Infectious Disease Care Clinics 
in 3 different locations in Botswana: Gaborone, Molepolole, 
and Mochudi. BHP063 enrolled 443 participants between 
April 2012 and April 2015 and were included in the primary 
study analysis.[44] An additional 88 participants were enrolled 
between May 2015 and December 2015, resulting in a total of 
531. Before 2016, the standard first-line of ART initiation used 
included the combination of EFV, tenofovir disoproxil fumarate 
(TDF), and emtricitabine (FTC) (ATRIPLA) (Gilead Sciences), 
and there were no patients on DTG-based ART before then. 
As of June 2016, Botswana adopted DTG-based ART (DTG-
TDF-FTC) for all HIV-infected individuals regardless of CD4+ 
T-cell count or pregnancy status. Most of these participants were 

probably infected through heterosexuals given their age at the 
time of enrollment, but mother-to-child transmission cannot be 
ruled out. Genotyping results for participants in the main cohort 
who previously developed resistance mutations were communi-
cated to clinicians, and patients were assigned treatment based 
on baseline mutation status. This would impact their treatment. 
Of the 531 enrolled in BHP063, 108 (20.3%) participants with 
available stored HIV-1 RT/PR amplicons and available Sanger 
sequencing data were included in the present study. Four hundred 
and twenty-three (423) participants without amplicons were 
excluded. The characteristics of the included and excluded indi-
viduals were compared (Table S1, Supplemental Digital Content, 
http://links.lww.com/MD/G927). Follow-up clinical, virological, 
and demographic data for individuals with available amplicons 
were extracted from the electronic laboratory information sys-
tem-IPMS (Integrated patient management system). We defined 
virological suppression as viral load (VL) <400 copies/mL and 
VF as VL of ≥400 copies/mL at 6 months after initiation of cART 
as per the Botswana Ministry of Health and Wellness guidelines.

2.2. Ribonucleic acid extraction, polymerase chain reaction 
amplification, and Sanger sequencing

The HIV-1 pol (RT/PR) amplicons were initially generated in a 
previous study.[44] Briefly, ribonucleic acid (RNA) was extracted 
from 400 ul plasma samples using an EZ1 Virus Mini Kit v2.0 
(Qiagen, Valencia, CA) on an EZ1 Advanced XL (Qiagen) auto-
mated instrument. The RT and protease (PR) regions of the 
HIV-1 pol gene were amplified, and polymerase chain reaction 
(PCR) products were purified using a QIAquick PCR purification 
kit (Qiagen, Hilden, Germany), according to the manufacturer’s 
instructions. DNA sequencing of PCR products was performed 
using BigDye Terminator chemistry on an ABI 3130XL genetic 
analyzer (Thermo Fisher Scientific, Carlsbad, CA), as previously 
described.[44] The residual amplicons were stored at −20°C.

2.3. Next-generation sequencing and drug resistance 
analysis

NGS was conducted at KwaZulu-Natal Research Innovation 
and Sequencing Platform, Durban, South Africa, and Inqaba 
Biotechnical Industries, Pretoria, South Africa, using the 
Illumina MiSeq platform (Illumina, San Diego, CA). Briefly, 
PCR product concentrations were determined using a Qubit 
3.0 fluorometer (Thermo Fisher, Malaysia). Paired-end libraries 
were generated using the Nextera-XT DNA library preparation 
kit and Nextera Index kit (Illumina, San Diego, CA), according 
to the manufacturer’s instructions. Sequencing libraries were 
purified using Agencourt AMPure XP beads, and quantified, and 
barcoded libraries were pooled for sequencing on an Illumina 
MiSeq platform. The generated raw reads (FastQ files) were 
assembled into contigs using online genome detection tools.[45] 
NGS sequences were uploaded to the online variant caller 
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polymorphism analysis sequencing (PASeq).[46] HyDRA was also 
used to confirm the minor variants.[23] Any variants not called 
by either caller were assumed to have a 0% allele frequency. 
Low-frequency DRMs were detected at >1% using Geneious 
software v8.1.9 (Biomatters Ltd, Auckland, New Zealand).[47]

2.4. Statistical analysis

HIV drug resistance was determined based on NGS with detec-
tion thresholds of 1%, 5%, 10%, and 20%. Data are presented 
as medians and interquartile ranges. The demographic charac-
teristics (age and sex) and clinical characteristics (baseline CD4+ 
T-cell count and baseline VL) of individuals with and without 
pretreatment low-frequency DRMs were compared using the 
Wilcoxon rank-sum test and Fisher’s exact test (for continuous 
and categorical variables). We excluded individuals without fol-
low-up VL data from the analysis to determine the impact of 
pretreatment low-frequency DRMs on VF. We further excluded 
pretreatment DRMs detected at ≥20% of mutations. We used 
a univariate exact logistic regression model[48,49] to assess the 
association between pretreatment low-frequency DRMs and VF. 
Odds ratios (OR) were used to describe the association between 
low-frequency DRMs and VF. We used R version 4.0.3 for sta-
tistical analysis. Differences were considered statistically signif-
icant at P < .05.

2.5. Ethics

BHP063 study was approved by the Research Ethics Committee 
of the Ministry of Health and Welfare (HRDC # 00638). In 
addition, ethical approval was obtained from the Institutional 
Review Board of the University of Botswana (Reference number: 

HPDME 13/18/1 Vol 833). Participants provided informed 
consent for the reuse and storage of their samples for further 
research.

3. Results

3.1. Participants characteristics

A total of 103 out of 108 samples were successfully sequenced 
using Illumina MiSeq NGS (Fig. 1) to a mean depth of 20534 
reads (min–max: 1849–159407). At baseline, the median VL 
was 4.1 log10 copies/mL and the median CD4+ T-cell count was 
365 cells/mm3. Table 1 summarizes the demographic and clini-
cal characteristics of the participants.

Of the 108 samples with available amplicon, 26 individu-
als had to be excluded from the second analysis of the study 
because of either unsuccessful NGS, presence of baseline 
pretreatment DRMs only, or no follow-up VL data (Fig.  1). 
Demographic characteristics of individuals included (n = 108) 
and excluded (n = 423) from the main cohort were summa-
rized, and there was no significant difference in terms of age 
and VL between the individuals included and those excluded, 
but a significant difference was observed in sex and CD4 (Table 
S1, Supplemental Digital Content, http://links.lww.com/MD/
G927).

3.2. HIV drug resistance mutations detected in protease 
and reverse transcriptase

Eight (7.8%) of the 108 individuals with successful NGS 
sequencing had at least 1 DRM detected at >20% frequency. 
Seven of the 8 sequences revealed single-class resistance (1 

Figure 1.  Flow chart showing individuals included in the analysis. The first analysis focused on determining the prevalence of low-frequency drug resistance 
mutations. The second analysis only used participants with follow-up viral load data to assess the impact of low-frequency drug resistance mutations on viro-
logical outcomes. DRM, drug resistance mutations; NGS, next-generation sequencing.
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nucleoside RT inhibitor (NRTI), two NNRTI, and four PR inhib-
itors (PIs), whereas the other harbored both NRTI and NNRTI 
resistance. The most common mutation was K103N, which 
was detected in 3/8 sequences. PASeq and HyDRA detected all 
DRMs (>20% frequency), as determined by Sanger sequencing. 
The 2 analysis pipelines (PASeq and HyDRA) had a good agree-
ment above 20% and 5% thresholds but gave highly discrepant 
results around a 1% threshold (Table S2, Supplemental Digital 
Content, http://links.lww.com/MD/G927). The variants called 
by PASeq were used to represent the NGS results for subsequent 
analyses.

Thirty-three individuals (32.0%) had at least 1 low-fre-
quency DRMs (1%–20% frequency). Four of the 33 partici-
pants also had DRMs at a ≥20% threshold (Fig. 2 and Table 2). 
Among the 33 individuals, NRTI-associated low-frequency 
DRMs were detected in 12 individuals. In addition, 2 individu-
als harbored both NRTI-and NNRTI-associated low-frequency 
DRMs. The most common NRTI-associated low-frequency 
DRM was K65R, occurring in 8 individuals with frequencies 
between 1% and 2.96%. Other NRTI-associated low-fre-
quency DRMs identified were V75I, F77L, F116Y, M184I, 
and M184V at frequencies from 2.43% to 4.06%, respec-
tively. NNRTI-associated low-frequency DRMs were found 
in 8 individuals. In addition, 2 individuals had both NNRTI-
and PI-associated low-frequency DRMs. The most common 
NNRTI-associated low-frequency DRM was V108I, detected 
in 3 individuals with frequencies between 1.15% and 11.25%. 
Other NNRTI-associated low-frequency DRMs identified were 
K103N, V106M, E138G, E138K, Y181C, Y188C, Y188H, 
P225H, and M230I at frequencies of 1.01% and 7.7%, respec-
tively. PI-associated low-frequency DRMs were found in 9 
individuals, with the most common being M46I found in 5 
individuals. Other PI-associated low-frequency DRMs identi-
fied were M46L, I50V, T74P, I84V, and N88S at frequencies of 
1.13% and 3.38%, respectively.

The median CD4+ T cell counts for individuals with (n = 33) 
and without (n = 70) low-frequency DRMs were 331 cell/mm3 
(IQR, 241–429.5) and 365 cell/mm3 (IQR, 227–495), respec-
tively (Fig. 3). In addition, the median VL was 4.2 log10 cop-
ies/mL (IQR, 3.6–4.6) and 4.1 log10 copies/mL (IQR, 3.5–4.6), 
respectively. There was no difference in the VLs (P = .43) and 
CD4+ T cell counts (P = .42) between individuals with low-fre-
quency DRMs and individuals without low-frequency DRMs.

3.3. Virological outcome

To determine the impact of low-frequency DRMs, we excluded 
four individuals with only DRMs detected at ≥20% threshold 
from further analysis. Seventeen individuals without follow-up 
VL data were excluded from further analysis. A total of 82 indi-
viduals had at least 1 follow-up VL data and were used to inves-
tigate the association between baseline low-frequency DRMs and 
VF (Table 3). Sixty-one of the followed-up participants initiated 
on ATRIPLA (TDF + FTC + EFV) based regimen while 18 ini-
tiated on DTG based regimen (Table S3, Supplemental Digital 
Content, http://links.lww.com/MD/G927). Twenty-seven of the 
82 individuals had low-frequency DRMs, whereas 55 individuals 
did not. Of the 12 individuals experiencing VF, 4 had low-fre-
quency DRMs. Nine of the 12 individuals initiated an Atripla-
based regimen and three individuals initiated on DTG based 
regimen (Table S3, Supplemental Digital Content, http://links.
lww.com/MD/G927). Low-frequency DRMs detected in individ-
uals experiencing VF were NRTI-associated, such as K65R and 
NNRTI-associated K103N, V108I, and Y188C (Table 4).

Figure 2.  Baseline HIV drug resistance mutations detected at different thresh-
olds. Mutations detected at 1 to <20% represent low-frequency mutations 
detected by next-generation sequencing only. Mutations detected at ≥20% 
represent mutations detected by both Sanger sequencing and next-gener-
ation sequencing. NRTI, Nucleoside reverse-transcriptase inhibitor; NNRTI, 
non-nucleoside reverse transcriptase inhibitor; PI, Protease inhibitor.

Table 2

Drug class mutations observed by NGS at different mutation 
thresholds.

Mutations detected 

Detection threshold

1%–2% >2%–5% >5%–10% >10%–<20% ≥20% 

NRTI-associated
 � M41L 0 0 0 0 1
 � A62V 0 0 0 0 1
 � K65R 6 2 0 0 0
 � V75I 0 1 1 0 0
 � F77L 0 1 0 0 0
 � F116Y 0 1 0 0 0
 � M184I 0 1 0 0 0
 � M184V 0 1 0 0 0
 � Total 6 7 1 0 2
NNRTI-associated
 � K103N 0 0 1 0 2
 � V106M 1 0 0 0 0
 � V108I 1 1 0 1 0
 � E138G 1 1 0 0 0
 � E138K 1 1 0 0 0
 � Y181C 1 0 0 0 0
 � Y188C 0 1 0 0 0
 � Y188H 1 0 0 0 0
 � P225H 1 0 0 0 0
 � M230I 1 0 0 0 0
 � Total 8 4 1 1 2
PI-associated
 � M46I 2 2 0 1 0
 � M46L 0 1 0 0 0
 � I50V 1 0 0 0 0
 � T74P 1 0 0 0 0
 � I84V 1 1 0 0 0
 � N88S 0 1 0 0 0
 � Q58E 0 0 0 0 2
 � Total 5 5 1 1 2

NGS = next-generation sequencing; NRTI = nucleoside reverse-transcriptase inhibitor; NNRTI = 
non-nucleoside reverse transcriptase inhibitor; PI = Protease inhibitor. Mutations detected at >20% 
were also detected by Sanger sequencing.

Table 1

Baseline characteristics of participants included in the study.

Characteristics Participants (n = 108) 

Age in years, median (IQR) 27.0 (24–31)
Female, n (%) 107 (99.1%)
Male, n (%) 1 (0.9)
VL (log

10
 copies/mL), median (IQR) 4.1 (3.5–4.6)

CD4+ T-cell count (cells/mm3), median (IQR) 365 (225–497)

IQR = interquartile ranges: 25th percentile and 75th percentile; VL, viral load.

http://links.lww.com/MD/G927
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Individuals with NNRTI low-frequency DRMs were 2.68 
times more likely to experience VF (OR, 2.68; 95% confiden-
tial interval, 0.4–13.9) compared with those without NNRTI 
low-frequency DRM’s.

4. Discussion
HIV-1 VF due to the presence or development of HIV vari-
ants harboring DRMs remains a major challenge for the suc-
cess of cART. There are conflicting data on the significance of 

pretreatment low-frequency HIV DRMs. We report the first 
study from Botswana that evaluated NGS-defined low-frequency 
DRMs in antiretroviral naïve individuals. NGS identified all 
DRMs at levels ≥20% that were detected by Sanger sequencing. 
The prevalence drastically increased when low-frequency DRMs 
of 1% were included. Low-frequency DRMs were found in 33 
individuals with K65R being the most common low-frequency 

Table 3

Virological outcome in individuals with and without low-
frequency DRMs.

 n 
Individuals with  

low-frequency DRMs (%) P-value 

Individuals experiencing VF 12 4 (33.3) .97
Individuals not experiencing VF 70 23 (32.9)  

DRMs = drug resistance mutations; VF = virological failure.

Figure 3.  The relationship between the CD4+ T-cell count, viral load and low frequency drug resistance mutations. (A) CD4+ T-cell and (B) viral loads in indi-
viduals with low-frequency DRMs and individuals without low-frequency DRMs. Low-frequency DRMs are mutations detected at <20%. DRM, drug resistance 
mutation. NGS, next-generation sequencing.

Table 4

DRMs observed in individuals experiencing virological failure 
with low frequency drug resistance mutations.

Sample identification 

Mutation frequency level (%) within the viral

NRTI NNRTI 

P26 K65R (2.9%) 0
P29 0 V108I (1.15%)
P51 0 Y188C (2.2%)
P53 0 K103N (7.8%)

NRTI = nucleoside reverse-transcriptase inhibitor; NNRTI = non-Nucleoside reverse transcriptase 
inhibitor; PI = Protease inhibitor.
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mutation detected in 8 individuals, and these findings are sim-
ilar to those reported by others.[40,50,51] The K65R mutation is 
the most important TDF resistance mutation, which makes it 
a relevant mutation to the current WHO recommended first-
line regimen and may compromise its effectiveness.[52] DRMs 
detected at levels <20% of viral quasi-species were not detected 
by Sanger sequencing. The K103N mutation was found in 3 
individuals above 5% frequency, and this mutation is known to 
be highly selected by EFV.[52] The presence of NNRTI DRMs has 
been suggested to be negatively associated with long-term viro-
logic outcomes of both EFV- and DTG-based first-line ART.[10] 
Therefore, it is important to continue assessing and monitor-
ing pretreatment mutations in antiretroviral naïve patients. It is 
also vital to continue assessing NNRTI low-frequency DRMs to 
ensure optimization of treatment regimens for individuals living 
with HIV/TB for whom an EFV-based ART may be more appro-
priate. It has been indicated that there is a difference in CD4 and 
VL between individuals with low-frequency DRMs and those 
without low-frequency DRMs.[50] Studies have reported success-
ful amplification and characterization of plasma HIV-1 RNA 
sequences in patients with VLs below 50 copies/mL.[53–55] A sim-
ilar finding was also reported in a study conducted in Botswana 
that used samples with undetectable VLs to determine the prev-
alence of DRMs.[56] In our study, two samples with VLs of <40 
copies/mL were successfully sequenced by Sanger sequencing 
and NGS. Participants were divided into two groups depending 
on whether they had low-frequency DRMs. The median VLs 
did not differ significantly between the group with and without 
low-frequency DRMs (4.2 log10 copies/mL vs 4.1 log10 copies/
mL), and these findings are consistent with the results reported 
by Melanie et al.[57]

Three of the 4 individuals experiencing VF harbored 
the most common NNRTI mutations (K103N, V108I, and 
Y188C), which have been shown to occur more frequently 
in participants experiencing VF.[52] Individuals with low-fre-
quency NNRTIs associated DRMs were 2.68 times more likely 
to experience VF (OR, 2.68; 95% confidential interval, 0.4–
13.9) compared with those without (P = .22) although not sta-
tistically significant. This is not unexpected, as it was recently 
found that the detection of low-frequency DRMs alone was 
not associated with virologic failure in a South African cohort 
where HIV-1C also predominates.[40] In a South African study, 
inclusion of DRMs at >20% to low-frequency DRMs was asso-
ciated with an increased prediction of VF. In our study, we did 
not include mutations detected at >20% in our second analy-
sis because genotyping results were communicated in real-time 
to treat clinicians for appropriate patient management, which 
might have affected the outcome of our study. It has been pre-
viously reported that linked dual-class resistance mutations 
occurring in a single genome are associated with an increased 
risk of VF.[58] Since we were not able to analyze viral variants 
at the single genome level, we could not determine if there was 
an association of linked dual-class mutations with VF. This 
study was a retrospective study, and while there were efforts 
to avoid selection bias, the use of available samples, although 
it was not intentional. A significant difference was observed 
in the included versus the excluded in terms of sex and CD4 
suggesting that there was some difference between the original 
cohort and the samples selected for this analysis. Here, we used 
a threshold of ≥1% frequency, which might have overestimated 
the prevalence of some mutations, especially K65R; however, 
the presence of genuine pretreatment DRMs occurring at ≥1% 
frequency cannot be ruled out.

A limitation of this study was the absence of resistance data 
at the time of VF. Moreover, we defined VF as a single VL of 
at least 400 copies/mL, whereas previous studies have used a 
cutoff of 1000 copies/mL.[51,59] We attempted to amplify sam-
ples with low VLs as low as <40 copies/mL, and only 2 samples 
were successfully amplified. The results should be interpreted 
with caution, as mutations cannot be reliably detected in such 

low copies of the VL. Most participants in this study later ini-
tiated cART on EFV, a drug that is no longer used in first-line 
cART therapy in Botswana, so studies investigating the impact 
of low-frequency DRMS on the current DTG-based first-line 
regimen are warranted.

In conclusion, the results presented in this study showed 
that antiretroviral naïve individuals had a high prevalence of 
low-frequency DRMs that did not have an impact on virologic 
suppression once they initiated ART. Future studies will need to 
focus on the role of low-frequency DRMs in DTG-based first-
line regimens and to determine the prevalence of low-frequency 
linked dual-class resistance mutations, which have been found 
to be more associated with VF.
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