
Metabolic Engineering 76 (2023) 87–96

Available online 4 January 2023
1096-7176/© 2023 The Authors. Published by Elsevier Inc. on behalf of International Metabolic Engineering Society. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

CHOGlycoNET: Comprehensive glycosylation reaction network for 
CHO cells 

Pavlos Kotidis a,*, Roberto Donini b, Johnny Arnsdorf c, Anders Holmgaard Hansen c, 
Bjørn Gunnar Rude Voldborg c, Austin W.T. Chiang d, Stuart M. Haslam b, Michael Betenbaugh e, 
Ioscani Jimenez del Val f, Nathan E. Lewis d,g, Frederick Krambeck h, Cleo Kontoravdi a,* 

a Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK 
b Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK 
c National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark 
d Department of Pediatrics, University of California, San Diego, CA, 92093, USA 
e Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA 
f School of Chemical & Bioprocess Engineering, University College, Dublin, D04 V1W8, Ireland 
g Department of Bioengineering, University of California, San Diego, CA, 92093, USA 
h ReacTech Inc., 810 Cameron Street, Alexandria, VA, 22314, USA   

A R T I C L E  I N F O   

Keywords: 
Protein glycosylation 
Chinese hamster ovary cells 
Glycoengineering 
Systems glycobiology 

A B S T R A C T   

Chinese hamster ovary (CHO) cells are extensively used for the production of glycoprotein therapeutics proteins, 
for which N-linked glycans are a critical quality attribute due to their influence on activity and immunogenicity. 
Manipulation of protein glycosylation is commonly achieved through cell or process engineering, which are often 
guided by mathematical models. However, each study considers a unique glycosylation reaction network that is 
tailored around the cell line and product at hand. Herein, we use 200 glycan datasets for both recombinantly 
produced and native proteins from different CHO cell lines to reconstruct a comprehensive reaction network, 
CHOGlycoNET, based on the individual minimal reaction networks describing each dataset. CHOGlycoNET is 
used to investigate the distribution of mannosidase and glycosyltransferase enzymes in the Golgi apparatus and 
identify key network reactions using machine learning and dimensionality reduction techniques. CHOGlycoNET 
can be used for accelerating glycomodel development and predicting the effect of glycoengineering strategies. 
Finally, CHOGlycoNET is wrapped in a SBML file to be used as a standalone model or in combination with CHO 
cell genome scale models.   

1. Introduction 

Most biotherapeutics are produced in Chinese Hamster Ovary (CHO) 
cells, which are the workhorse of recombinant protein production in 
both industrial and academic environments (Walsh, 2018). The design 
of cell- or process-level glycoengineering strategies to improve the 
quality profile of glycoprotein-based biotherapeutics is inextricably 
linked to the underlying glycosylation reaction network (RN) of the host 
cell line. Depending on the complexity of the protein glycoprofile, a 
range of significantly diverse RNs has been proposed in different studies, 
accounting from just 25 up to 40,000 reactions for recombinant 
immunoglobulin G (IgG) products and host cell proteins (HCPs), 
respectively (Spahn et al., 2016; Kremkow and LeeGlyco-Mapper, 2018; 

Krambeck et al., 2017; Jimenez del Val et al., 2011; Hutter et al., 2017). 
The reconstruction of a RN that is specific to the desired glycoprotein 
and representative of the machinery of the host cell line is an intricate 
and time-consuming task. Thus, several algorithms have been developed 
for the automated RN design or reconstruction, based on experimentally 
observed glycomic data (Liu and Neelamegham, 2014; Krambeck et al., 
2009). Due to competition of glycosyltransferases (GTs) for the same 
oligosaccharide substrates attached to the glycoprotein, especially 
among the GTs that reside in the later compartments of the Golgi 
apparatus, the number of reactions included in the RN disproportionally 
increases with the complexity of the glycoprofile. However, thousands 
of possible reactions can be generated, the vast majority of which may 
not actually occur due to low enzyme levels and steric hindrance 
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imposed by the structural conformation of the glycoproteins. 
Large RNs carrying hundreds of muted reactions can decelerate 

model refinement and gene engineering optimization. Conversely, 
reduced networks based on wild-type cell lines are likely to omit un-
derlying latent or inactive reactions and may therefore prove inadequate 
for describing the effect of GT knockout or overexpression studies. For 
example, the knockout of Mgat2, Mgat4A/B and Mgat5 genes (GnTII, 
GnTIV and GnTV enzymes, respectively), which are responsible for N- 
glycan antenna formation via the addition of beta-N-acetylglucosamine 
(GlcNAc) residues to a tri-mannosyl core, might lead to poly-N- 
acetyllactosamine (poly-LacNAc) extensions of the monoantennary 
glycan through the downstream activity of iGnT and b4GalT glycosyl-
transferases (b3GnT2 and b4GalT1-7 encoding genes, respectively). 
However, the reaction that would lead to the production of mono- 
antennary poly-LacNAc extension (Fig. 1A) is not directly observed in 
wild-type CHO cells that express recombinant erythropoietin (EPO) 
(Yang et al., 2015) and would therefore be omitted when constructing a 

RN solely based on wild-type cell data. This problem would equally 
affect any statistical or stochastic glycosylation models that do not 
encompass alien glycans missing from the training dataset. Previously, 
unknown reactions in the IgG glycosylation pathway have been mapped 
in silico, through the utilization of Gaussian graphic models on glycomics 
data, in an effort to shed light on the hidden reactions of protein 
glycosylation (Benedetti et al., 2017). 

Here, we present CHOGlycoNET, a comprehensive network of 
glycosylation reactions that accounts for all experimentally observed 
glycans on recombinant proteins and both intracellular/membrane and 
secreted HCPs in two major CHO cell lineages, CHO–S and CHO–K1. We 
collected the largest compendium of CHO cell glycoprofiles, consisting 
of 200 datasets from seven labs (Fig. 1B) to extract possible latent re-
actions that could be activated across diverse genetic glycoengineering 
and metabolic (process) perturbation scenarios for several recombinant 
glycoproteins and CHO cell HCPs (Fig. 1B). In all studies considered for 
RN construction, the glycans were identified using mass spectrometry 

Fig. 1. (A) Latent or inactive reactions only observed in knockout cell lines. In the presented pathway, the knockout of GnTII (Mgat2), GnTIV (Mgat4A & Mgat4B) 
and GnTV (Mgat5) results in the formation of poly-LacNAc mono-antennary glycans. While the reactions for the poly-LacNAc mono-antennary glycan formation can 
occur in the wild-type cells as well, the flux is directed towards the synthesis of bi-antennary and consequently tri-antennary glycans in the wild-type cells. (B) 
Datasets utilized for the construction of CHOGlycoNET: Kontoravdi/Haslam Lab (in-house), Lewis Lab (in-house), Haslam Lab (North et al., 2010), Betenbaugh Lab 
(Yin et al., 2015), Borth Lab (Bydlinski et al., 2018), Kildegaard Lab (Amann et al., 2018, 2019) and Clausen Lab (Yang et al., 2015). DAO: D-amino acid oxidase, Fc: 
fragment crystallizable region. (C) Enzymes involved in N-linked glycosylation occurring in the Golgi apparatus and considered for the reconstruction of the dRN. The 
genes known to express the respective enzymes in CHO cells are also reported. (D) Major glycosyltransferase activity in glycosylation (not CHO specific). (E) 
Designation of unique reactions in the scenario of Mgat4 knockout that demonstrate the activity of the iGnT enzyme. The comparison between wild-type (WT) and 
genetically modified cell lines, as illustrated, enables the identification of reactions that are uniquely active in genetically modified cell lines. (F) Preference rules for 
the processing of iGnT (B3gnt2) products by a3SiaT (St3gal3, St3gal4 & St3gal6) and b4GalT (B4galt1-B4galt7). To effectively reduce the number of reactions 
considered in CHOGlycoNET, iGnT was assumed to act on a single branch of the substrate and further processing catalysed by a3SiaT and b4GalT was assumed to 
occur on the branch elongated by the iGnT enzyme. 
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(MS), ensuring the homogeneity of the dataset. The resulting glycosyl-
ation RN balances the effects of network size and simultaneously ensures 
the inclusion of latent reactions and reactions potentially inactive in 
wild-type cells. Differences between CHO–S and CHO–K1 cells on the 
reaction network complexity were also identified. In addition, CHO-
GlycoNET was utilized for the estimation of enzyme distribution solely 
based on the topology of the reactions involved in the RN and for the 
identification of critical reactions affecting the extent of glycosylation 
complexity through dimensionality reduction and machine learning 
techniques. We envision that CHOGlycoNET will facilitate future de-
signs of glycoengineering strategies for a diverse range of therapeutic 
proteins and accelerate the design and simulation of glycosylation 
models. 

2. Materials & methods 

2.1. Data curation 

Mass spectrometric datasets from 200 glycomics and glyco-
proteomics samples from CHO cells were considered in this analysis 
(Fig. 1B). The Kontoravdi/Haslam Lab dataset includes the glycoprofile 
of intracellular HCPs from CHO–K1 IgG-producing cells, under different 
feeding experiments that incorporate galactose and uridine addition 
(Supplementary Material 5). The Lewis Lab dataset describes the glyco-
profile of the secretome from non-producing CHO–S cells, including 
distinct clones with knockouts on Mgat4 (GnTIV), Mgat2 (GnTII), 
B3gnt2 (iGnT), B4galt1-3 (b4GalT) and St3gal3,4,6 (a3SiaT) genes 
(Supplementary Material 5). The Haslam Lab dataset includes intracel-
lular HCP data from wild type and mutated CHO Lec cells (North et al., 
2010). The Borth Lab dataset characterises the effect of b4GalT isoform 
knockouts on the glycoprofile of recombinantly produced fusion glyco-
proteins (EPO and D-amino acid oxidase; DAO) (Bydlinski et al., 2018). 
The dataset from the Betenbaugh Lab investigates the effect of 
Mgat4/Mgat5 overexpression, alongside the expression of the human 
ST6GAL1 gene expressing the alpha-2,6-sialyltransferase enzyme (Yin 
et al., 2015). The Clausen Lab dataset includes the effect of the knockout 
of numerous glycosyltransferases on EPO and IgG glycosylation (Yang 
et al., 2015). Finally, the Kildegaard Lab dataset describes the effect of 
glycoengineering on multiple recombinant glycoproteins and the 
secretome (Amann et al., 2018, 2019). 

In the case of non-exhaustively annotated mass chromatograms, the 
m/z peaks in question were identified through the GlycoWorkbench 
software (Ceroni et al., 2008). In total, 265 unique glycan structures, 
including potential isomers, were identified. Hybrid glycans were not 
considered in this study. Whilst no minimum distribution threshold was 
set for qualifying the inclusion of a reported glycan in CHOGlycoNET, 
oligosaccharides carrying more than eight GlcNAc molecules were 
excluded from the analysis as they were identified only in trace amounts. 
Whilst glycoproteomic analysis has shown that glycan structures with 
>8 GlcNAc molecules can be traced in cellular proteins of CHO cells 
(Yang et al., 2015), they are not commonly encountered in recombinant 
therapeutic glycoproteins. The mannosidases and GTs found to be active 
in CHO cells in CHOGlycoNET are shown in Fig. 1C and D. 

2.2. Isomer inclusion 

The oligosaccharides considered account for all isomers of each 
experimentally observed bi-, tri- and tetra-antennary glycan that have 
not been further elongated by iGnT, as the steric hindrance imposed on 
the GTs is strongly dependent on the isomer structure and can determine 
the kinetics of the reaction and ultimately the final isomer distribution. 
To identify reactions that are only activated in glycoengineered cell 
lines, we assumed that no bi-, tri-, and tetra-antennary glycans of the 
wild-type cell lines were products of the iGnT enzyme. To elaborate, it 
was assumed that iGnT could act on a galactosylated substrate only 
when GnTI, GnTII, GnTIV and GnTV could not further process the glycan 

or when the enzymes were genetically silenced. This enabled the 
comparative analysis between the wild type and the glycoengineered 
cell lines and the designation of the latent reactions (Fig. 1E). It is 
important to note that previous research on the analysis of the N-glycan 
pool carrying 6-LacNAc molecules in wild type CHO (Pro ‾5) cells grown 
in suspension and using MALDI-TOF/TOF MS/MS has identified a bi- 
antennary oligosaccharide with five LacNAc molecules on one arm 
and one on the other arm as a major isomeric structure (North et al., 
2010). Whilst the iGnT elongation of bi- and tri-antennary glycans can 
occur in wild type CHO cells, the actual abundance of such structures 
requires additional experiments to more accurately quantify the detailed 
distribution, which could be heavily dependent on the examined protein 
and cell line; thus, it was excluded from the reaction network analysis of 
the wild type cells. Moreover, this assumption is not expected to have a 
major effect on the identification of the global network, as the iGnT 
elongation reactions not considered in the wild type cells were inevi-
tably included in the analysis of the knockout cell lines. Finally, b4GalT 
and a3SiaT show no known preference on the extension of tri- and 
tetra-antennary glycans that carry LacNAc molecules, and therefore only 
one isomer was included for these reactions. The galactosylation and 
sialylation of the poly-LacNAc branch was prioritized in the isomer se-
lection over the non-LacNAc-elongated branches (Fig. 1F). 

2.3. Computational tools 

2.3.1. Network construction 
Briefly, GLYMMER (ReacTech) enables the estimation of glycosyla-

tion enzyme concentrations based on the experimentally observed gly-
coprofile, also supporting the direct fitting of mass spectra (Krambeck 
et al., 2009). The generation of the reaction network based on 
pre-defined rules of enzymatic promiscuity is also part of GLYMMER. To 
that end, the GLYMMER functionality was utilized to identify minimum 
reaction networks based on the experimentally observed glycoprofile, 
through the newly introduced Lumping function. The Lumping function 
identifies reactions essential for synthesizing the experimentally 
observed glycan structures, choosing the dominant reaction pathways 
based on their respective reaction rates. This process adds to the 
experimentally observed essential oligosaccharides whichever inter-
mediate oligosaccharides are required to produce a connected network 
of reactions, thus forming minimum-RNs (mRNs). However, the result-
ing network is somewhat deficient in that there are more reactions 
known to be taking place between certain pairs of oligosaccharides in 
the minimum network than just the minimum reactions needed to 
connect the network. These additional reactions are added to the defi-
cient network to result in a complete network. In practice, this addition 
does not add many more reactions to the network but more accurately 
represents the dependencies of model solutions on individual enzyme 
activities. Cytoscape v3.8 was used for network visualization and hier-
archical representation (Shannon et al., 2003). Finally, the network was 
exported to an SBML file using the COBRApy package in Python 3.7.3 
(Supplementary Material 7). 

2.3.2. Dimensionality reduction and machine learning 
All analyses were performed in Python 3.7.3 using various packages, 

most notably pandas, umap-learn and sklearn. Dimensionality reduction 
was performed with both Principal Component Analysis (PCA) and 
Uniform Manifold Approximation and Projection (UMAP). The UMAP 
configuration included a number-of-neighbours equal to 15, minimum 
distance set to zero and the use of the Euclidean metric. Following 
UMAP reduction, k-means was used for clustering the data in the 
reduced dimensionality. For the interpretation of UMAP embeddings 
and feature importance towards dimensionality reduction (McInnes and 
Healy, 2018), four models, namely least absolute shrinkage and selec-
tion operator (LASSO), Ridge, Elastic Nets and Random Forests were 
used, as these models are well-established for feature selection (Cai 
et al., 2018). The relevant code can be found in Supplementary Material 

P. Kotidis et al.                                                                                                                                                                                                                                  



Metabolic Engineering 76 (2023) 87–96

90

6. 
All Supplementary Material can be found in CHOGlycoNET, Men-

deley Data, DOI:10.17632/pph9ksfvjd.1 

3. Results 

3.1. RN reconstruction and curation 

The construction of CHOGlycoNET includes three major steps as 
detailed below: 

Fig. 2. (A) Steps for the construction of the CHO-
GlycoNET. Only 1000 reactions of the dRN are shown 
for illustration purposes. Step 1: The process starts 
with the reconstruction of the dRN, a detailed 
glycosylation reaction network that describes the ac-
tivity of 11 enzymes and 22 genes for the generation 
of ~83,000 plausible reactions and ~29,500 oligo-
saccharides. The dRN is used as a standard template 
for the generation of the individual mRNs for every 
examined dataset. Step 2: A unique mRN is generated 
for all the experimentally measured sets of glycans 
using the Lumping algorithm. The mRNs describe the 
minimum set of reactions essential for the synthesis of 
the experimentally observed glycans. Step 3: The in-
dividual mRNs are finally concatenated to produce 
the CHOGlycoNET. The concatenation step includes 
the one-by-one comparison of the mRN networks and 
ensures that the formed CHOGlycoNET is a superset 
of all the mRNs. (B) The resulting CHOGlycoNET for 
both CHO–K1 and CHO–S cells as identified from all 
the datasets included in this study. The network 
consists of 597 reactions and 326 oligosaccharides 
that are generated from the activity of 11 enzymes. 
The different colours of the reactions indicate the 
activity of a different enzyme, as shown in the 
respective legend. (C) RNs with the minimum number 
of reactions to describe the CHO–K1 and the CHO–S 
networks separately. Missing edges between nodes in 
host-cell specific networks indicate the absence of 
corresponding reactions compared to the full-scale 
CHOGlycoNET.   
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• Step 1: Initially, a detailed reaction network (dRN) with 29,443 ol-
igosaccharides and 82,929 reactions was generated, accounting for 
all possible reactions and glycans and based on the 11 considered 
glycosyltransferases/mannosidases (corresponding to 22 genes) 
shown in Fig. 1C and their specificity rules. A generic structure of the 
dRN is shown in Fig. 2A, Step 1.  

• Step 2: Using the Lumping algorithm developed in GLYMMER 
(Krambeck et al., 2009), a minimum reaction network (mRN) was 
constructed for each experiment considered in this analysis (Fig. 2A, 
Step 2), using the dRN as a template. The mRN for each experiment is 
a sub-network of the generic dRN and describes the minimum 
number of reactions necessary for the synthesis of the experimentally 
observed set of glycans. The length of each mRN is dependent on the 
complexity of the oligosaccharides included in each experimental 
dataset. The set of enzymes considered, alongside their specificity 
rules, were common across the mRNs. The enzymate specificity rules 
were adapted from Krambeck et al. (2009) and can be found in the 
Supplementary Material. A total of 200 mRNs were generated and 
were further combined for the reconstruction of the CHOGlycoNET 
as described in Step 3.  

• Step 3: Lastly, all mRNs constructed with the Lumping algorithm 
were concatenated to form CHOGlycoNET. The reactions that were 
unique in each examined network were included in CHOGlycoNET 
(Fig. 2A, Step 3). As an example, the mRN of an EPO-producing 
CHO–K1 cell line, a product of Lumping of the dRN based on the 
experimentally observed glycoprofile, was reduced to 88 oligosac-
charides and 141 reactions. It is important to note that GnTIII (Mgat3 
gene), which is responsible for the addition of bisecting N-acetyl-
glucosamine and is inactive in unmodified parental CHO cells (Yang 
et al., 2015), was excluded from this analysis. 

CHOGlycoNET is exported in an SMBL file (Supplementary Material 
7: “choglyconet.xml”) and can therefore be further easily utilized by 
other researchers as a standalone model or in combination with CHO 
genome scale models through, i.e., COBRApy or the COBRA Toolbox. 

3.2. CHOGlycoNET describes the diverse glycan biosynthetic steps in CHO 
cells 

The resulting CHOGlycoNET includes 597 reactions and 326 oligo-
saccharides (see Supplementary Material 1 for full set of reactions). The 
majority of reactions are catalysed by b4GalT and a3SiaT (Fig. 2B). The 
small number of reactions assigned to earlier processing enzymes in-
dicates the consistency of reactions in the first steps of glycosylation for 
different proteins and across CHO–S and CHO–K1 host cells. 

CHOGlycoNET includes all reactions necessary for the generation of 
the 326 oligosaccharide structures identified among the 200 considered 
samples. Importantly, it only adds 61 intermediate structures to the 
experimentally identified structures to enable the generation of the 
observed glycoprofiles. The small number of additional glycans that are 
necessary for CHOGlycoNET construction is mostly attributed to the 
almost exhaustive examination of the various knockout scenarios that, 
as previously mentioned, give prominence to latent reactions. The 
network can serve for evaluating both the qualitative and quantitative 
effects of gene engineering on glycoprofile microheterogeneity. More-
over, CHOGlycoNET can inform mathematical model development for 
describing protein glycosylation in silico. The inclusion of data from 
experimental glycoengineering studies as well as wild-type CHO cell 
HCP glycans ensures that CHOGlycoNET can account for alien glycans 
that are absent from the unmodified parental cell line data but occur 
after glycoengineering. This means that models formulated based on 
CHOGlycoNET and adequately trained using relevant experimental 
data, such as transcriptomic and/or proteomic analysis of wild-type and 
glycoengineered cells, could, in theory, account for off-target glyco-
engineering effects. 

3.3. CHOGlycoNET highlights cell line-specific protein glycosylation 
reactions 

CHO–K1 cells generally presented RNs with higher complexity than 
CHO–S cells, with 594 reactions of CHOGlycoNET active in the former 
compared to only 192 active reactions in the latter (Fig. 2C). Differences 
in the maturation levels of IgG glycans between the two cell lines have 
been previously reported (Reinhart et al.Bioprocessing of Recombinant 
CHO-K1CHO-DG44CHO, 2019). In-house glycomic data from the intra-
cellular HCPs of both cell lines indicate a higher degree of micro-
heterogeneity and further processed glycans in the CHO–K1 cells (data 
not shown). Apart from the plausible differences in the complexity of the 
RNs due to the glycosylation machinery of the two cell lines, e.g., 
enzyme levels, these differences could be originating from the diversity 
of the datasets. While the CHO–S dataset examines a range of recom-
binant proteins and HCPs (Fig. 1B), the CHO–K1 data includes a thor-
ough screening of GT knockouts (Clausen Lab – CL – dataset), presented 
in Yang et al. (2015). This inclusion contributes to the designation of 
latent reactions and alternative reaction pathways and therefore the 
enrichment of the CHO–K1 RN. GT knockout experiments are included 
in the CHO–S dataset as well, albeit at a smaller scale. Additionally, the 
CHO–S data, while highly diverse, accounts for ~13% of the total 
samples. This is another factor that could contribute to the resulting 
simplicity of the CHO–S reaction network. Regardless of the differences 
between the individual networks, CHOGlycoNET is proposed for both 
parental cell lines and covers a plausible higher complexity of the 
CHO–K1 network. 

Interestingly, while the number of reactions catalysed by each 
enzyme exhibits considerable differences between the two cell-lines 
(Fig. 3A and B), the relative percentage is more equally distributed 
(Fig. 3C and D). This observation is more prominent in the case of a3SiaT 
and b4GalT, where the number of reactions for CHO–S cells is 103 and 
53 for a3SiaT and b4GalT respectively, and 297 and 216 for the CHO–K1 
cell-line. However, the a3SiaT-catalysed reactions are ~50% of the total 
RN for both cell-lines, while the respective percentages for b4GalT are 
28% and 36% for CHO–S and CHO–K1, respectively. The high combined 
number of reactions catalysed by a3SiaT and b4GalT showcase the 
dependence of glycan complexity on the two enzymes. The b4GalT4 
isomer has been found to regulate glycans’ branching in the N-linked 
glycosylation of a recombinantly produced human chorionic gonado-
tropin (hCG) protein (McDonald et al., 2014a). It is also important to 
note that most reactions present in the CHO–K1 and not in the CHO–S 
cell-line are catalysed by the a3SiaT and b4GalT enzymes. The overlap 
between the three datasets is shown in Fig. 3E. The three sialylation 
reactions that are only active in the CHO–S RN are shown in Fig. 3F. 

3.4. Data type effects on the CHOGlycoNET 

CHO HCP glycomic datasets were obtained using various mass 
spectrometry-based techniques, therefore potential differences in the 
datasets could be attributed to variations in the experimental method-
ology. A liquid chromatography (LC) step prior to MS analysis can 
enable the differential elution of individual glycans, thus improving the 
identification of isomeric structures (Veillon et al., 2017). Alternatively, 
isomeric structures can also be differentiated in MALDI-based analysis 
by MS/MS fragmentation (North et al., 2010). LC-MS was used to 
analyse the Lewis & Kildegaard Lab data (abbreviated as LL and KL, 
respectively), electrospray ionization-MS (ESI-MS) for the Borth Lab (BL) 
data and the remaining datasets were obtained with matrix assisted laser 
desorption ionization-time of flight-MS (MALDI-TOF-MS). In addition, 
some analyses include sample derivatisation methods which can in-
crease glycan integrity during ionization (e.g., permethylation) and 
therefore improve sensitivity. Therefore, owing to the discrepancies in 
the sensitivity of the different instruments used for the generation of the 
data included in this study, we did not set a minimum detection limit for 
a glycan to be considered in CHOGlycoNET. Thus, all glycan structures 
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reported in the original studies were included in the analysis. 
Each dataset contributes a different number of reactions towards 

CHOGlycoNET construction (Fig. 4A). The sub-RNs, i.e., the reaction 
networks specific to each individual dataset, were also reconstructed in 
order to evaluate the contribution of each dataset. Overlaps between the 
reactions present in each dataset were identified (Fig. 4B). Reasonably, 
the elaborate analysis (MALDI-TOF-MS) of the effect of GT knockouts on 
EPO glycosylation from the CL dataset, and the site-specific glycomics 
(LC-ESI-QTOF-MS/MS) of the EPO & DAO Fc fusion glycoproteins from 
the BL dataset, result in the largest sub-RNs. Interestingly, the afore-
mentioned two sub-RNs share 321 reactions (~85% of the total number 
of reactions of the BL dataset), while a total of 333 reactions are common 
amongst the three largest datasets (Fig. 4C). However, the number of 
unique reactions that each of the three largest sub-RNs contribute to-
wards the CHOGlycoNET reconstruction is considerably lower (Fig. 4D). 
In fact, the CL-specific sub-RN contributed 68 reactions, while the BL- 
specific sub-RN contributed another 37. Importantly, a subset of 407 
reactions (~70%) of the CHOGlycoNET is common across more than one 
dataset. CHOGlycoNET therefore exhibits minor dependencies on the 
individual datasets. Moreover, the LL dataset was found to not 
contribute any unique reactions towards the global network, despite the 
incorporation of several gene knockout experiments that are important 

for identifying latent reactions. Both the LL and KL analyses that were 
conducted on CHO–S cells contributed the least number of unique re-
actions to CHOGlycoNET, further supporting the observation that 
CHO–S cell lines exhibit less complex and divergent reaction network. 
The inclusion of the LL dataset in the analysis is important for demon-
strating the completeness of CHOGlycoNET and its applicability towards 
describing complex glycosylation profiles such as the one extracted from 
the secretome. 

3.5. Mannosidase and glycosyltransferase distribution based on network 
structure 

The network representation depicted in Fig. 2B is based on 
increasing glycan complexity. Twenty-three levels of complexity can be 
identified based on the CHOGlycoNET structure (Fig. 2B). As glycosyl-
ation is a sequential process, increasing glycan complexity is related to 
the distance that the protein molecule has covered within the Golgi 
apparatus. Thus, the number of reactions catalysed by each enzyme and 
for each individual level can be used to investigate the likely sequence of 
mannosidases and glycosyltransferases and their distribution along the 
Golgi length. The distribution in each level was calculated as the ratio of 
reactions occurring in the specific level over the total number of 

Fig. 3. Evaluation of the contribution of each enzyme in the network of CHO–S and CHO–K1 cells through the absolute number of reactions catalysed by each 
enzyme (A & B) and the percentage of reactions against the total number present in each cell-line specific network (C & D). a3SiaT and b4GalT are examined 
separately due to the considerably higher number of reactions compared to the rest of the enzymes. (E): Overlaps between the CHOGlycoNET, CHO–S and CHO–K1 
networks. (F): The only 3 reactions missing from the CHO–K1 RN and present in the CHO–S. 
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reactions catalysed by each enzyme, while the Golgi length (distance 
from level 1 to level 23) was normalized between 0 and 1. It is important 
to note that the enzyme sequence presented herein does not account for 
activity, assumes that glycoproteins spend an equal amount of time in 
each Golgi compartment and is therefore not meant to indicate enzyme 
localisation. 

As shown in Fig. 5, enzymes catalysing early steps of the glycosyla-
tion reaction network (ManI, ManII and GnTII) demonstrate normal 
distributions (a distribution of GnTI does not exist as the enzyme ca-
talyses a single reaction in CHOGlycoNET). The aforementioned en-
zymes are less promiscuous and relate to a part of the RN that is 

conserved and convergent. Therefore, as expected, the number of re-
actions that the enzymes participate in is relatively small, ranging be-
tween four and eight. Similarly, a3FucT presents a normal distribution 
in the latter part of the Golgi, following a reasonable pattern, as the main 
function of the a3FucT includes the addition of fucose molecules on 
highly branched glycans that are encountered along several locations of 
the Golgi apparatus. Interestingly, GnTIV and GnTV present overlapping 
distributions with high levels of similarity, potentially owing to their 
similar function in glycan branching. In addition, b4GalT and a3SiaT 
show high degrees of overlap and a wide normal distribution, being 
present in >50% of the Golgi apparatus length. iGnT is co-localized with 
b4GalT and a3SiaT and presents a multimodal distribution, unlike most 
glycosyltransferases, probably due to its ability to act on any substrate 
that is terminally galactosylated. Lastly, a6FucT presents a mostly 
bimodal distribution between 0.2 and 0.4 of the normalized Golgi 
length, followed by the highest peak at approximately 0.45 and the 
complete depletion of enzyme levels thereafter. Overall, the results 
broadly indicate a normal distribution of the enzymes, except for a6FucT 
and iGnT enzymes, partially supporting the mathematical formulations 
using the Golgi maturation models (Hossler et al., 2007). The proposed 
sequence is in agreement with experimental findings of glycosidase and 
glycosyltransferase localisation experiments in CHO (Velasco et al., 
1993) and HeLa cells (Rabouille et al., 1995; Hassinen et al., 2010). They 
are also in line with computational predictions of enzyme activity along 
the Golgi length generated using a kinetic glycosylation model for CHO 
cells (Arigoni-Affolter et al., 2019). A recent experimental investigation 
of glycosyltransferases localisation in the Golgi organelle of human cells 
revealed that GnTII is localized downstream of GnTI and b4GalT7, while 
GnTIV was found to reside in earlier parts of the Golgi apparatus 
compared to the aforementioned enzymes (Tie et al., 2018). However, as 
also mentioned in the original study, these observations relate to cells in 
which the respective genes had been overexpressed, which may have 
perturbed the natural localisation of the enzymes (Cosson et al., 2005). 

3.6. Addition of β4-GlcNAc and subsequent galactosylation regulate the 
extension of the observed glycosylation network 

In order to evaluate the importance of each of the 597 identified 

Fig. 4. (A) Number of the total reactions present sub-RNs built for each individual dataset. (B) The overlap of the contribution of each sub-RN towards the 
reconstruction of the CHOGlycoNET. (C) Overlap of the contribution between the three datasets that result in the largest sub-RNs. (D): Unique reactions contributed 
by each dataset towards the CHOGlycoNET construction. 

Fig. 5. Distribution of each enzyme along the length of the Golgi apparatus (x- 
axis shows normalized organelle length). Note that GnTI has no distribution 
because the enzyme catalyses only a single reaction in the identified network. 
An arrow is used to indicate GnTI localisation within the normalized 
Golgi apparatus. 
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reactions in the shaping of the observed glycosylation network for each 
of the considered samples, a dimensionality reduction technique, 
namely UMAP, was employed for capturing data variance on CHOGly-
coNET. UMAP is a non-linear dimensionality reduction method, 
competitive to the well-established t-SNE algorithm (van der Maaten 
and Hinton, 2008), that ensures the preservation of the data global 
structure in the reduced dimensionality (McInnes and Healy, 2018) and 
with major applications in single cell data visualization (Becht et al., 
2019). 

A matrix of AxB size, with A being the number of observations 
(samples) and B the number of reactions in CHOGlycoNET was used for 
dimensionality reduction. Each row of the matrix represents a sample 
and each column a reaction of CHOGlycoNET. Therefore, the matrix 
dimensions were 200x597. The matrix describes whether a reaction is 
active in each sample; if a reaction is active then the value of the point 
for the sample (row) and this reaction (column) would be 1 and if the 
reaction is inactive the respective value would be 0. Next, the UMAP 
algorithm was used to reduce the dimensionality of the dataset and 
identify latent components that efficiently describe the variance of the 
system. The matrix can be found in the supplementary material (Sup-
Mat2_Partition.csv). As shown in Fig. 6, CHOGlycoNET was successfully 
reduced to two latent components that offered a distinct clustering of the 
considered samples. The clustering of samples was not found to be 
dependent on 1) cell lineage, 2) lab of origin or protein analysed, as 
shown in Fig. S1. 

However, unlike dimensionality reduction techniques such as prin-
cipal component analysis (PCA), UMAP does not provide loadings of the 
features from the original dimensionality, therefore not revealing the 
contribution of each initial feature towards the calculation of the latent 
components. Notably, the use of PCA for dimensionality reduction 
resulted in a relatively low capture of variance, with only 65% explained 
by 5 PCA components. To overcome the limitation imposed by the lack 
of UMAP-based feature importance, four machine learning models, 
namely Lasso, Ridge, ElasticNet and Random Forests were employed to 
capture the transition from the original to the reduced dimensionality. 
The aforementioned algorithms are powerful tools for feature selection 
(Cai et al., 2018), meaning the identification of the most important 
features for calculating the value of the targeted label. Notably, apart 
from Random Forests, the remaining estimators are linear models that 
were expected to perform reasonably well due to the linear Euclidean 
metric used for UMAP reduction. More specifically, the models were 

trained on the original matrix AxB (inputs) and with the target variables 
being the latent components as calculated from the UMAP reduction 
(outputs). Consequently, the models were trained in order to mimic the 
UMAP reduction of dimensionality between the original dataset and the 
latent components and were subsequently used to extract important 
features. As shown in Table 1, all models achieved high R2 and low mean 
squared errors (MSE), with Random Forests outperforming the rest of 
the estimators during the cross-validation and hyper-parameter tuning. 
The R2 on the test set was calculated at ~0.96, indicating good gener-
alization capabilities from the tuned Random Forest. Whilst nested 
cross-validation is usually employed for model selection, it can be un-
necessarily expensive for most applications and was therefore avoided in 
the current study (Wainer and Cawley, 2021). A repeated k-fold 
cross-validation with 10 splits and 5 repeats was used for model selec-
tion on 70% of the dataset, whilst 30% of the dataset was used for 
testing. Finally, following the evaluation of models through CV, the best 
model was trained on the entire dataset. The models were used to pre-
dict both UMAP embeddings simultaneously. 

Following its identification of the best performing model, a Random 
Forest was subsequently tuned on the entirety of the dataset. Tuning was 
performed through a repeated k-fold cross validation (10 splits, 5 re-
peats) as well. As the Random Forest model was used for estimating the 
latent UMAP components utilizing the original dataset, the resulting 
feature importance values of the Random Forest were used to represent 
the contribution of each reaction to the formation of the UMAP com-
ponents. Reactions R38 and R53 were found to contribute the most to-
wards the variance between different samples, demonstrating a key 
node (reaction) of the RN identified for each sample. Based on feature 
importance derived from the tuned Random Forest model, GnTIV ac-
tivity on A2G0F and the subsequent galactosylation of the product 
through b4GalT showed the highest importance among the reactions in 
CHOGlycoNET (Table 2). Interestingly, a6-fucosylation of the early 
A1G0 glycan was also designated as an important reaction character-
ising the complexity of the glycosylation network. R16 was almost 
perfectly correlated with R23 (Pearson correlation coefficient ~0.97) 
that includes the addition of GlcNAc to A1G0F (R16 product) for the 
formation of G0F through GnTII activity. However, R16 shows no cor-
relation with R38 and R53 (Pearson correlation ~ − 0.1). Therefore, the 
pathway of sequential reactions connecting A1G0 to A3G1F (product of 
R53) was found to considerably contribute to network complexity. 

4. Discussion 

N-linked glycosylation is a critical post translational modification of 
recombinant glycoproteins, significantly affecting molecule activity, 
structure and immunogenicity. Glycosylation is following a vast and 
complex reaction network, with thousands plausible reaction pathways 
leading to the same terminal glycan product. Elucidating the details of 
the glycosylation RN in CHO, the most widely used mammalian platform 
for recombinant proteins production in both industry and academia, 
would enable the design of calibrated glycoengineering strategies for 
further improving the quality of therapeutic proteins. 

First, the general reaction network with 29,443 plausible oligosac-
charides and 82,929 reactions was reduced to a network of 326 struc-
tures and 597 reactions, achieving a reduction of 90x and ~140x for the 
structures and reactions, respectively. A total of 200 different glycan 

Fig. 6. Reduced dimensionality of CHOGlycoNET using UMAP. Following 
dimensionality reduction, k-means clustering (n = 7) was employed to group 
the observed clusters of samples. Colouring of samples indicates 
different clusters. 

Table 1 
Results of machine learning models used for capturing UMAP 
reduction.  

Model CV score (R2/MSE) 

Lasso 0.818/7.037 
Ridge 0.847/6.125 
ElasticNet 0.805/7.731 
Random Forest 0.902/3.759  
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datasets from 7 different labs and different glycoproteins, including both 
intracellular and secreted HCPs, were utilized in order to construct the 
CHOGlycoNET. The inclusion of several comprehensive glycoengineer-
ing experiments, enables the identification of several plausible glycan 
structures that would not have been otherwise detected. Additionally, 
CHOGlycoNET, carrying compressed information from 200 datasets, can 
considerably accelerate the development and simulation of mechanistic 
and stochastic glycosylation models, by alleviating the need for glyco-
sylation network construction and reduction of necessary times for 
model optimization due to the reduced size. In addition, CHOGlycoNET 
is built on data from both CHO–K1 and CHO–S cell lines, extending the 
applicability of the network to both hosts. 

The hierarchical reconstruction of the glycosylation network based 
on the minimum number of reactions and intermediate structures 
necessary to produce the experimentally observed glycans, enabled the 
identification of 23 reaction levels for the synthesis of the most complex 
glycan observed in the CHOGlycoNET. Furthermore, glycoenzymes 
distribution was estimated based on the different reaction levels of the 
network. Enzyme distribution was found to follow expected patterns for 
all glycosyltransferases according to literature, improving confidence in 
network structure. Whilst enzyme localisation can be cell line specific 
(Colley, 1997), even between different CHO cell lines, the presented 
distribution was constructed based on data from several different clonal 
CHO cell lines. The co-distribution of b4GalT and a3SiaT in the medial 
and late parts of the Golgi cisternae has been reported before for several 
cell lines (Rabouille et al., 1995; Schaub et al., 2006), in addition to 
observed sialyltransferase/galactosyltransferase heteromers identified 
in mammalian cells (Khoder-Agha et al., 2019). ManII and GnTI were 
found localized in the early parts of the cisternae, following a similar 
profile with previous reports of the enzymes being present mostly on the 
medial compartment (Rabouille et al., 1995). The development of 
CHOGlycoNET consolidates the information content of 200 different 
samples, providing a comprehensive reaction network that can be used 
to develop mechanistic, kinetic (e.g. (Jimenez del Val et al., 2011),) or 
stoichiometric (e.g. (Hutter et al., 2017),), glycosylation models. The 
proposed enzyme distribution can further aid model parameterisation, 
which is a challenging and computationally expensive task. 

Following the reconstruction of CHOGlycoNET, the utilization of 
machine learning-mediated dimensionality reduction (Random Forest 
based interpretation of UMAP latent components) enabled the identifi-
cation of key reactions in the network. Interestingly, the most notable 
reactions regulating RN complexity for each of the samples considered 
were found to be R38, R53 and R16. b4GalT4, one of the b4GalT iso-
forms catalysing reaction R53, has been previously characterised as a 
major enzyme for the regulation of glycans branching in CHO cells 
(McDonald et al., 2014b). We envision that the identified reactions and 
enzymes can be used to manipulate the complexity of the glycosylation 
network towards the production of more uniform glycoprofiles in 
recombinantly produced proteins. 

5. Conclusion 

Herein, we presented a glycosylation reaction network, namely 

Comprehensive Glycosylation Reaction Network for CHO cells, or 
CHOGlycoNET, that incorporates all the possible reactions occurring in 
CHO–K1 and CHO–S cells, as derived from a dataset of 200 glycomic and 
glycoproteomic profiles from different CHO cell lines obtained by seven 
research groups. This extensive glycoprofile dataset further covers 
various recombinant and host cell proteins. Our results demonstrated 
that CHOGlycoNET can be used to describe the glycosylation of the 
majority of glycoproteins in both CHO–S and CHO–K1 cells. The 
increased complexity of glycoproteins considered in the datasets and 
diversity of glycoengineering and cell culture conditions applied in the 
experimental datasets has enabled the identification of the minimum set 
of reactions that are necessary for describing the CHO cell glycosylation 
system. We envisage that CHOGlycoNET will find applications in the 
efficient design of glycoengineering strategies as well as the accelerated 
development of predictive in silico glycosylation models. 
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