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Abstract
Motivation: Whole-exome and genome sequencing have become common tools in diagnosing patients with rare diseases. Despite their suc
cess, this approach leaves many patients undiagnosed. A common argument is that more disease variants still await discovery, or the novelty 
of disease phenotypes results from a combination of variants in multiple disease-related genes. Interpreting the phenotypic consequences of 
genomic variants relies on information about gene functions, gene expression, physiology, and other genomic features. Phenotype-based meth
ods to identify variants involved in genetic diseases combine molecular features with prior knowledge about the phenotypic consequences of al
tering gene functions. While phenotype-based methods have been successfully applied to prioritizing variants, such methods are based on 
known gene–disease or gene–phenotype associations as training data and are applicable to genes that have phenotypes associated, thereby 
limiting their scope. In addition, phenotypes are not assigned uniformly by different clinicians, and phenotype-based methods need to account 
for this variability.
Results: We developed an Embedding-based Phenotype Variant Predictor (EmbedPVP), a computational method to prioritize variants involved 
in genetic diseases by combining genomic information and clinical phenotypes. EmbedPVP leverages a large amount of background knowledge 
from human and model organisms about molecular mechanisms through which abnormal phenotypes may arise. Specifically, EmbedPVP incor
porates phenotypes linked to genes, functions of gene products, and the anatomical site of gene expression, and systematically relates them to 
their phenotypic effects through neuro-symbolic, knowledge-enhanced machine learning. We demonstrate EmbedPVP’s efficacy on a large set 
of synthetic genomes and genomes matched with clinical information.
Availability and implementation: EmbedPVP and all evaluation experiments are freely available at https://github.com/bio-ontology-research- 
group/EmbedPVP.

1 Introduction
The contribution of genetics to human diseases ranges from 
almost 100% for monogenic, Mendelian disorders to much 
smaller percentages for complex diseases, including infectious 
disease (Hyman 2000). Understanding how variation in an 
individual’s genome relates to disease risk is important, as it 
allows us to prevent and predict negative health effects in 
individuals, generate better diagnoses and prognoses for dis
ease, and enable new approaches for treatment and develop
ment of new drugs (Bloss et al. 2011). Predicting possible 
health effects from genome sequences is a significant emerg
ing challenge and is important to support genetic counseling 
and prevent major health problems. Whole-exome and ge
nome sequencing (WGS/WES) has become a common tool in 
the diagnosis of patients with rare diseases as it has improved 
diagnostic yields and enables efficient identification of novel 
gene–disease associations. The interpretation of WGS/WES 
data linked to individuals is increasingly being used to 

identify causal variants that may lead to an abnormal pheno
type or a disease (Krier et al. 2016). Despite its success, these 
approaches leave many patients undiagnosed, with estimated 
diagnostic yields of 25%–50% (Clark et al. 2018).

While there have been several efforts to predict and priori
tize pathogenic genomic variants, in particular, single- 
nucleotide polymorphisms (SNPs) and small Insertion or 
Deletion (InDels) (Eilbeck et al. 2017), predicting the func
tional impact of variants discovered through genome se
quencing studies remains challenging. This is due to the 
limited gene–phenotype information available; also, variants 
may cover multiple coding, noncoding, or intergenic regions 
and overlap several genes (Shameer et al. 2016). Existing 
methods for predicting the pathogenicity of genomic variants 
may be based on the impact of variants on protein structure, 
measures of sequence conservation, or function by relying 
only on the genomic sequence information (Eilbeck et al. 
2017). While several methods exist to identify disease- 
associated variants in patient cohorts, it is more challenging 
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to discover disease-associated variants that exist in a single 
sample or pedigree, in particular in rare Mendelian disorders 
(Sanchis-Juan et al. 2018).

Another group of methods for finding variants causing ab
normal phenotypes predicts variant pathogenicity and priori
tizes damaging variants using the relation between the 
phenotypes of a patient and the phenotypes in a database of 
genotype–phenotype associations (K€ohler et al. 2014). 
Phenotype-driven variant prioritization methods aim to link 
variants to the phenotypes observed in individuals using prior 
knowledge (Eilbeck et al. 2017). Commonly, the link is estab
lished using a similarity measure between phenotypes associ
ated with a variant or gene and the phenotypes observed in a 
patient (Smedley et al. 2015). Phenotype-based methods are 
successful in finding disease-associated variants (Shefchek 
et al. 2020) but suffer from the limited information about 
variant– or gene–phenotype associations. One way to over
come this limitation is to utilize and link the phenotypes ob
served in model organisms to human phenotypes (Shefchek 
et al. 2020). However, even when including phenotypes from 
model organisms, a large number of human protein-coding 
genes remain without associations, thereby limiting the suc
cess of phenotype-based methods to variants or genes that 
have previously been studied either in human or animal mod
els or relying on guilt-by-association approaches in which in
formation about phenotypes is propagated through 
associations such as interaction networks (Smedley 
et al. 2014).

Several deep learning and machine learning methods are 
now available that can predict phenotypes from genotype 
(Zhou et al. 2019, Kulmanov and Hoehndorf 2020) or asso
ciate phenotypes with different types of information available 
for genes, including the functions of gene products and ana
tomical sites of expression (Smaili et al. 2019, Chen et al. 
2021). These methods use machine learning to relate infor
mation through background knowledge contained in formal
ized knowledge bases, or ontologies, and can accurately 
identify phenotype-associated genes without prior knowledge 
about phenotypes, often significantly improving over the use 
of semantic similarity measures (Kulmanov et al. 2020). A 
limitation of these methods is that they are usually transduc
tive instead of inductive (Kulmanov et al. 2020), i.e. the dis
eases or disorders for which associated genes are predicted 
should already be available at the time of training the model. 
As these methods require information about disease- 
associated phenotypes during training, they cannot generalize 
to entirely new cases, thereby limiting their application in 
identifying phenotype-associated genomic variants. Another 
limitation can be biases introduced by the neural network 
and the phenotypes annotations (Alghamdi et al. 2022) or 
similarity measure (Kulmanov and Hoehndorf 2017).

We developed Embedding Pathogenicity Variant Predictor 
(EmbedPVP), a computational method to prioritize variants 
that are pathogenic and involved in the development of spe
cific phenotypes or genetic diseases. EmbedPVP prioritizes 
single nucleotide variants or small insertions or deletions in
volved in genetic diseases. Our method combines genomic in
formation and clinical phenotypes and leverages a large 
knowledge base derived from human and model organisms 
for knowledge-enhanced learning. We use different neuro- 
symbolic embedding-based methods to learn from the 
background knowledge and combine the information from 
embedding and pathogenicity prediction to predict the 

variant that most likely causes the phenotypes observed in 
the patients. We demonstrate that our method improves over 
the state-of-the-art in detecting disease-associated variants in 
multiple benchmark datasets. We have made EmbedPVP 
freely available as a Python package at https://github.com/ 
bio-ontology-research-group/EmbedPVP.

2 Materials and methods
2.1 Genotype and clinical phenotype datasets
We performed all of our experiments on a set of pathogenic 
and disease-causing variants for diseases collected from dif
ferent databases. We inserted the variants we obtained into 
synthetic genomes with a set of benign, pathogenic, and un
known variants from the 1000 Genome Project Consortium. 
We use three different datasets of variants to generate syn
thetic patients and evaluate the performance of EmbedPVP. 
The first dataset, the Phenotype-Associated Variants in Saudi 
Arabia (PAVS)-synthetic dataset, covers clinically validated 
Saudi variants from an in-house database, the PAVS database 
(http://pavs.phenomebrowser.net) representing 1528 individ
uals. PAVS is a database that combines a set of clinically vali
dated pathogenic variants with a set of manually curated 
pathogenic variants observed in the genomes of the Saudi 
population and their associated phenotypes. All phenotypes 
are mapped to their Human Phenotype Ontology (HPO) 
identifiers. The second dataset, Phenopackets (Jacobsen et al. 
2022), represents 384 individuals described in published case 
reports with HPO terms and their causal genetic variants. As 
the final dataset, we selected 1082 newly inserted pathogenic 
variants (between 4 January 2022 and 31 October 2022) 
from the ClinVar database (Landrum et al. 2020). We further 
subsetted these datasets to cover other evaluations, such as 
exonic versus nonexonic variants (Supplementary Materials 
Section S2.2), variants in overlapping and intergenic regions 
(Supplementary Section S2.3), variants in genes with no phe
notype annotations (Supplementary Section S2.4), newly dis
covered genes, and diseases observed or not observed during 
the training.

2.1.1 Clinical phenotypes versus OMIM phenotypes
To distinctly differentiate the ranking of variants using clini
cal phenotypes from those linked with OMIM identifiers, we 
performed the experiments on the PAVS and Phenopackets 
datasets twice using the same genotype data. In the first run, 
we utilized the phenotypes assigned by clinicians. In the sec
ond run, we utilized a set of phenotypes associated with 
OMIM identifiers. Clinicians reported these OMIM-linked 
phenotypes for the PAVS dataset, while for the Phenopackets 
dataset, they were provided as additional annotations for the 
variants. For the ClinVar benchmark dataset, we conducted 
experiments only once using the phenotypes associated with 
the reported disease in the HPO database.

2.2 Resources for ontologies and 
annotation phenotypes
We use four primary ontologies: HPO, Mammalian 
Phenotype Ontology (MP), Gene Ontology (GO), and the 
Uberon cross-species integrated anatomy ontology 
(UBERON). First, we downloaded the phenotypes associated 
with human genes from the HPO database on 30 May 2022. 
We obtained the phenotype annotations for 4318 human 
genes, including 205 429 associations between genes and 
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HPO. Second, the phenotypes associated with mouse genes 
and the orthologous gene mappings from mouse genes to hu
man genes were obtained from the Mouse Genome 
Informatics (MGI) database (Smith and Eppig 2009), down
loaded on 7 June 2022. We obtained phenotype annotations 
for 13 529 mouse genes, including 228 214 associations be
tween genes and MP classes. We mapped each mouse gene to 
its human ortholog using the file HMD_HumanPhenotype. 
rpt available at the MGI database, resulting in 9879 human 
genes for which the mouse ortholog has phenotype associa
tions. Third, we used biological function (GO) annotations 
from the GO website (Ashburner et al. 2000) downloaded on 
14 March 2022. We collected 18 495 human gene products 
(495 719 annotations in total). We mapped the UniProt 
accessions to Entrez gene identifiers using the mappings pro
vided by the Entrez database (Maglott et al. 2010), and we 
obtained 17 786 Entrez genes for which the gene product has 
GO annotations. Fourth, for the anatomical location of gene 
expression, we downloaded the Tissue Expression Profiles 
(GTEx) dataset (GTEx Consortium 2015) from the Gene 
Expression Atlas (Papatheodorou et al. 2020), which charac
terizes gene expression across 53 tissues. We mapped the 
Ensembl protein identifiers to Entrez gene identifiers using 
the mapping provided by the Entrez database (Maglott et al. 
2010). We obtained 20 538 Entrez genes, which have expres
sion levels above the 4.0 threshold in one or more tissue. We 
mapped each tissue to the UBERON ontology, excluding the 
expression in EBV-transformed lymphocyte and transformed 
skin fibroblast since these two tissues are not available in the 
UBERON ontology.

Finally, because these annotations are available for differ
ent numbers of genes, we also used the phenotypes based on 
the union of all genes and their annotations (i.e. for genes 
that have annotations from one, two, or all four datasets, 
HPO, MP, GO, and Uberon). We used the integrated pheno
type ontology uPheno (Shefchek et al. 2020) as our pheno
type ontology to add background knowledge from 
biomedical ontologies, as it integrates human and model or
ganism phenotypes and allows them to be compared.

To evaluate gene–disease associations, we used the pheno
types available in the HPO database (K€ohler et al. 2019) to 
associate diseases from the Online Mendelian Inheritance in 
Men (OMIM) database (Amberger et al. 2011) to their phe
notypes. In total, we have 4431 OMIM diseases and 3418 
genes in our knowledge base, representing 7405 associations; 
we used 80% of these associations during supervised training 
to generate the representations, 15% for the validation, and 
5% for testing.

2.3 Generation of synthetic patients and 
synthetic phenotypes
We created synthetic genotypes in Variant Call Format (VCF) 
format using the reference genome from the 1000 Genomes 
Project. The use of synthetic genomes allows us to systemati
cally evaluate the performance of our prioritization method 
under controlled conditions. By introducing known causative 
variants into synthetic genomes, we can assess how well our 
approach identifies these variants among other genomic var
iants. We simulated a more realistic genome by randomly 
selecting 100 000 variants such that 90% are in intronic 
regions and 10% as exonic within regions.

In our experimental design, we set the threshold of MAF to 
be <1% which aims to exclude the common variants and 

prioritize rare and potentially pathogenic variants (Evans et al. 
2013). We filtered the variants to select variants with MAF 
<1% in the 1000 Genomes Project, The Exome Aggregation 
Consortium (ExAC) (Karczewski et al. 2017), and Genome 
Aggregation Database (gnomAD) (Collins et al. 2020) data
bases for all the population, and as a result, we obtained 98 194 
variants to represent our synthetic genome. We then inserted 
the causative pathogenic variants from our evaluation cohorts 
(PAVS, Phenopackets, ClinVar Time-based split) into the syn
thetic genome, which, together with the associated phenotypes, 
represents the synthetic patients.

For the phenotypes linked to each patient, we evaluated 
the phenotypes reported for each patient (using PAVS and 
Phenopackets cohorts). In addition, since we have the OMIM 
diseases reported for each causative variant, we performed 
the same experiments using the phenotypes linked with the 
disease in HPO, which represents more phenotypic variability 
compared to the reported phenotypes. We used the VCF files 
together with the HPO phenotypes, either clinical or from 
OMIM, to run the different models. We then ranked the 
inserted variants using EmbedPVP models and other prioriti
zation methods for the OMIM diseases set of phenotypes and 
reported clinical phenotypes.

2.4 Generation of ontology annotation- 
based embeddings
Formally, we define an ontology using a signature 
Σ ¼ ðC;R; IÞ, where C;R; I are sets corresponding to concept 
names, role names, and individual names, respectively. An 
embedding is a structure-preserving mapping between two 
mathematical structures. To generate embeddings from on
tology entities into vector representations we followed differ
ent approaches identified and categorized in (Kulmanov et al. 
2020) such as (i) graph-embeddings with random walks, (ii) 
graph embeddings with knowledge graph embeddings meth
ods, and (iii) model-theoretic embeddings. To predict gene– 
disease associations, we used a scoring function s given by the 
embedding method. For a gene g and a disease d, s(g, d) will 
output a value in the range ½0; 1� indicating the plausibility of 
the association to hold true. The following subsections sum
marize each category of embeddings, all of which we imple
mented using the mOWL library (Zhapa-Camacho et al. 
2023); parameters are reported in Supplementary Section S1.

2.4.1 Graph-based + random walk embeddings
A relational graph is a tuple G ¼ ðV;E;LÞ with sets V of ver
tices, L of edge labels, and E � V×L×V of edges repre
sented as triples (h, r, t), where h, t are nodes, and r is an edge 
label. Graph-based embedding methods require the genera
tion of a graph out of the ontology axioms. This process is 
called graph projection (Zhapa-Camacho and Hoehndorf 
2023). The graph projection methods we chose are the ones 
found in DL2Vec (Chen et al. 2021) and OWL2Vec� (Chen 
et al. 2021). These methods complement each other to en
hance the overall robustness of our approach, capturing se
mantic relationships of different entities by leveraging 
ontological information.

Traditionally, given a graph, a random walk w ¼
fv0; v1; v2; . . . ; vng of length n is constructed iteratively by 
choosing an initial node v0 2 V and obtaining nodes viþ1 ¼

nextðviÞ given by the function next. For example, in 
DeepWalk, the function nextðviÞ generates the element viþ 1 

by choosing randomly from the neighbors of vi. However, to 
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include edge label information, we used a variation from 
DeepWalk that takes not only neighboring vertices but also 
the edge label between them. Therefore, a random walk with 
n nodes will contain 2n − 1 elements. After generating a 
graph using the projection function in DL2Vec, we used 
DeepWalk (Perozzi et al. 2014) to create k walks of size 
2n − 1 for each node in the graph.

To capture the co-occurrence of ontology entities, we trained 
a Word2Vec model, where the input is the collection of k � jVj
random walks. The Word2Vec model, under the Skip-gram ar
chitecture, is optimized to find word representations that are 
useful to predict surrounding words (Mikolov et al. 2013). 
Thus, given a sequence v0; v1; . . . ; vn, the training objective is 
1
n

Pn
t¼1
P

− c≤j≤c;j6¼0 log ðpðwtþ jjwtÞÞ, where p is the softmax 
function. Given that Word2Vec can capture the co-occurrence 
of entities, we chose a similarity-based scoring function defined 
as sgdaðg; dÞ ¼ σð~g � ~dÞ, where ~g; ~d are the vector representa
tions obtained by training the Word2Vec model, ð�Þ correspond 
to the dot product, and σ is the sigmoid function.

2.4.2 Knowledge graph embeddings
Graph embeddings using random walks generate embeddings 
that are useful for computing similarity between nodes, but they 
neglect the relation labels in testing phase. To incorporate rela
tions information, we generated embeddings by using 
Knowledge Graph Embedding (KGE) methods (Wang et al. 
2017), which use a function sðh; r; tÞ to score triples and can be 
optimized using an objective function of the form L ¼P
ðh;r;tÞ2E

P
ðh0 ;r;t0 Þ2E0 ½sð

~h;~r;~tÞ− sð ~h0 ;~r; ~t0 Þ þ γ�þ , where the set 
E0 is the set of negative triples (i.e. triples not existing in the 
graph) generated by either corrupting the head or tail of a posi
tive triple in E and γ is a margin between positive and negative 
scores. The training objective minimizes the score of a positive 
triple while maximizing the scores of negative ones. KGE meth
ods have been categorized into (i) translational-based, (ii) 
similarity-based, and (iii) neural-network-based (Wang et al. 
2021). We used representative methods from each category: (i) 
TransE (Bordes et al. 2013), TransR (Lin et al. 2015), TransD 
(Ji et al. 2015), (ii) DistMult (Yang et al. 2015), and (iii) ConvE 
(Dettmers et al. 2018). All KGE methods implement a scoring 
function sðh; r; tÞ indicating the plausibility of the triple (h, r, t) 
to exist in the graph. To predict gene–disease associations for a 
gene g and a disease d, we compute sgdaðg; dÞ ¼
sð~g; is associated with; ~dÞ. We used the PyKEEN library (Ali 
et al. 2021b) to provide implementations of the chosen 
KGE methods.

2.4.3 Model-theoretic embedding
Graph-based methods ignore semantic information of ontol
ogy axioms. Concept descriptions C in the Description Logic 
EL can be constructed as any of the normal forms 
C v D; C uD v E, C v 9R:C and 9R:C v D. An interpreta
tion I ¼ ðΔI ; �I Þ is given by an nonempty domain ΔI and an 
interpretation function mapping every concept C 2 C to a set 
CI � ΔI and every role R 2 R to a set RI � ΔI ×ΔI . 
Moreover, the interpretation function maps complex concept 
descriptions as follows: ?I ¼ ;; >I ¼ ΔI , ðC uDÞI ¼
CI \DI , ð9R:CÞI ¼ fa 2 ΔI j9b 2 ΔI : ða; bÞ 2 RIÙb 2 CIg
An interpretation I is a model if for every axiom C v D the 
inclusion CI � DI holds.

In order to incorporate semantic information, we used two 
geometric-based embedding methods: ELEmbeddings 
(Kulmanov et al. 2019) and ELBoxEmbeddings (Peng et al. 

2022). These methods represent ontology concepts as geometric 
bodies such as n-dimensional balls and n-dimensional boxes, re
spectively. For every axiom C v D, the training objective mini
mizes the inclusion loss of the geometric representation of C 
within the geometric representation of D. Therefore, the scoring 
method for every axiom is sðC v DÞ ¼ inclusionðC;DÞ.

The inclussion function is defined for each normal form in 
ELEmbeddings and ELBoxEmbeddings. The training objec
tive follows a similar approach as in Equation (3), where the 
positive samples are the axioms in the ontology, and the neg
ative samples are generated by corrupting the concept names 
on the right-hand side of the axiom. To predict gene–disease 
associations, we compute the score of the ax
iom: sgdaðg; dÞ ¼ sð~g v 9is associated with:~dÞ.

2.4.4 Training procedure
To train our models, we optimized hyperparameters 
(Supplementary Section S1) for each embedding method. We 
trained all models using the annotations information for GO, 
MP, HP, UBERON, and the Union. We used 80% of gene– 
disease associations during supervised training to generate 
the representations, 15% for the validation, and 5% for test
ing. We used Adam (Kingma and Ba 2014) optimizer and 
adapted the learning rate.

2.4.5 Updating embedding models to handle new phenotypes
While EmbedPVP primarily uses a transductive approach, we 
also implemented an inductive approach to embedding gener
ation. To achieve this, we first trained each EmbedPVP model 
(using different embeddings and different ontology) with an 
initial set of diseases from OMIM until a convergence crite
rion is reached; we utilized the validation loss as the conver
gence criterion. During the training process, we continuously 
monitor the loss calculated on a separate validation dataset. 
We stop the training when the validation loss no longer 
decreases or starts to increase, indicating that the model’s 
performance on unseen data is not improving.

The resulting trained models, along with their correspond
ing embeddings, are saved. We then added information of the 
phenotypes of each new disease d0 separately into the model 
and trained the model for a small number of iterations to up
date the embedding representations with the new set of phe
notypes. Supplementary Algorithm S1, shows the details of 
updating the trained model.

2.5 Functional variant features
We annotate variants with a set of genomic features using 
public databases. We use Annovar (Wang et al. 2010), which 
uses data from multiple external databases. From the annota
tions provided by Annovar, we use the type of variants and 
the gene information. While not used as a feature of our pre
diction model, we also use Annovar to identify the allele fre
quency of variants using the 1000 Genomes allele frequency 
(Sudmant et al. 2015), ExAC (Karczewski et al. 2017), 
gnomAD (Collins et al. 2020). We use this information to fil
ter out common variants before applying our predictions. For 
the pathogenicity prediction, we rely on the Combined 
Annotation Dependent Depletion (CADD) (Rentzsch et al. 
2019) score. CADD is a tool for scoring the deleteriousness 
of single nucleotide variants and insertion/deletion variants in 
the human genome.
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2.6 Performance evaluation and comparison
We compare EmbedPVP with variant prioritization tools 
based on genotype information, specifically CADD (Kleinert 
and Kircher 2021), SIFT (Ng and Henikoff 2003), PolyPhen2 
(Adzhubei et al. 2013), MetaSVM (Sun and Yu 2019), and 
DANN (Quang et al. 2015), to determine whether the addi
tion of phenotype information can improve over sequence- 
based methods alone. We also evaluated and compared 
EmbedPVP to different phenotype-based methods, PhenIX 
(Zemojtel et al. 2014), Exomiser-hiPHIVE (Robinson et al. 
2014), PHIVE (Robinson et al. 2014), and DeepPVP 
(Boudellioua et al. 2019). We assessed their effectiveness in 
the different benchmark datasets. We evaluated the perfor
mance of our models and baseline methods by calculating the 
recall at different ranks, i.e. finding the rank of the inserted 
variants and then reporting the top hits, top 10, top 30, and 
top 50 hits. In addition, for a more comprehensive evaluation 
and to provide further insights into the interpretation of the 
results, we incorporated the Receiver Operating 
Characteristic Area Under the Curve (AUC) and the area un
der the precision–recall curve (AUPR) metrics.

3 Results
3.1 Overview of the EmbedPVP model
EmbedPVP workflow contains a systematic process that inte
grates genotypic and phenotypic information, utilizing 
embeddings and ontologies to prioritize variants based on 
their potential associations with given phenotypes. 
Specifically, the workflow (Fig. 1) takes a VCF file as input, 
which contains a set of SNPs or InDels, and phenotypes 

encoded using HPO. Using this input, EmbedPVP generates a 
prioritized list of variants from the input VCF file based on 
their likelihood of being associated with the input set 
of phenotypes.

To achieve this goal, EmbedPVP leverages a knowledge 
base featuring different ontologies and their annotations 
(Fig. 1A). This knowledge base facilitates the connection be
tween genotypes and phenotypes. Subsequently, EmbedPVP 
utilized different embedding methods to generate embedding 
representations for both the input phenotypes and the genes 
(Fig. 1B). Furthermore, for the given set of variants, 
EmbedPVP collects genomic features for each variant based 
on its association with the gene or set of overlapping genes. 
Specifically, coding variants are linked to the gene in whose 
coding region they reside, while intergenic variants connect 
to their nearest genes. In cases where a variant lies in the cod
ing region of multiple genes, it relates to all of them (Fig. 1C). 
EmbedPVP then calculates the similarity between the input 
set of phenotypes and the ontology-based embedding for the 
genes using the scoring function associated with the selected 
embedding method. The pathogenicity prediction method is a 
parameter of EmbedPVP; we have used CADD because it is 
used by other phenotype-based methods and provides 
genome-wide predictions. Finally, EmbedPVP computes the 
final prediction score for the variant by using the weighted 
averages of the similarity score with the pathogenic
ity prediction.

3.2 EmbedPVP evaluation: clinical phenotypes and 
OMIM phenotypes
EmbedPVP combines two sources of information to evaluate 
variants, variant pathogenicity and relevance to observed 

Figure 1. EmbedPVP Model Workflow. (A) Generates background knowledge from different ontologies. (B) Generates embeddings for diseases (Di) and 
genes (Gi) using various embedding methods. (C) Calculates phenotype–genotype similarity using the scoring function associated with the selected 
embedding method, considering the maximum similarity score for multiple genes associated with the phenotype, and then averages this similarity with 
pathogenicity prediction. Vi represents variant i, MSvi is max phenotype similarity for variants, GPvi is genotype prediction (CADD), and Svi is the final 
weighted score of phenotypes and genotypes for the variants.
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phenotype. We include a comparison to pathogenicity predic
tion methods to demonstrate whether and how much addi
tional information is provided by the phenotype-matching 
component of EmbedPVP. We conducted evaluations on dif
ferent benchmark datasets, including synthetic datasets using 
clinical phenotypes and OMIM phenotypes. For this purpose, 
we trained EmbedPVP with a unique representation for each 
sample based on its phenotypes, i.e. all samples (patients with 
their phenotypes) were already known during embedding 
generation. In other words, we perform transductive infer
ence. The evaluations aimed to assess the performance of dif
ferent embedding methods on these datasets. Table 1 
provides a comparison of the performance of EmbedPVP 
against other state-of-the-art methods using the PAVS dataset 
(refer to Supplementary Table S1 for the results of all other 
methods). Additionally, Supplementary Fig. S2 shows the av
erage ranks for hits at different ranks.

Based on the results, we observed that EmbedPVP using 
the TransD model with HP ontology achieved the highest 
performance among the phenotype-based prediction tools us
ing clinical phenotypes. However, when using OMIM pheno
types, OWL2Vec� demonstrated slightly better performance. 
DL2Vec and OWL2Vec� performed similarly in both clinical 
and OMIM phenotypes compared to other phenotype-based 
models. These findings suggest that TransD captures the 
complex representations of relationships more effectively. 
TransD utilizes a translation-based approach to model rela
tionships, which enables it to capture multi-relational rela
tionships between entities. On the other hand, OWL2Vec�

and DL2Vec primarily focus on representing hierarchical 
relationships using the ontology’s structure. Although they 
excel at capturing hierarchical relationships, they may strug
gle to represent more intricate relationships involving multi
ple entities or more complex representations, in contrast to 
the TransD model.

When evaluating the Phenopackets dataset (Supplementary 
Table S3), we observed that the EmbedPVP (DL2Vec) 
method performed better in terms of top hits. However, 
among the phenotype-based methods, Phenix demonstrated 
better performance for the remaining metrics.

Furthermore, we evaluated our method using ClinVar 
time-split variants, and the results of the different methods 
are presented in Supplementary Table S4. In this dataset, 
EmbedPVP using the TransD method outperforms other 
methods using the HP model for the top hits, the Union 
model for the H@10, and the GO model for H@30 and 
H@50. To further assess the model’s performance and re
move potential biases due to partial information about gene– 
disease tuples being present during training, we conducted 
additional evaluations by splitting the dataset based on novel 
genes and diseases that were not present during training. We 
created different subsets, as follows: (A) novel genes and dis
eases (454 variants), (B) novel genes and known diseases (31 
variants), (C) novel diseases and known genes (111 variants), 
and (D) known genes and diseases (484 variants). The results 
for these different subsets are shown in Supplementary Table 
S5 for A and B, and Table S6 for C and D. We also noticed 
the EmbedPVP models performed better compared to other 
phenotype- and sequence-based methods.

To assess the impact of ontology axioms compared to 
annotations, we conducted an additional ablation study. In 
this study, we included only the phenotype annotations with
out the axioms from the uPheno ontologies (i.e. we removed 

all axioms including subclass axioms). The results, shown in 
Supplementary Table S10, demonstrate a drop in perfor
mance for all the metrics when axioms are removed, indicat
ing that EmbedPVP can effectively utilize ontology structural 
information in addition to the phenotype annotations.

3.3 Improved generalization to new phenotypes 
with inductive inferences
We evaluate the performance of inductive inference using 
PAVS with clinical phenotypes, with selected models based 
on the best-performing transductive approach, including the 
OWL2Vec�, DL2Vec, TransE, and TransD embedding mod
els. Table 2 presents the results comparing the inductive and 
transductive approaches. The results show a drop in perfor
mance, with slight differences in terms of ROCAUC and 
AUPR (�2%), as a consequence, the inductive model does 
not perform better than other methods. This result demon
strates that the additional time required for retraining 
EmbedPVP in the presence of new individuals to analyze is 
necessary for its performance.

4 Discussion
We developed a method for prioritizing candidate causative 
variants when given a set of disease-associated phenotypes 
and genotypes. Our approach utilizes various features char
acterized through ontologies and employs neuro-symbolic 
embedding methods to exploit the information in ontologies 
and their annotations. As a result, EmbedPVP can improve 
phenotype-based prediction of disease-causing variants. 
Moreover, we also explored the impact of clinical phenotype 
descriptions and could demonstrate that the embeddings we 
utilize are robust to noisy phenotype descriptions.

Knowledge-enhanced learning involves the utilization of 
background knowledge to enhance predictive models. 
Knowledge-enhanced learning is especially useful when too 
little training data are available to apply supervised learning 
directly, and where structured knowledge is available that 
can constrain search (Feigenbaum et al. 1977). The large 
number of biomedical ontologies and the knowledge they 
contain has been used deductively to generate additional 
knowledge that could then be used to improve machine learn
ing tasks (Hoehndorf et al. 2011, K€ohler et al. 2013, 
Matentzoglu et al. 2019); in our work, we use the back
ground knowledge in ontologies not deductively but rather as 
part of a neuro-symbolic method (Hitzler and Sarker 2022) 
where a form of inference happens in a latent space (Hitzler 
et al. 2023).

In our application, we rely on axioms from the GO 
(Ashburner et al. 2000), phenotype ontologies, and anatomy 
ontologies (Smith et al. 2007). We use these ontologies to in
tegrate information about pathways, interactions between 
genes, anatomical site of gene expression, and protein func
tions, and ontologies already link all this information to phe
notypes using formal axioms. In particular, phenotype 
ontologies have long been constructed using the entity–qual
ity (EQ) method where phenotypes are decomposed into an 
affected entity (an anatomical site, or a biological function) 
and a quality (using the PATO ontology of qualities) 
(Mungall et al. 2010, Gkoutos et al. 2018). Using these axi
oms now proves useful not only for data integration (which 
was one of the original intentions in developing these axioms) 
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but also enables knowledge-enhanced learning in 
these domains.

EmbedPVP is not the first approach that uses ontology se
mantics in detecting genotype–phenotype relations; in partic
ular semantic similarity measures have been used for a long 
time to predict gene–disease associations (K€ohler et al. 2009), 
and semantic similarity measures have also been incorporated 
in variant prioritization tools such as Exomiser (Robinson 
et al. 2014). While semantic similarity measures are able to 
compare sets of classes from a single ontology, our neuro- 
symbolic approach is able to “learn” a similarity measure 
within a latent space, and determine the similarity between 
classes that are related through complex and heterogeneous 
axioms. This property allows us not only to improve predic
tive performance over approaches that rely on semantic simi
larity (such as the Exomiser tool), but, maybe more 
importantly, extends the scope of phenotype-similarity meth
ods for finding candidate disease genes to genes for which no 
phenotypes are known. Previously, a major advance has been 
the use of model organism phenotypes to expand the scope of 
methods that find disease-associated genes or variants 
through comparison to patient phenotypes (Hoehndorf et al. 
2011, Chen et al. 2012); the combination of mouse and 
zebrafish phenotypes spans a large part of the human ge
nome, but still there are gaps where no phenotypes are associ
ated with a gene. EmbedPVP can apply phenotype similarity 
for any gene for which a site of expression or gene function is 
known. We also perform an ablation study where we remove 
ontology axioms, and find that all methods we tested can ef
fectively utilize the ontology axioms.

We investigated the influence of different ontology embed
dings methods on variant prioritization performance, com
paring different approaches to ontology embedding. Similarly 
to KGE methods (Ali et al. 2021a), we find the different 
approaches to be quite variable and sensitive to parameter 
choices. Nevertheless, based on our results, we can identify 
some general trends from which we can derive recommenda
tions. When comparing different approaches to ontology 
embeddings, we find that approaches that first project ontol
ogies onto graphs and then use KGE work better in our case 
than model-based approaches like ELEmbedding. Among the 
KGE approaches, methods that explicitly optimize for link 
prediction (as a training objective) perform better than 
approaches that only capture similarity (usually based on 
random walks); and among the link prediction approaches, 
we find that TransD generally performs better than other 
methods we evaluated.

One main limitation of EmbedPVP is that it uses a trans
ductive method which requires retraining parts of the model 
when a new case or set of cases is analyzed. This is mainly a 

limitation of time as retraining is part of applying EmbedPVP 
to a new case; however, in particular, when analyzing larger 
number of cases, it may still be reasonable to retrain and then 
predict. In the future, however, we intend to focus our efforts 
on designing novel strategies for inductive inference.

5 Conclusion
We developed EmbedPVP, a method for prioritizing candi
date causative variants given a set of abnormal phenotypes. 
Our method applies machine learning to background knowl
edge integrated through ontologies and not only improves the 
phenotype-based prediction of disease-associated variants, 
but also extends phenotype-based variant prioritization to 
variants in genes for which no phenotypes are available; in
stead, EmbedPVP can use knowledge about gene functions, 
sites of expression, interactions, and also phenotypes in 
humans or model organisms to prioritize variants. We imple
mented and evaluated different embedding-based methods 
for learning from biomedical knowledge bases, applying 
graph-based as well as model-based methods. EmbedPVP is 
an end-to-end model and is applicable not only to single 
nucleotide variants in coding regions, but also to noncoding 
variants and small insertions and deletions. EmbedPVP has 
been designed to prioritize variants even when phenotype in
formation is missing or noisy, and EmbedPVP could improve 
the prediction of causative variants even in the presence of 
noise. EmbedPVP improves over state-of-the-art methods 
for phenotype-based variant prioritization, particularly in 
improving the recall in finding phenotype-associated 
variants across various benchmark datasets. EmbedPVP is 
freely available at https://github.com/bio-ontology-research- 
group/EmbedPVP.
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