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Abstract

Correlating transcriptional profiles with imaging-derived phenotypes has the potential to reveal 

possible molecular architectures associated with cognitive functions, brain development and 

disorders. Competitive null models built by resampling genes and self-contained null models 

built by spinning brain regions, along with varying test statistics, have been used to determine 

the significance of transcriptional associations. However, there has been no systematic evaluation 

of their performance in imaging transcriptomics analyses. Here, we evaluated the performance 

of eight different test statistics (mean, mean absolute value, mean squared value, max mean, 

median, Kolmogorov-Smirnov (KS), Weighted KS and the number of significant correlations) 

in both competitive null models and self-contained null models. Simulated brain maps (n = 
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1,000) and gene sets (n = 500) were used to calculate the probability of significance (Psig) 

for each statistical test. Our results suggested that competitive null models may result in false 

positive results driven by co-expression within gene sets. Furthermore, we demonstrated that the 

self-contained null models may fail to account for distribution characteristics (e.g., bimodality) 

of correlations between all available genes and brain phenotypes, leading to false positives. 

These two confounding factors interacted differently with test statistics, resulting in varying 

outcomes. Specifically, the sign-sensitive test statistics (i.e., mean, median, KS, Weighted KS) 

were influenced by coexpression bias in the competitive null models, while median and sign-

insensitive test statistics were sensitive to the bimodality bias in the self-contained null models. 

Additionally, KS-based statistics produced conservative results in the self-contained null models, 

which increased the risk of false negatives. Comprehensive supplementary analyses with various 

configurations, including realistic scenarios, supported the results. These findings suggest utilizing 

sign-insensitive test statistics such as mean absolute value, max mean in the competitive null 

models and the mean as the test statistic for the self-contained null models. Additionally, adopting 

the confounder-matched (e.g., coexpression-matched) null models as an alternative to standard 

null models can be a viable strategy. Overall, the present study offers insights into the selection of 

statistical tests for imaging transcriptomics studies, highlighting areas for further investigation and 

refinement in the evaluation of novel and commonly used tests.
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1. Introduction

The whole-brain gene expression maps of the Allen Human Brain Atlas (AHBA) have 

enabled investigation into the spatial association between ex vivo transcriptional and in vivo 

imaging-derived patterns (Hawrylycz et al., 2012). Linking regional transcriptional profiles 

and interregional variations in cortical measures has informed our understanding of the 

putative molecular architectures (e.g., biological processes, cell-type specificity) underlying 

cortical phenotypes related to health and disease (Arnatkeviciute, et al., 2021; Norbom, 

et al., 2021; Paus, 2022). For instance, a popular integrative analysis that correlated a set 

of transcriptional profiles specific to molecular features of interest with a single imaging-

derived phenotype showed the potential to reveal possible molecular architectures associated 

with brain development and disorders (Hess, et al., 2018; Parker, et al., 2020; Patel, et al., 

2021, 2022, 2020; Patel, et al., 2019; Pecheva, et al., 2020; Romme, et al., 2017; Shin, et 

al., 2018; Vidal-Pineiro, et al., 2020). Furthermore, recent studies have extended its utility to 

understanding specific cognitive functions (Hansen, et al., 2021; Lotter, et al., 2023), further 

expanding the scope of its applications. This field has been evolving rapidly, presenting 

us with additional challenges in methodology. While studies have provided reassuring 

validation (Hansen, et al., 2021; Martins, et al., 2021; Seidlitz, et al., 2020), there still exists 

a lingering skepticism related to our understanding of the importance of key methodological 

options.
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Permutation tests, in which a test statistic derived from an empirical model is tested 

against null models have been widely used in gene set analyses that examine the 

correspondence between transcriptional profiles of prior gene sets and imaging-derived 

phenotypes. Importantly, the specific approach used to create null models may lead to 

different findings. For example, when null models are created by resampling genes (i.e., 

randomly selecting an equally sized set of genes), the null hypothesis is that observed 

correlations within the gene set are no different than would be observed among these other 

randomly selected gene sets (aka. competitive null hypothesis) (Goeman and Bühlmann, 

2007; Khatri, et al., 2012). Recent studies have advocated for spatially-informed null models 

(i.e., spinning brain regions) when examining the associations between molecular profiles 

and imaging-derived phenotypes given that they preserve the spatial dependence of imaging 

phenotypes (Burt, et al., 2020; Fulcher, et al., 2021; Wei, et al., 2022). Here, the null 

hypothesis is that observed correlations within the gene set are no different than would be 

observed with a random distribution of effects across brain regions, albeit while maintaining 

the spatial autocorrelation of the brain map (aka. self-contained null hypothesis) (Goeman 

and Bühlmann, 2007; Khatri, et al., 2012).

The terms “self-contained” and “competitive” are used to describe different approaches in 

a gene set analysis (Goeman and Bühlmann, 2007). In general, self-contained null models 

examine a set of genes in isolation, without considering the rest of the genes. Thus, these 

models focus on evaluating the significance of a set of genes on their own, independent 

of the other genes. In contrast, competitive null models compare a set of genes against all 

other genes. These models prioritize distinguishing the most important pathway from the 

rest. Competitive and self-contained null models have their advantages and disadvantages 

(Khatri, et al., 2012; Maleki, et al., 2020) and both have been used in previous imaging 

transcriptomic studies (Hess, et al., 2018; Martins, et al., 2021; Parker, et al., 2020; Patel, 

et al., 2021, 2020, 2019; Pecheva, et al., 2020; Romme, et al., 2017; Shin, et al., 2018; 

Vidal-Pineiro, et al., 2020). For instance, the competitive null models have been widely used 

in identifying the transcriptional profiles associated with age- or psychopathology-related 

cortical differences (Hess, et al., 2018; Parker, et al., 2020; Patel, et al., 2021, 2022, 2020; 

Patel, et al., 2019; Pecheva, et al., 2020; Romme, et al., 2017; Shin, et al., 2018; Vidal-

Pineiro, et al., 2020), while others advocated for or used the self-contained null models 

(Alexander-Bloch, et al., 2018; Cao, et al., 2023; Fulcher, et al., 2021; Giacomel, et al., 

2022; Hansen, et al., 2021; Martins, et al., 2021).

Another important element in the permutation test, the test statistic, is a summary score that 

represents all correlations within the prior gene set. Various test statistics have been used 

in the analysis of neuroimaging transcriptomics. For instance, the mean correlation between 

the brain map and the transcription maps of all genes within the prior gene set (i. e., Mean) 

is commonly used (Parker, et al., 2020; Patel, et al., 2021, 2022, 2020; Patel, et al., 2019; 

Shin, et al., 2018; Vidal-Pineiro, et al., 2020). Notably, other test statistics are also available 

to summarize the correlations within the prior gene set, such as the rank-based enrichment 

scores (i.e., Kolmogorov-Smirnov; KS) (Giacomel, et al., 2022; Subramanian, et al., 2005), 

mean squared correlation (Pecheva, et al., 2020), max mean (Efron and Tibshirani, 2007) 

and so forth (Ackermann and Strimmer, 2009). Some of these test statistics have been used 

in imaging-transcriptomics studies in combination with either competitive (Pecheva, et al., 
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2020) or self-contained null models (Cao, et al., 2023; Giacomel, et al., 2022). Although 

several test statistics have been evaluated in previous studies (Ackermann and Strimmer, 

2009; Mathur, et al., 2018), there has been no systematic evaluation of their performance 

using imaging-derived phenotypes, an evaluation that would assist researchers in making 

informed choices about statistical tests based on an understanding of their strengths and 

limitations in the context of the imaging transcriptomics.

The present study utilized the AHBA transcriptomic data that were mapped to the left 

Desikan-Killiany cortical regions and examined the performance of sixteen statistical tests 

in detecting the associations between prior gene sets and an imaging-derived brain map. 

Specifically, we systematically evaluated the performance of eight test statistics in the 

competitive and self-contained null models (i.e., sixteen statistical tests in total) using 

simulated gene sets (n = 500) and brain maps (n = 1000). The probability of identifying 

significant associations (Psig) between the gene sets and brain maps was calculated to 

quantify the performance of the statistical tests. Then, we explored potential factors that 

would affect the performance of statistical tests. Comprehensive supplementary analyses 

with various configurations were performed to validate the main results.

2. Material and methods

2.1. Transcriptional profiles

The Allen Human Brain Atlas (http://www.brain-map.org) provided human postmortem 

brain gene expression maps employing a whole-brain microarray survey on six donors 

(Hawrylycz, et al., 2012). Microarray data underwent preprocessing using the “abagen” 

toolbox (Markello, et al., 2021a), following established recommendations (Arnatkevic̆iūtė, et 

al., 2019; Markello, et al., 2021b). Preprocessing steps involved intensity-based filtering of 

microarray probes, selecting representative probes for each gene across both hemispheres, 

assigning microarray samples to brain parcels from the Desikan-Killiany parcellations, 

normalizing and aggregating the data within parcels and across multiple donors. Specifically, 

microarray probes were reannotated using data provided by (Arnatkevic̆iūtė, et al., 2019). 

Probes not matched to a valid Entrez ID were discarded. Probes were filtered based on 

their expression intensity relative to background noise (Quackenbush, 2002). Probes with 

intensity less than the background in >=50 % of samples across donors were discarded. 

When multiple probes indexed the expression of the same gene, the probe with the most 

consistent pattern of regional variation across donors (differential stability) was selected and 

used. The MNI coordinates of tissue samples were updated to those generated via non-linear 

registration using the Advanced Normalization Tools (ANTs, https://github.com/chrisfilo/

alleninf). Samples were assigned to brain regions by minimizing the Euclidean distance 

between the MNI coordinates of each sample and the nearest surface vertex. Samples, where 

the Euclidean distance to the nearest vertex was more than 2 standard deviations above the 

mean distance for all samples belonging to that donor, were excluded. Sample-to-region 

matching was constrained by hemisphere and gross structural divisions (cortex, subcortex/

brainstem, and cerebellum), such that, for example, a sample in the left cortex could only be 

assigned to an atlas parcel in the left cortex. All tissue samples not assigned to a brain region 

in the provided atlas were discarded. Inter-subject variation was addressed by normalizing 
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tissue sample expression values across genes using a robust sigmoid function (Fulcher, 

et al., 2013). Normalized expression values were then rescaled to the unit interval. Gene 

expression values were then normalized across tissue samples using an identical procedure. 

Samples assigned to the same brain region were averaged separately for each donor and 

then across donors, yielding a regional expression matrix. Genes with a similarity greater 

than a threshold of rdonors > 0.4 across donors were included, resulting in a total of 6513 

genes across cortical regions (i.e., background genes) for the subsequent analysis. The 

pre-processed data, provided by the ENIGMA Toolbox (Larivière, et al., 2020), can be 

accessed at (https://github.com/saratheriver/enigma-extra). There was no tissue sample that 

corresponded to the right frontal pole and the right temporal pole in the Desikan-Killiany 

atlas. Therefore, only transcriptional profiles of the left hemisphere were included in the 

analysis. A sensitivity analysis with a lower threshold of rdonors > 0.2 was performed to 

assess the robustness of the findings.

2.2. Gene set analysis

Fig. 1 shows a typical gene set analysis in which we examined the association between a 

derived brain map and the transcriptomic profiles of a set of genes. As shown in Fig. 1A, the 

derived brain map was correlated with the transcriptional profiles of background genes (i.e., 

the 6513 available genes). Then, the empirical correlations within the prior gene set were 

summarized using a selected test statistic (Fig. 1D) and compared against the same statistic 

from either competitive or self-contained null models.

Table 1 shows the test statistics that have been examined in the current study. We chose 

test statistics mainly based on their relevance and common usage in the fields of gene 

set analysis and imaging transcriptomics, as well as our interests. The mean (Mean), 

median (Median) and mean squared (Meansqr) correlations have been used in previous 

studies (Parker, et al., 2020; Patel, et al., 2021, 2020, 2019; Pecheva, et al., 2020; Shin, 

et al., 2018; Vidal-Pineiro, et al., 2020). The mean absolute (Meanabs) value captured 

the correlation strength, and the max mean (Maxmean) emphasized the most pronounced 

average correlation, highlighting dominant patterns in the data (Efron and Tibshirani, 2007). 

The Kolmogorov-Smirnov (KS) test and its weighted variant were commonly used in gene 

set analyses to evaluate the enrichment of specific gene sets within ranked lists of genes 

(Subramanian, et al., 2005). Specifically, the KS test computed the cumulative sum of 

ranked correlations between all genes and brain profiles. For each gene, this cumulative 

sum increased if the gene was part of the gene set and decreased otherwise. The adjustment 

made for each gene, whether an increment or decrement, was weighted by 1. The weighted 

KS test followed a similar procedure but the adjustment made for each gene was weighted 

by the correlation strength of each gene. This method has been recently adopted in the 

field of imaging transcriptomics (Giacomel, et al., 2022). Furthermore, as the cluster size 

based significance testing was a widely used strategy in neuroimaging studies (Hayasaka 

and Nichols, 2003), we were interested in assessing the applicability of a similar strategy 

(i.e., testing the number of significant correlations; Sig Number) within the context of 

imaging transcriptomics. For this test statistic, multiple comparisons within the gene sets 

were corrected using false discovery rate (FDR) approach (Benjamini and Hochberg, 1995), 

and correlations with FDR-corrected p < 0.05 within gene sets were deemed as significant.
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For the competitive null models (Fig. 1B), the original brain map was correlated with 

background genes (i.e., 6513 genes) with labels shuffled. For the self-contained null models 

(Fig. 1C), the original background genes were correlated with the brain maps whose regions 

were shuffled while preserving their spatial information (i.e., spun brain maps) (Váš et al., 

2018). For each type of the null models, the null correlations within the prior gene set were 

summarized using the selected test statistic and the procedure was repeated 5000 times, 

resulting in 5000 null distributions of the selected test statistic.

2.3. Simulation of brain maps

To measure the spatial autocorrelation in the brain map, Moran’s I and its expected value 

were calculated (Paradis and Schliep, 2019):

I = N
W

∑i ∑j wij(xi − x)(xj − x)

∑i (xi − x)2

E(I) = −1
N − 1

where N is the number of the regions (i.e., 34 Desikan regions) indexed by i and j, x is the 

variable of interest, Wij is the matrix of spatial weights, and W is the sum of all Wij. The 

weight matrix was set as the inverse Euclidean distance between the centroids of regions 

i and j. E(I) is the expected value of Moran’s I under the null hypothesis of no spatial 

autocorrelation. For the 34 Desikan regions, the expected value of Moran’s I where there 

was no spatial autocorrelation was −1/34–1=−0.03. A Moran’s I greater or smaller than the 

expected value indicated a positive or negative spatial autocorrelation.

First, we examined the performance of Moran’s I by simulating 1000 random brain maps 

by drawing each regional value independently from a uniform distribution ranging from −1 

to 1. In this simulation, the averaged Moran’s I (i.e., a measure of spatial autocorrelation) 

was centered around the expected value of no spatial autocorrelation (i.e., −1/(34–1)=−0.03), 

suggesting the Moran’s I was a good indicator of the spatial dependence for the Desikan 

atlas (see Analysis S18). Note that the Global Moran’s I has been used in previous studies as 

a measure for spatial correspondence (Markello and Misic, 2021). To determine a proper 

Moran’s I to simulate, we derived the Moran’s I from 12 statistical maps of cortical 

thickness differences associated with psychiatric and neurological disorders comprising a 

total of 14,886 cases and 20,962 controls from seven ENIGMA disease-related working 

groups as well as a cortical map of standard loadings of the first principal component 

derived from cortical thickness of 24,750 adult participants (see Table S1). The average 

of Moran’s I across several realistic brain maps was 0.03, therefore, the desired center 

of the subsample was set as 0.03. Then, 1000 random brain maps with a specific spatial 

autocorrelation were simulated by randomly drawing a subset of 1000 brain maps with 

Moran’s I centered at a desired value with a standard deviation of 0.001 from 100,000 

random brain maps where each regional value was independently drawn from a uniform 

distribution ranging from −1 to 1. Simulated brain maps with Moran’s I centered around 
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0.01 and 0.02 were also examined in the supplementary analysis. As shown in Analysis S18, 

this subsampling approach was computationally efficient for simulating random Desikan 

atlas maps with spatial autocorrelation, and it offered better control over the desired Moran’s 

I in comparison to the Gaussian random fields approach as described in the previous studies 

(Burt, et al., 2020; Markello and Misic, 2021). As shown in Analysis S21, the main 

results were replicated when simulating the random brain maps with each regional value 

independently drawn from a Gaussian distribution centered at 0 with a standard deviation of 

1.

2.4. Simulation of gene sets

The simulated gene sets that varied in their numbers of genes (20 to 200 with an increment 

of 20, thus 10 sets in total) were created by randomly selecting genes from the full list 

of available genes (i.e., 6513 genes). To avoid sampling bias, the process was repeated 

50 times, which resulted in 500 different simulated gene sets in total (i.e., 10 simulated 

gene sets with different sizes × 50 times). Realistic gene sets were also examined in the 

supplementary analysis.

2.5. Analytical strategies

To quantify the performance of the different statistical tests, the probability of observing 

significant correlations (Psig) between gene sets and brain maps was calculated for each 

statistical test. Specifically, this was separately done by calculating Psig for each gene 

set (Psig-G) and each brain map (Psig-B). Both Psig-B and Psig-G provided information 

about the likelihood of observing significant correlations between gene sets and brain maps. 

As demonstrated in Fig. 2, the major difference between Psig-B and Psig-G rested on 

what was held constant (gene set vs. brain map) when aggregating the significant counts, 

which provided different perspectives on the results. The Psig-G was calculated as the 

proportion of the randomly generated brain maps that significantly correlated with a certain 

gene set. For example, if 680 out of 1000 simulated brain maps were found significantly 

correlated with a gene set, the Psig-G associated with the statistical test was calculated 

as 680/1000=0.68 for the gene set. The Psig-B was calculated as the proportion of the 

gene sets that significantly correlated with a certain brain map. For example, if 100 of 

500 gene sets were found significantly correlated with a brain map, the Psig-B associated 

with the statistical test was calculated as 100/500=0.2 for the brain map. A higher Psig-G 

indicated that a larger proportion of the randomly generated brain maps showed a significant 

correlation with the gene set. A higher Psig-B suggested that a larger proportion of the 

randomly generated gene sets showed a significant correlation with the brain map. When 

interpreting the results, it is important to keep in mind that the aim was not to find the 

measure with the lowest Psig, as this could indicate an overly conservative test. Rather, the 

desirable outcome would be a Psig around 0.05 with a tight standard error.

The concern with the competitive null models based on resampling genes was that the 

randomly selected genes were unlikely to have expression profiles (e.g., co-expression) 

that were similar to those of the original gene set (Fulcher, et al., 2021; Khatri, et al., 

2012). Here, we examined the relationship between gene co-expression and the Psig-G. 

Specifically, co-expression was calculated as the averaged pairwise correlations among all 
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gene expression maps of the gene set and this average was correlated with the Psig-G 

using a linear regression model. The resulting t-statistics associated with the co-expression 

quantified the contribution of the co-expression to the Psig-G and the R-squared of the 

model quantified the variances in Psig-G explained by the co-expression.

For Psig-B, we found that some randomly simulated brain maps showed a high Psig-B 

when using the self-contained null models (see Fig. 5). For example, 13 simulated brain 

maps were significantly correlated with all the simulated gene sets using the Meanabs as 

the test statistic in the self-contained null models. By inspecting the histograms of the 

correlations between each of these brain maps and the background genes (i.e., the 6513 

available genes), we noted numerous bimodal distributions. Then we hypothesized that the 

bimodality of the correlation distribution was not accounted for in the self-contained null 

models and thus contributed to inflated Psig-B. Therefore, we explored the relationship 

between the bimodality of the background correlation and Psig-B. Several measures have 

been proposed to assess bimodality (Chasani and Likas, 2022). Here, we calculated the dip 

statistic, a widely used measure, to quantify the deviation of the correlation distribution 

from an unimodal distribution (Hartigan and Hartigan, 1985). Then the dip statistic was 

correlated with Psig-B using a linear regression model. The resulting t-statistics associated 

with the bimodality measure quantified the contribution of the bimodality to the Psig-B and 

the R-squared of the model quantified the variances in Psig-B explained by the bimodality. 

As the supplementary analysis, we repeated the analysis using the distance between the 

positive and negative modes as a measure of bimodality. This approach provided improved 

visualization of the trends between Psig-B and bimodality.

2.6. Supplementary analysis

A list of supplementary analyses was performed to assess the robustness of the main 

findings and explore novel analytical approaches.Table S2 provides details of the settings for 

Analyses S1 to S17.

Analyses S1 and S2 repeated the main analysis using simulated brain maps with different 

profiles of spatial autocorrelations with Moran’s I centered around 0.01 and 0.02. The 

analyses aimed to assess the robustness of the main findings across different profiles of 

spatial autocorrelations in the simulated brain maps.

Analysis S3 repeated the main analysis using realistic gene sets associated with molecular 

functions from the Gene Ontology (GO) knowledge base (Ashburner, et al., 2000). The 

randomly simulated gene sets used in the main analysis might not represent realistic 

gene sets typically selected due to being related to some molecular components based on 

researchers’ interests. The purpose of Analysis S3 was to assess the performance of the main 

analysis in a more realistic context. Specifically, the GO database was obtained using the R 

package org.Hs.eg.db (version 3.13). GO gene sets with sizes ranging from 20 to 200 genes 

were selected, resulting in 316 gene sets that were entered into the analysis.

Analysis S4 used a lower threshold of rdonors > 0.2 to assess the robustness of the main 

findings. Genes with a similarity greater than a threshold of rdonors > 0.2 across donors were 

included, resulting in a total of 12,668 genes across cortical regions (i.e., background genes) 
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for the subsequent analysis. The preprocessing steps were the same as described above and 

the preprocessed data, provided by the ENIGMA Toolbox (Larivière, et al., 2021), can be 

accessed at (https://github.com/saratheriver/enigma-extra).

Analyses S5 and S6 evaluated the performance of the coexpression-matched (i.e., null-

expressed-gene) and brain-specific (i.e., null-brain-gene) competitive null models and 

competitive null models (i.e., null-brain-gene). The coexpression-matched competitive null 

models were generated by sampling genes exhibiting similar co-expression patterns to 

those in the empirical model, while the brain-specific competitive null models were created 

by sampling genes with strong expression in brain tissue relative to other body tissues. 

Details for the identification of brain-specific genes can be found in the previous study 

(Wei, et al.,2022). These two types of null models have been proposed to improve the 

performance of the competitive null models in the previous study (Wei, et al., 2022). In this 

study, the transcriptional profiles were averaged within gene sets and correlated with brain 

maps, which did not involve aggregating associations within gene sets (i.e., aggregation-

independent). In comparison, the analytical strategies examined in our study involved 

aggregating associations within gene sets (i.e., aggregation-dependent). The purpose of the 

analyses was to assess the applicability and efficacy of these models in the context of 

aggregation-dependent scenarios.

Analyses S7 and S8 repeated the main analysis with the simulated brain data within the 

Schaefer100 (50 left-hemisphere parcels) and Schaefer200 (100 left-hemisphere parcels) 

parcellations. These parcellations were functionally-defined and consisted of equally-sized 

parcels (Schaefer, et al., 2018). The purpose of the analyses was to assess whether the 

findings of the main analysis were replicated using alternative parcellations.

For the simulation of brain maps within the Schaefer100 and Schaefer200 parcellations, we 

first examined the performance of Moran’s I by simulating 1000 random brain maps by 

drawing each regional value independently from a uniform distribution ranging from −1 to 

1. In this simulation, the averaged Moran’s I (i.e., a measure of spatial autocorrelation) was 

centered around the expected value of no spatial autocorrelation (i.e., −1/(50–1)=−0.02 for 

Schaefer100 and −1/(100–1)=−0.01 for Schaefer200 respectively), suggesting the Moran’s 

I was a good indicator of the spatial dependence for these parcellations (see Analysis 

S18). Then, 1000 brain maps with desired spatial autocorrelation (Moran’s I = 0.03) 

were simulated using the subsampling approach as described in the main analysis. The 

subsampling approach also offered better control over the desired Moran’s I in comparison 

to the Gaussian random fields approach for these two parcellations (see Analysis S18). The 

gene expression data for the Schaefer100 and Schaefer200 parcellations was preprocessed 

following the same steps as described in the main analysis. The preprocessed data, provided 

by the ENIGMA Toolbox (Larivière, et al., 2021), can be accessed at (https://github.com/

saratheriver/enigma-extra).

Analysis S9 evaluated the robustness of the main analysis using realistic brain maps and 

gene sets. Realistic brain maps included six statistical maps of case-control comparisons 

of Desikan atlas cortical thickness in attention deficit hyperactivity disorder (ADHD; 

cases: 1814, controls: 1602), autism spectrum disorder (ASD; case: 1821, controls: 1823), 
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bipolar disorder (BD; cases: 1555, controls: 3423), major depressive disorder (MDD; cases: 

2695, controls: 3627), obsessive-compulsive disorder (OCD; cases: 2274, controls: 2013) 

and schizophrenia (SCZ; cases: 2716, controls: 3272) and one cortical map of standard 

loadings of the first principal component derived from the cortical thickness of 24,750 adult 

participants. More details about these realistic brain maps can be found in our previous 

study (Cao, et al., 2023). In this analysis, a smaller number of prior gene sets were used 

for visualization purposes. Specifically, the gene sets were taken from the SynGO database 

where gene annotations were manually curated (Koopmans, et al., 2019). Gene sets in the 

SynGO database with at least 20 genes available from the processed AHBA dataset (i.e., 

6513 genes) were used, resulting in 49 realistic gene sets that were entered into the analysis.

Analyses S10, S11, S12 and S13 aimed to evaluate the performance of the partial least 

squares (PLS) regression for assessing associations between brain maps and transcriptional 

profiles. In the main analysis, we employed a univariate approach (i.e., Pearson’s 

correlation) to examine the associations between the brain map and transcriptional profiles. 

In contrast, PLS considered the multivariate structure within the datasets and enabled the 

identification of latent factors capturing the maximum correlation between the brain map 

and transcriptional profiles. In this analysis, we derived the regression coefficients from 

PLS regression, which represented the weights or importance assigned to each predictor 

variable (i.e., each gene’s expression data) in predicting the response variable (i.e., the 

brain map). These coefficients indicated the magnitude and direction of the effect that each 

predictor variable had on the response variable within each PLS component. The first PLS 

component explained the largest variance in the predictors (i.e., transcriptional profiles) 

while also maximizing the correlation with the response variable (i.e., a brain map) and 

it was often of particular interest in PLS regression and previous imaging transcriptomics 

analysis (Hansen, et al., 2022; Li, et al., 2021; Morgan, et al., 2019; Romero-Garcia, et 

al., 2020; Xue, et al., 2023; Zhu, et al., 2021). Thus, we focused on the PLS regression 

coefficients of the first component and evaluated the performance of different test statistics 

and null models using these coefficients. Specifically, Analyses S10 substituted Pearson’s 

correlation in the main analysis with the coefficients of the first PLS component. We found 

that the co-expression contributed to the inflated Psig in the competitive null models when 

using the PLS regression coefficients. Therefore, Analyses S11 and S12 further explored 

the possibility of utilizing co-expression-matched and brain-specific competitive null models 

to address the co-expression bias. Analysis S13 evaluated the performance of the PLS 

regression using realistic brain maps and gene sets. Details for the realistic brain maps and 

gene sets can be found in Analysis S9.

Analyses S14 and S15 investigated the feasibility of using model fit of the PLS regression 

to establish associations between a brain map and gene set transcriptional profiles. In this 

approach, the transcriptional profiles of a gene set were used to predict a brain map. To 

assess the model fit of the PLS regression, the root mean squared error of prediction 

(RMSEP) was calculated using a 10-fold cross-validation. The first PLS component 

explained the largest variance in the predictors (i.e., transcriptional profiles) while also 

maximizing the correlation with the response variable (brain maps) and it was often of 

particular interest in PLS regression and previous imaging transcriptomics analysis (Hansen, 

et al., 2022; Li, et al., 2021; Morgan, et al., 2019; Romero-Garcia, et al., 2020; Xue, et al., 
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2023; Zhu, et al., 2021). Therefore, we compared the RMSEP of the first PLS component 

against that of either competitive or self-contained null models to determine the significance 

of the gene set. This direct comparison of PLS model fit eliminated the need for aggregating 

associations (i.e., aggregation-independent), which goes beyond the scope of the present 

study. However, it remains valuable to readers who are interested in exploring its potential 

as a methodological approach. For a better comparison, the main results were presented 

alongside Analysis S14, and the results of Analysis S9 were presented alongside Analysis 

S15.

Analysis S16 repeated the main analysis using the leave-one-region-out correlation to assess 

the associations between brain maps and transcriptional profiles. In each iteration, one 

region was left out during the correlation of brain maps with transcriptional profiles. This 

process was repeated 34 times and an overall correlation estimate was derived by averaging 

across iterations. This approach was hypothesized to reduce the number of correlations that 

are driven by the matching of brain region and transcriptional profiles in a specific region, 

thereby reducing potential biases.

Analysis S17 repeated the main analysis using self-contained and competitive combined 

null models. This involved simultaneously spinning brain regions and shuffling gene labels. 

By integrating these two types of null models, we explored the feasibility of combining self-

contained and competitive null models to enhance the assessment of associations between 

brain maps and transcriptional profiles.

Analysis S18 focused on examining the spatial autocorrelation of brain maps through three 

simulation approaches. The first approach generated 1000 random brain maps with regional 

values drawn from a uniform distribution, revealing a distribution of Global Moran’s I 

centered around the expected value for no spatial autocorrelation. This finding indicated 

spatial dependence among regions in the Desikan, Schaefer100, and Schaefer200 atlases. 

The second approach utilized Gaussian random fields (GRFs) to simulate brain maps (Burt, 

et al., 2020; Markello and Misic, 2021), with the level of spatial autocorrelation determined 

by the power spectral density slope (i.e., alpha). The third approach involved simulating 

1000 brain maps with spatial autocorrelation using the subsampling method. Comparisons 

between the second and third approaches suggested that the subsampling method provided 

better control over the desired Moran’s I compared to the Gaussian random fields approach.

Analyses S19 and S20 examined the relationship between gene set size and Psig-G. Initially, 

we explored the relationship between gene set size and Psig-G using a linear model. 

However, as the results suggested, there was no clear trend indicating a large gene set 

size was associated with inflated Psig-G. Therefore, we further investigated the interactive 

effects of co-expression and gene set size on Psig-G. Analysis S19 performed the analysis 

on 500 simulated gene sets, with sizes ranging from 20 to 200 in increments of 20, whereas 

Analysis S20 focused on 316 realistic gene sets relevant to molecular functions, with sizes 

varying from 20 to 200. Since Psig-B aggregated significance across all gene sets for a brain 

map, we did not perform a similar analysis on Psig-B.
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3. Results

3.1. Main results

The Psig-G provided information on the likelihood of observing significant correlations 

between a specific gene set and a set of brain maps, with a smaller value suggesting that a 

lower proportion of brain maps showed a significant correlation with the gene set. As shown 

in Fig. 3, the mean values of Psig-G across gene sets were smaller in the competitive null 

models than that in the self-contained null models for most of the test statistics, except for 

the Psig of KS and Weighted KS. The standard error (SE) of Psig-G was greater for the 

competitive null models than for the self-contained null models. The Mean, Median, KS and 

Weighted KS showed the highest SE among all the test statistics for the competitive null 

models, suggesting there were false positives in which gene sets were correlated with the 

simulated brain maps.

As shown in Fig. 4A, Psig-G for the Mean, Median, KS and Weighted KS were positively 

correlated with the level of co-expression within the gene sets for the competitive null 

models, meaning that a gene set with high co-expression was more likely to be correlated 

with the simulated brain maps using these test statistics. The sign-insensitive test statistics 

including Meanabs, Meansqr, Maxmean and Sig Number seemed less sensitive to the 

co-expression in the competitive null models. By contrast, the self-contained null models 

yielded desirable outcomes, where the Psig-G values hovered around 0.05 with a tight SE, 

and there was no obvious trend between co-expression and Psig-G (see Fig. 4B). Although 

co-expression showed positive effects on the performance of the Mean and Median for the 

self-contained null models, there was no obvious point with inflated Psig-G.

The Psig-B provided information on the likelihood of observing significant correlations 

between a specific brain map and a set of gene sets, with a smaller value suggesting that a 

lower proportion of the gene sets showed a significant correlation with the brain map. As 

shown in Fig. 5, the mean value of Psig-B across simulated brain maps was the same as the 

mean value of Psig-G across gene sets, which was attributed to the fact that aggregating the 

results either by gene sets or brain maps did not change the final grand average. However, 

the SE of Psig-B across brain maps for the self-contained null models was larger than that 

of the competitive null models. The Meanabs, Meansqr, Maxmean and Sig Number showed 

the highest SE of Psig-B among all the test statistics in the self-contained null models, 

suggesting some brain maps were found correlated with a high proportion of the gene sets. 

Notably, there were 72, 74, 60 and 55 out of 1000 brain maps found to correlate with 

more than 80 % of the gene sets (i.e., 400 out of 500 gene sets) by these test statistics, 

respectively.

As shown in Fig. 6, the self-contained null models yielded inflated Psig-B when using 

Meanabs, Meansqr, Maxmean and Sig Number as the test statistic. Moreover, the bimodality 

of the background correlations showed a large contribution to Psig-B in these statistical 

tests. Although the correlation between bimodality and Psig-B was significant for the KS 

and Weighted KS, the effects were negative and no brain map showed an inflated Psig-B 

for these two test statistics. By contrast, the competitive null models yielded a desired 

distribution of Psig-B, where most Psig-B values hovered around 0.05 with a tight SE. The 
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contribution of the bimodality of the background correlations to Psig-B was greatly reduced 

when compared to the self-contained null models.

3.2. Supplementary results

The above patterns (e.g., ranking of statistical methods, coexpression and bimodality bias) 

remained similar when using simulated brain maps with Moran’s I centered around 0.01 and 

0.02 (Analyses S1 and S2), realistic gene sets of molecular functions (Analysis S3) and a 

lower threshold of rdonors > 0.2 (Analysis S4). Utilizing coexpression-matched competitive 

null models reduced inflated Psig-G and the associations between co-expression and Psig-G 

(Analysis S5). This could be partially achieved by sampling genes from brain-specific gene 

sets when generating competitive null models (i.e., brain-specific competitive null models; 

Analysis S6). However, it is worth noting that the effect of the brain-specific competitive 

null models seemed test statistic-dependent, which was limited for the KS and Weighted KS.

The main results were replicated when using the Schaefer100 (50 left-hemisphere parcels; 

Analysis S7) and Schaefer200 (100 left-hemisphere parcels; Analysis S8) parcellations. We 

observed that the Schaefer200 parcellation yielded a broader range of the dip-test-based 

measure of bimodality and a narrower range of the distance-based measure of bimodality 

compared to the Schaefer100 and Desikan parcellations. This suggested that the number 

of parcels may impact the empirical distribution of the association. However, similar 

trends between bimodality measures and inflated Psig-B were observed regardless of parcel 

numbers. For the realistic brain maps in Analysis S9, we found that the sign-insensitive test 

statistics yielded more significant results in self-contained null models when compared to 

the competitive null models, especially for effect size maps of ADHD and ASD with a high 

bimodality.

Analysis 10 with PLS correlations revealed similar patterns (e.g., co-expression bias) 

in Psig-G for the competitive null models when compared to the main analysis with 

Pearson’s correlations. Also, coexpression-matched and brain-specific competitive null 

models reduced the potentially inflated Psig-B (see Analyses S11 and S12). However, 

Psig-B for the self-contained null models exhibited differences when PLS correlations were 

used. We found that kurtosis, rather than the dip test, was sensitive to inflated Psig-B 

in self-contained null models. Furthermore, for the realistic data, Analysis S13 with PLS 

correlations reduced the number of significant terms in the self-contained null models when 

compared to Analysis S9 with Pearson’s correlations. Comparing the PLS model fit between 

empirical and null models yielded conservative results, particularly with self-contained null 

models (see Analyses S14 and S15). Analysis S16 with leave-one-region-out correlation 

revealed a similar pattern observed in the main analysis. Analysis S17, using combined 

self-contained and competitive null models, showed comparable outcomes to the original 

competitive null models for Psig-G and the original self-contained null models for Psig-B. 

Analysis S19 suggested that there was no clear trend between gene set size and Psig-G for 

both competitive and self-contained null models. However, we observed positive interactive 

effects between gene set size and co-expression on Psig-G for the sign-sensitive test 

statistics including Mean, Median, KS, and Weighted KS statistics within the competitive 

null models. Similar patterns were found when applying the same analysis using realistic 
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gene sets with various sizes (Analysis S20), except that the interactive effects were found 

to be significant for all test statistics. It should be noted that the sign-sensitive test statistics 

exhibited large interactive estimates.

4. Discussion

The present study examined the performance of sixteen statistical tests in determining the 

association between gene sets and brain maps. The probability of observing significant 

correlations (Psig) between gene sets and brain maps was calculated for each statistical 

test. This was done separately for each gene set (Psig-G) and each brain map (Psig-B). 

The major differences between the two measures rested on what was held constant when 

aggregating the significant counts–gene sets for Psig-G, and brain maps for Psig-B. 

Although aggregating the data in different ways did not change their grand average, it 

revealed potential factors that could lead to inflated Psig.

4.1. Competitive null models

High Psig-G values were produced by the sign-sensitive test statistics including Mean, 

Median, KS and Weighted KS in the competitive null models, meaning that numerous 

gene sets were found to correlate with a high proportion of the brain maps. Further 

analysis revealed that the coexpression within the gene set significantly contributed to the 

Psig-G, suggesting that gene sets with high co-expression were more likely to be found 

correlated with brain maps by these test statistics. One possible explanation is that the 

co-expression of the resampled gene set was drawn from a larger pool of co-expressions 

among background genes, which could not match that of the original gene set even though 

the number of genes was kept the same. In the case where the original gene set had a 

high co-expression, its correlations with brain maps were likely clustered (e.g., positively 

clustered around 0.4). However, the resampled gene sets with a low co-expression would 

show randomly distributed correlations with brain maps (i.e., zero-centered), which would 

make the empirical statistic prone to exceed the null statistics. Fulcher and colleagues 

have shown that transcriptional associations between gene sets and brain phenotypes could 

be driven by the co-expression of the gene set when using the Mean as the test statistic 

for competitive null models (Fulcher, et al., 2021). Our results extended this by showing 

that several sign-sensitive test statistics, such as Median, KS and Weighted KS, were 

also susceptible to inflated associations driven by co-expression, while sign-insensitive test 

statistics including Meanabs, Meansqr, Maxmean and Sig Number produced Psig-G that did 

not correlate with co-expression. Of note, using Sig Number as the test statistic produced 

the lowest Psig-G and Psig-B for the competitive null models, suggesting that it might be 

conservative and could result in false negatives.

In Analyses S19 and S20, we observed no direct influence of gene set size on Psig-G. 

However, we did find positive interactive effects between gene set size and co-expression 

within the competitive null models. These findings suggest that co-expression bias within 

competitive null models could vary with gene set size, especially for the sign-sensitive test 

statistics. One possible explanation is that larger gene set sizes could lead to more credible 

mismatches in co-expression. These results suggested that even when the sizes of gene sets 
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were consistent between empirical and competitive null models, nuanced interactive effects 

related to gene set size would persist, and these effects were particularly pronounced for 

sign-sensitive test statistics that were sensitive to coexpression bias.

4.2. Self-contained null models

Previous neuroimaging studies advocated for the use of spatial null models when examining 

the correspondence between two brain maps (Alexander-Bloch, et al., 2018; Markello and 

Misic, 2021). The efficacy of spatial null models in controlling potential false transcriptional 

associations driven by spatial autocorrelation has been demonstrated (Burt, et al., 2020; 

Fulcher, et al., 2021). Another advantage of using spatial null models was that the gene-gene 

relationships (i.e., their co-expression) could be preserved since the gene set was the same 

in each iteration of the null models. This point was demonstrated by our results that no 

apparent correlation between co-expression and Psig-G was observed in self-contained null 

models, as well as in the previous study (Fulcher, et al., 2021). The focus of the Psig-B, 

however, has revealed scenarios where the spinning brain approach could be suboptimal. 

The test statistics, such as Meansqr, Meanabs and Maxmean, were associated with inflated 

Psig-B with the maximum value of 1, meaning that several randomly simulated brain maps 

correlated with all the simulated gene sets.

By examining the bimodality of the correlations between the background genes and the 

brain maps, we found that brain maps with bimodal correlations with the background genes 

tended to be identified as correlated with more gene sets. This was likely because the 

correlation between a gene set and a brain map was a subsample drawn from the background 

correlations (i.e., correlations between the brain map and the background genes). When the 

background correlations were bimodal, their subsamples were more likely to be skewed. 

In the self-contained null models, the null background correlations were generated anew in 

each iteration, with only a small proportion being bimodal. As a result, their subsamples, 

which corresponded to null correlations between the gene sets and the spun brain maps, 

were more likely to be normally distributed around zero. This mismatch in the bimodality 

of the background correlations interacted differently with test statistics and led to varying 

outcomes. For instance, Median, Meanabs, Meansqr, Maxmean and Sig Number appeared 

to be particularly sensitive to such a scenario, resulting in inflated Psig-B values and strong 

correlations between the bimodality of background correlations and Psig-B values. The 

contribution of bimodality was lower when using Mean as the test statistic in comparison 

to others. Interestingly, even though bimodality negatively correlated with Psig-B of KS 

and Weighted KS, the performance of these two test statistics was conservative in the 

self-contained null models. As the KS and Weighted KS calculated cumulative sums over 

the ranked correlations, the ranks of the correlations were additionally examined. This 

was analogous to testing a competitive null hypothesis in the self-contained null models 

(i.e., a hybrid null model) (Goeman and Bühlmann, 2007; Maleki, et al., 2020). This 

hybrid approach tended to yield conservative results in the context of self-contained null 

models, which could potentially lead to false negatives. As the same background correlations 

were maintained for all iterations in the competitive null models, the contribution of the 

bimodality to the Psig-B was greatly reduced and there was no obvious point with inflated 

Psig-B in the competitive null models.
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4.3. Addressing limitations of the null models

The competitive null models may result in false positive results driven by co-expression 

within gene sets, whereas self-contained null models may yield false positives if the 

bimodality of the background correlations is not accounted for. While both the self-

contained and competitive null models have limitations, they can complement each other in 

mitigating the impact of these factors that affect statistical performance. The self-contained 

null models control for co-expression by keeping it constant across iterations, while the 

competitive null models control for the bimodality of the background correlations by 

maintaining it in each iteration. Analysis S9 with realistic brain maps and gene sets revealed 

that there were gene sets that survived all statistical tests, which suggests that focusing on 

the associations that were significant in both null models could be a feasible strategy. By 

retaining gene sets that were significant in both competitive and self-contained null models, 

this could ensure that only the most consistently significant gene categories were considered 

as the final results. However, this approach may lead to the omission of gene categories that 

were biologically meaningful but did not consistently appear in both models with different 

underlying hypotheses. Researchers should be aware of the trade-off between sensitivity 

and specificity when adopting this strategy. It is intriguing to note that building hybrid 

null models by simultaneously permuting brain regions and gene labels inherited the issues 

present in both null models (see Analysis S17), meaning that effective integration of both 

null models required a more sophisticated approach.

The coexpression-matched competitive null models proposed by Wei and colleagues (2012) 

were effective in controlling the impact of the coexpression bias in our analysis, providing 

a useful strategy for maintaining the same level of co-expression within the gene sets and 

helped reduce inflated Psig-G. The brain-specific competitive null models also showed 

promise by reducing Psig-G when compared to the original competitive null models. This 

reduction was likely attributed to the construction of null models from a smaller subset 

of the genes. However, it’s worth noting that the effectiveness of these brain-specific 

competitive null models was test statistic-dependent, particularly less effective for the KS 

and Weight-KS. This discrepancy suggested that while reducing the gene pool alleviated 

co-expression bias to some extent, it may not be as effective as the coexpression-matched 

approach. Moreover, our findings suggested that using sign-insensitive test statistics could 

be a simple yet effective approach to alleviate the impact of coexpression on the Psig-G 

in the competitive null models. For the self-contained null models, however, efficiently 

maintaining the distribution bimodality of the empirical null models requires further 

investigation. Conducting post hoc analysis to demonstrate the absence of a strong mismatch 

in bimodality could be a potential remedy and provide support for the results.

4.4. Partial least squares regression

In addition to univariate analysis, previous studies have employed multivariate analysis, 

specifically PLS, to examine the associations between brain maps and molecular profiles 

(Hansen, et al., 2022; Li, et al., 2021; Morgan, et al., 2019; Romero-Garcia, et al., 

2020; Xue, et al., 2023; Zhu, et al., 2021). These studies mainly focused on significant 

genes identified by PLS, conducting over-representation analysis (ORA) (Li, et al., 2021; 

Morgan, et al., 2019; Romero-Garcia, et al., 2020; Xue, et al., 2023; Zhu, et al., 2021). 
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In the supplementary analyses with PLS correlations, we took a different approach by 

considering all genes’ regression coefficients from the first PLS component, regardless of 

their significance. This allowed us to detect modest yet coordinated correlations among 

related genes. Notably, Psig-G for competitive null models obtained from the analysis 

using PLS regression coefficients mirrored the co-expression bias found in the analysis 

using Pearson’s correlation. This similarity could be attributed to the specific scenario we 

investigated, where a single brain map was predicted by 6580 predictors derived from 

transcriptional profiles, with a focus on the first PLS component. While PLS correlation 

could account for the collinearities within the predictors, the aggregation of the regression 

coefficients from the first PLS component was also influenced by genes with similar 

expression that may exhibit closely aligned regression coefficients. Moreover, we found that 

PLS correlations within the self-contained null models reduced the number of potentially 

inflated Psig-B driven by the bimodality bias in simulated data and significant terms in 

realistic data. However, it should be noted that kurtosis, rather than the dip test, was 

sensitive to inflated Psig-B in self-contained null models, suggesting PLS correlation may 

introduce a new confounding factor by altering distribution characteristics of the background 

correlations. Although this effect was not evident in the seven realistic brain maps, the 

simulation results suggested that the self-contained null models may fail to preserve kurtosis 

of the background correlations, resulting in inflated Psig-B.

Instead of using the regression coefficients of the first component, an alternative way 

to incorporate PLS in the imaging transcriptomics analysis was by directly comparing 

the model fit of the PLS regression models (Hansen, et al., 2021). Although testing this 

aggregation-independent approach went beyond the scope of the current paper, we included 

the analysis for interested readers. Analyses S14 and S15 demonstrated that this approach 

could be too conservative, especially for the self-contained null models. This could arise 

from the nature of PLS, which identified latent factors within transcriptional data of the 

gene sets that maximized their correlation with a brain map. Even when the brain map was 

generated anew by spinning brain regions, the PLS model consistently found latent factors 

with high correlations with the null brain map. This led to a relatively good fit of the null 

model, making it challenging for the empirical model fit to surpass that of the null models.

While it is often believed that multivariate analysis, such as PLS, may outperform mass 

univariate analysis in some cases, we did not observe significant enhancements with 

PLS regarding co-expression and distribution characteristics biases in the scenario where 

a single brain map was predicted by multiple transcriptional profiles. The additional 

challenges introduced, such as component selection and choices of analytical strategies 

(e.g., performing ORA of significant genes, focusing on PLS fit, aggregating PLS regression 

coefficients or loading weights), could potentially complicate the analysis and interpretation. 

In light of these complexities, mass univariate analyses offered a more straightforward and 

interpretable approach. Nonetheless, the PLS could be the optimal choice for scenarios 

involving multiple brain maps and transcriptional profiles (e.g., Hansen et al. 2022).
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4.5. Implications

Previous studies have explored and discussed various null models for imaging 

transcriptomics analysis (Burt, et al., 2020; Fulcher, et al., 2021; Wei, et al., 2022), however, 

discussion on the impacts of the choices of test statistics was limited. As discussed above, 

our study expanded upon previous findings by 1) evaluating the performance of additional 

potential test statistics, and 2) highlighting potential concerns associated with the use of 

self-contained null models. These patterns of null model limitations and their interactions 

with test statistics consistently emerged in various scenarios and data configurations (e.g., 

Analyses S1, S2, S3, S4, S7, S8 and S16).

We noted that several resources from previous studies have been made available to perform 

imaging transcriptomics analysis (see Table 2). The present results may offer valuable 

information to assist users in understanding the settings of these toolboxes and making 

informed statistical decisions. Wei and colleagues (the GAMBA toolbox) adopted the 

approach of averaging transcriptional profiles within gene sets and subsequently correlating 

these averaged values with brain maps (Wei, et al., 2022), which eliminated the need 

to aggregate associations within gene sets (i.e., aggregation-independent). In contrast, the 

rest of the toolboxes’ methods as well as our analysis involved computing univariate 

or multivariate correlations between transcriptional profiles and a brain map, followed 

by aggregation using different test statistics (i.e., aggregation-dependent). This approach 

has been utilized in numerous studies and could offer advantages, particularly when 

genes within the same gene set exhibit contrasting patterns of correlations with the 

brain map. Due to limited choices of null models and test statistics in the aggregation-

dependent toolboxes, users frequently default to the predefined settings, which could 

elevate the risk of false positive or negative results. For instance, findings obtained from 

the toolbox using competitive null models and the mean as the test statistic could be 

influenced by co-expression bias, warranting further revisits. The use of Weighted KS in 

self-contained null models could yield conservative results, potentially increasing the risk 

of false negatives. Coexpression-matched competitive null models, initially featured in the 

aggregation-independent toolbox (i.e., the GAMBA toolbox), were found to be effective 

in aggregation-dependent scenarios. This highlights their utility in mitigating co-expression 

bias for the toolboxes involving competitive null models.

4.6. Future directions

In the present study, we assessed linear associations between brain phenotypes and 

transcriptional profiles, which is a common practice in the imaging transcriptomics 

studies. To date, exploration of non-linear associations within imaging transcriptomics has 

been limited. In light of this, incorporating non-linear association measures like mutual 

information (Cover, 1999), could be a promising future direction. Moreover, the choice 

of the test statistics was mainly based on their relevance and common usage in the field, 

as well as our interests. However, we acknowledge that our selection was not exhaustive, 

and there is room for the development of novel test statistics in the future. Thus, our 

results could serve as a benchmark, encouraging further exploration and comparison with 

other test statistics. We noted that using Sig Number in competitive null models and KS-

based statistics in self-contained null models produced conservative results, which could 
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potentially lead to false negatives. However, due to the absence of a ground truth, we were 

unable to quantify the extent of false negatives for each statistical test. Further research is 

needed to investigate this matter.

5. Conclusion

We systematically evaluated the performance of eight different test statistics in both 

competitive and self-contained null models for imaging transcriptomics analysis. Our 

results highlighted limitations in both null models, which should be acknowledged 

when interpreting the findings. Specifically, we found that competitive null models may 

produce false positives driven by co-expression within gene sets, while self-contained 

null models may fail to account for bimodal correlations between all available genes and 

brain phenotypes, leading to false positives. These potential sources of bias interacted 

differently with test statistics, resulting in varying outcomes. Comprehensive supplementary 

analyses with various configurations, including realistic scenarios, supported the main 

results presented in the study. Overall, the present study offers insights into the selection 

of statistical tests for imaging transcriptomics studies, highlighting areas for further 

investigation and refinement in the evaluation of novel and commonly used tests.
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Fig. 1. 
A typical gene set analysis in which researchers examine the association between a 

derived brain map and the transcriptomic profiles of a set of genes. A. The derived brain 

map is correlated with the transcriptional profiles of background genes (i.e., the 6513 

available genes). The density plot illustrates the distribution of the empirical correlations 

for a gene set of interest. The y-axis represents the estimated probability density of 

observing a correlation at the x-axis. B. Competitive null models built by resampling 

genes. Three repetitions (i.e., iterations) are illustrated. For each repetition, the original 

brain map is correlated with background genes with labels shuffled. The density plots 

represent the resultant null distributions. C. Self-contained null models built by spinning 

brain regions. Three repetitions (i.e., iterations) are illustrated. For each repetition, the 

original background genes are correlated with the brain maps whose regions are shuffled 

while preserving their spatial information (i.e., spinning the brain phenotype). The density 

plots represent the resultant null distributions. D. The empirical correlations within a prior 

gene set are summarized by one of the following test statistics: Mean, Meanabs, Meansqr, 

Maxmean, Median, Sig Number, KS and Weighted KS, and compared against that from 

either competitive or self-contained null models. The yellow vertical line represents the 

summarized value of the empirical correlations. A total of 5000 null models are built. 

For each repetition, the null correlations are summarized, and the density plot shows the 

distribution of the summarized values of the null correlations obtained from either the 

competitive or self-contained null models.
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Fig. 2. 
Illustration of calculation of Psig-G (A) and Psig-B (B). Blue circles represent simulated 

gene sets, green circles represent simulated brain maps, and the lines between them denote 

one of the statistical tests examined. The panels show examples of the calculation of Psig-G 

for four gene sets (A) and Psig-B for four brain maps (B). Psig-G represents the proportion 

of simulated brain maps that significantly correlate with a gene set, while Psig-B represents 

the proportion of gene sets that significantly correlate with a brain map.
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Fig. 3. 
A. Probability of significance for each gene set (Psig-G). B. Mean value and standard error 

(i.e., standard deviation/ 500) of Psig-G across all the gene sets. The tests are carried out at a 

nominal α = 0.05 significance level and the horizontal dashed line denotes a Psig-G of 0.05.
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Fig. 4. 
Results of co-expression analysis for the competitive (A) and self-contained null models (B). 

The x-axis indicates the co-expression of a specific gene set and the y-axis indicates the 

probability of significance for a specific gene set (Psig-G). Each dot denotes a specific gene 

set with the lighter color denoting the larger size of the gene set. The horizontal dashed line 

denotes a Psig-G of 0.05. The tests are carried out at a nominal α = 0.05 significance level 

and the horizontal dashed line denotes a Psig-G of 0.05.
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Fig. 5. 
A. Probability of significance for each simulated brain map (Psig-B). B. Mean value and 

standard error (i.e., standard deviation/ 1000) of Psig-B across all the simulated brain maps. 

The tests are carried out at a nominal α = 0.05 significance level and the horizontal dashed 

line denotes a Psig-B of 0.05.
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Fig. 6. 
Results of the bimodality analysis for the competitive (A) and self-contained null models 

(B). The x-axis indicates the bimodality of the correlations between a specific brain map and 

transcriptional profiles of background genes, which is measured using the dip test statistic. 

The y-axis indicates the probability of significance for a specific brain map (Psig-B). The 

tests are carried out at a nominal α = 0.05 significance level. Each dot denotes a brain map 

and the horizontal dashed line denotes a Psig-B value of 0.05.
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Table 1.

Test statistics evaluated in the present study.

Test statistic Description

Mean The mean value of the correlations within the gene set

Meanabs The mean value of the absolute correlations within the gene set

Meansqr The mean value of the squared correlations within the gene set

Maxmean Either the mean value of positive correlations or the mean value of negative correlations within the gene set, 
depending on which is greater.

Median The median value of the correlations within the gene set

Sig Number The number of significant (FDR-corrected) correlations within the gene sets.

Kolmogorov-Smirnov 
(KS)

Compute the cumulative sum for the ranked correlations between all genes and brain profiles. For each gene, 
increment the cumulative sum if it belongs to the gene set and decrement it otherwise. Each gene has equal weight in 
either the increment or the decrement, with a value of 1. The KS is calculated as the maximum deviation from zero of 
the cumulative sums.

Weighted KS Same as above except that the increment or decrement is weighted by the correlation strength of the gene.
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