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Abstract
Plants exhibit an enormous phenotypic plasticity to adjust to changing environmental conditions. For this purpose, they have 
evolved mechanisms to detect and measure biotic and abiotic factors in their surroundings. Phytochrome B exhibits a dual 
function, since it serves as a photoreceptor for red and far-red light as well as a thermosensor. In 1999, it was first reported 
that phytochromes not only translocate into the nucleus but also form subnuclear foci upon irradiation by red light. It 
took more than 10 years until these phytochrome speckles received their name; these foci were coined photobodies to describe 
unique phytochrome-containing subnuclear domains that are regulated by light. Since their initial discovery, there has been 
much speculation about the significance and function of photobodies. Their presumed roles range from pure experimental 
artifacts to waste deposits or signaling hubs. In this review, we summarize the newest findings about the meaning of phyB 
photobodies for light and temperature signaling. Recent studies have established that phyB photobodies are formed by li
quid-liquid phase separation via multivalent interactions and that they provide diverse functions as biochemical hotspots 
to regulate gene expression on multiple levels.

Received August 30, 2023. Accepted January 08, 2024. Advance access publication March 21, 2024.
© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non- 
commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please 
contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for 
further information please contact journals.permissions@oup.com. 

Open Access

Re
vi

ew
 

Introduction to phytochrome B
Plant genomes provide the foundation for a striking pheno
typic plasticity in response to changes in their environment. 
While extreme light and temperature conditions can indicate 
a stressful environment for plants, daily and annual changes 
of both factors provide important information about the 
current season and the time of day. Light is one of the 
most essential environmental factors for plants since it not 
only serves as an environmental cue but also as their energy 
source. Therefore, plants have evolved sophisticated systems 
of photoreceptors to monitor their light environment, which 
allows them to optimize their growth and development 
accordingly.

Phytochromes are a family of photoreceptors that can be 
found in bacteria, fungi, and the entire green lineage from al
gae to flowering plants. Arabidopsis thaliana’s genome en
codes for 5 phytochromes that act as red (R) and far-red 
(FR) light receptors to sense light intensity and quality. 
Mutant analyses demonstrated that phytochrome B (phyB) 

is the major phytochrome in Arabidopsis and that it is in
volved in plant development processes throughout the en
tire plant life cycle, from germination and seedling 
de-etiolation to floral induction and seed yield (Franklin 
and Quail 2010; Ulijasz and Vierstra 2011; Legris et al. 2019).

The PHYB apoprotein has a mass of approximately 
125 kDa and can be divided into 2 larger domains (or mod
ules) that are linked through a flexible hinge region: the 
N-terminal photosensory (or signal input) domain and the 
C-terminal output domain that is necessary for homodimer
ization or heterodimerization with other phytochromes. 
These 2 domains can be further divided into several 
subdomains (Fig. 1). The photosensory domain consists of 
4 subdomains: N-terminal extension, PAS (Period/Arnt/ 
Single-Minded) domain, GAF (cGMP phosphodiesterase/ 
adenylyl cyclase/FhlA) domain, and PHY (Phy-specific) do
main. The output module is composed of a PAS-related do
main and a HKRD (histidine kinase-related domain). The 
latter subdomain is a feature that points at the bacterial ori
gins of phytochromes as photo-regulated histidine kinases 
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(Rockwell et al. 2006; Nagatani 2010; Burgie and Vierstra 
2014).

Bacterial phytochromes dimerize in linear and symmetric 
head-to-head fashion (Li et al. 2010). In contrast, phyB 
dimers exhibit an asymmetric architecture: in the dimer, the 
head-to-head association is only retained for the C-terminal 
histidine-related domains, whereas the N-terminal photosen
sory modules are arranged head-to-tail (Li et al. 2022b). 
Interestingly, this likely implies that during evolution, con
served interacting protein surfaces within the photosensory 
modules must have been abandoned and new ones must 
have been established to give rise to the PHYB protein clade 
of phytochromes.

After translation, a chromophore (phytochromobilin) 
binds covalently to the GAF domain of the photosensory 
module to form the phyB holoprotein. Absorption of R or 
FR light triggers the isomerization of the phytochromobilin 
that transmits into conformational changes of the phyB pro
tein. This allows phyB to reversibly transition between 2 rela
tively stable conformers: R light induces the biologically 
active Pfr form, while FR light triggers the transition of Pfr 
into the Pr conformation, which represents inactive phyB 
(Klose et al. 2015). The Pfr form is temporarily stable even 
after the transition to darkness during the onset of night. 
Here, phyB slowly switches back into its inactive Pr form. 
This process is called dark reversion or thermal reversion, 
since it is accelerated by elevated temperatures (Klose et al. 
2020). Therefore, phyB exhibits a dual function: not only 
does it act as R/FR light receptor but also as a thermosensor 
during the night (Jung et al. 2016) and the day (Legris et al. 
2016; Qiu et al. 2019). Additionally, phyB is also able to detect 
other plants that are potential competitors for sunlight. 
Photosynthetically active tissues absorb more R than FR light, 
since the R light is utilized for photosynthesis. In contrast, 
most of the FR light transmits through or is reflected from 
leaves of neighboring plants. Therefore, a plant that is sur
rounded by potential competitors perceives light with a 
low R to FR light ratio (low R:FR). This reduces phyB activity 
and hence allows the detection of neighboring vegetation 
before being exposed to the vegetation’s shade. In conse
quence, shade-avoiding plants like Arabidopsis induce an 

escape strategy called shade avoidance response that pro
motes stem and petiole elongation—to outgrow potential 
competitors—and that induce early flowering (Casal 2012; 
Ballaré and Pierik 2017). The negative effect on phyB activity 
is intensified if the plant is exposed to true canopy shade that 
not only increases the amount of perceived FR light but also 
decreases the photosynthetically active radiation (PAR), in
cluding R light. In consequence, the reduction of the R to 
FR light ratio, the decrease of phyB activity, and the extent 
of the shade responses are intensified in true shade condi
tions (Fiorucci and Fankhauser 2017; Hernando et al. 2021; 
Martinez-Garcia and Rodriguez-Concepcion 2023).

What are phyB photobodies?
In etiolated seedlings, phyB is inactive and resides within the 
cytosol. However, the exposure to R light converts phyB 
into its active Pfr form, which triggers a rise of the cytoplas
mic Ca2+ concentration (Zhao et al. 2023). This Ca2+ increase 
activates 2 calcium-dependent kinases that bind and phos
phorylate phyB. Their activity induces the translocation of 
phyB into the nucleus, where the photoreceptor initiates 
the physiological responses to R light (Zhao et al. 2023). 
Under dim R light, phyB is evenly distributed within the nu
cleoplasm. However, with increasing light intensity, phyB 
starts to form nuclear speckles or nuclear bodies (Chen 
et al. 2003). These nuclear speckles formed by phytochromes 
were first reported in 1999 by Akira Nagatani, Ferenc Nagy, 
Eberhard Schäfer, and colleagues (Kircher et al. 1999; 
Yamaguchi et al. 1999). While other light receptors are also 
able to form nuclear speckles, the term photobodies was ori
ginally coined by Joanne Chory in 2011 to specifically de
scribe phytochrome containing nuclear bodies (Chen and 
Chory 2011). Photobodies formed by phyB are dynamic 
and increase in size with rising light intensity (Fig. 2). 
Weaker red light forms many small nuclear speckles, an inter
mediate R light intensity leads to the production of many 
small and a few larger photobodies, while strong, saturating 
R light confines phyB into a handful of large bodies. In 
contrast, lowering the R light intensity or exposure to low 
R:FR leads to the opposite behavior. Both promote the 

Figure 1. Domain structure of Arabidopsis phyB. The photosensory domain consists of a PAS domain, a GAF domain, and a PHY domain. The output 
module is composed of a PAS-related domain and a HKRD. The C-terminal output module features properties for nuclear localization, dimerization 
and photobody formation, while the N-terminal photosensory module binds phytochromobilin via a conserved cysteine residue (Cys) and possesses 
the N-terminal extension (NTE) that is required for photobody formation of the full-length phyB protein. The depicted domain structure is based on 
(Burgie and Vierstra 2014).
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redistribution of phyB from large photobodies into smaller 
speckles or even into the nucleoplasm (Chen et al. 2003; 
Trupkin et al. 2014; Van Buskirk et al. 2014; Willige et al. 
2021). Additionally, photobodies are also temporally regu
lated. Within minutes, light exposure of etiolated seedlings 
leads to the formation of early photobodies that are transient 
and small. In contrast, prolonged light exposure leads to the 
formation of large and stable photobodies (Bauer et al. 2004). 
Altogether, smaller photobodies seem to be an intermediate 
step from phyB’s redistribution from the nucleoplasm into 
large bodies or vice versa. Similarly, the size of photobodies 
has been reported to decrease in elevated temperatures in di
urnal white light conditions (Legris et al. 2016; Murcia et al. 
2021). However, in constant red light, inactivation of phyB 
by elevated temperatures does not seem to mimic the 
photobody dynamics in response to changes in light intensity 
or quality. Instead, increasing temperatures lead to the com
plete disassembly of individual photobodies without the 
transition to small speckles (Hahm et al. 2020). Here, each 
photobody within a cell seems to have an unique thermal 
sensitivity. This demonstrates that photobodies within a 
cell are not equal, which is supported by the observation 
that a photobody located in proximity to the nucleolus is 

most stable (Fig. 2B). Interestingly, when phyB is constitutive
ly active by overexpressing the phyB Y276H mutant (YHB), 
cotyledon photobodies are shown to be temperature insensi
tive, indicating that photobody sensitivity is linked to phyB’s 
reversion into its inactive Pr state (Hahm et al. 2020). This ob
servation contrasts with another study that shows tempera
ture sensitivity of photobodies formed by YHB in hypocotyl 
or HEK293T cells. This would indicate that the temperature 
sensitivity of photobodies is additionally based on a thermal 
reversion–independent mechanism (Chen et al. 2022). 
Future studies will show if these contradicting results are 
the consequence of different PHYB expression levels or ana
lyzed cell types. However, both studies agree that the succes
sive disassembly of a cell’s photobodies could represent a 
sensor to assess increasing ambient temperatures (Hahm 
et al. 2020; Chen et al. 2022). Besides light and temperature, 
photobody stability is also regulated by other external and 
internal factors such as salt stress or jasmonate signaling 
(Liu et al. 2023; Peng et al. 2023). This indicates that photo
bodies have the ability to integrate multiple signaling 
pathways.

How are these dynamics in photobody assembly and disin
tegration achieved? Two phyB (sub)domains are required for 
the formation of nuclear bodies. It has been reported that the 
C-terminal output module alone is sufficient to dimerize, 
translocate into the nucleus, and form photobodies even in 
the dark (Nagy et al. 2000; Matsushita et al. 2003). This indi
cates that the N-terminal photosensory domain prevents the 
translocation and speckle formation of phyB’s Pr form. 
However, the full-length protein in its Pfr form requires the 
N-terminal extension to assemble into nuclear foci (Chen 
et al. 2005). This implies a positive regulatory role of the 
photosensory domain in speckle formation as well. The 
N-terminal extension is important to stabilize the Pfr form 
of phyB by slowing down the dark/thermal reversion, and 
it harbors an intrinsically disordered region (Burgie et al. 
2021). In general, intrinsically disordered regions are often a 
requirement for biomolecular condensation, since they allow 
multivalent interactions to form large protein complexes 
(Emenecker et al. 2020; Borcherds et al. 2021). Similarly, 
photobody assembly requires the formation of higher order 
phyB aggregates through interactions of multiple phyB di
mers through their N-terminal extensions (Chen et al. 2022).

As stated above, these photobodies are dynamic, since 
fluorescence recovery after photobleaching experiments in
dicated that the phyB molecules move from photobody 
to photobody through the nucleoplasmic phyB pool 
(Rausenberger et al. 2010). Furthermore, photobodies are 
spherical in shape and can move and coalesce (Chen et al. 
2022). Therefore, it has been suggested that photobodies 
are formed through the formation of a dense phyB phase 
(photobodies) within a less dense phyB phase (nucleoplasm) 
(Fonin et al. 2021; Chen et al. 2022). This process is called 
phase separation and allows the dynamic assembly of mem
braneless organelles within the nucleus (Emenecker et al. 
2020).

Figure 2. Schematic illustration of photobody behavior under different 
red light and temperature conditions. A) Under very dim red light, 
phyB translocates into the nucleus where it is evenly distributed. An in
creasing fluence rate leads to small photobodies that fuse and form big
ger nuclear bodies with rising light intensities. B) In constant red light, 
increasing temperatures cause the disassembly of individual photobo
dies without disintegrating into small nuclear foci. Thermolabile photo
bodies are only present in lower temperatures, while the most 
thermostable photobody is located in the proximity of the nucleolus.
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So far, there are 2 estimates of the number of phyB dimers 
per photobody. Due to the chosen experimental approach or 
due to photobody dynamics, both estimates provide quite 
different results: 80 to 150 phyB dimers per 0.4- to 0.8-µm³ 
photobody and 1,500 dimers per 0.2-µm photobody (Chen 
et al. 2022; Kim et al. 2023a). Certainly, photobodies consist 
not only of phyB but of a complex mixture of diverse pro
teins. A recent mass spectrometry study that used photobo
dies isolated by fluorescence-activated particle sorting to 
gain insights into their composition revealed that photobody 
clients can be classified into 2 groups: proteins that bind 
phyB directly and proteins that require the presence of the 
first group to be targeted to photobodies (Kim et al. 
2023a). However, the individual photobodies of a single cell 
are not all the same and do not carry the same protein com
position, which is supported by phyB colocalization studies. 
For example, the blue light receptor cry2 also forms nuclear 
speckles, but only a subset of these speckles within a nucleus 
colocalizes with phyB photobodies (Más et al. 2000). This in
dicates that different photobodies not only have differing 
thermal sensitivities but are also functional divers.

But what is the significance and function of photobodies? 
In light conditions where phyB is unable to form photobo
dies, only very weak R light responses are executed. This sug
gests that photobodies are not essential for phyB activity, but 
that they represent a mechanism to potentiate phyB signal
ing (Chen et al. 2003). In addition, several mutations within 
PHYB or of structural phyB photobody components demon
strate a causal relationship between photobody formation 
and phyB activity (Qiu et al. 2017; Huang et al. 2019).

In general, research on photobodies collectively indicates 
that photobodies serve 2 main functions. First, they stabilize 
phyB’s Pfr form and extend the time of phyB activity. Second, 
they regulate biochemical reactions by concentrating or se
questering enzymes, substrates, and other factors that give 
these reactions specificity. By this means, phyB inactivates re
pressors of photomorphogenesis but promotes the activity 
of positive signaling components. In consequence, phyB reg
ulates different steps of gene expression, including chromatin 
remodeling, transcription, and pre-mRNA splicing via photo
bodies. The newest findings about the role of phyB photobo
dies for light and temperature signaling are summarized 
below.

PHYTOCHROME-INTERACTING FACTORs are 
transcription factors regulated by 
photobodies
Diverse transcription factors and other transcriptional regu
lators that positively regulate light signaling are found in nu
clear bodies—for example, HY5 (ELONGATED HYPOCOTYL 
5), HFR1 (LONG HYPOCOTYL IN FAR-RED 1), ELF3 (EARLY 
FLOWERING 3), and several B-BOX DOMAIN PROTEINs, in
cluding BBX4, 21, and 22 (Ang et al. 1998; Jang et al. 2005; 
Datta et al. 2006, 2007, 2008; Yu et al. 2008). However, the 

transcription factor family that is best understood in 
phyB signaling and photobody function is the PIF 
(PHYTOCHROME-INTERACTING FACTOR) family (Duek 
and Fankhauser 2005; Leivar and Quail 2011), consisting of 
a group of 8 basic-helix-loop helix transcription factors. 
PIFs interact with photoactivated phyB via their 
Active-PHYB Binding (APB) motif (Khanna et al. 2004). In 
contrast to PIL1 and PIL2 (PIF3-Like1 and 2, also called PIF2 
and 6) (Roig-Villanova et al. 2006; Penfield et al. 2010; Luo 
et al. 2014), PIF1, 3, 4, 5, 7, and 8 function as antagonists of 
phytochrome signaling (Huq and Quail 2002; Kim et al. 
2003; Bauer et al. 2004; Fujimori et al. 2004; Huq et al. 2004; 
Oh et al. 2004, 2020; Li et al. 2012). PIFs suppress photo
morphogenesis by inhibiting chloroplast biogenesis, stimu
lating hypocotyl growth, and promoting apical hook 
formation and maintenance (Leivar et al. 2008b; Shin et al. 
2009; Stephenson et al. 2009). Additionally, PIFs also regulate 
diverse growth and developmental processes throughout a 
plant’s life cycle, especially in response to environmental 
cues (Leivar and Quail 2011; Balcerowicz 2020; Sharma 
et al. 2023). PIFs not only mediate the light and temperature 
information given by light receptors but also integrate these 
environmental cues and intrinsic hormonal pathways. 
Connections to most plant hormonal pathways have 
been identified, including gibberellin (de Lucas et al. 2008; 
Feng et al. 2008), brassinosteroid (Oh et al. 2012; 
Bernardo-García et al. 2014), auxin (Franklin et al. 2011; 
Sun et al. 2012), ethylene (Khanna et al. 2007; Liu et al. 
2017b), cytokinin (Richter et al. 2010; Aizezi et al. 2022), ab
scisic acid (Kim et al. 2016; Qi et al. 2020), and jasmonate 
(Yang et al. 2012; Fernández-Milmanda et al. 2020). Here, 
PIFs either regulate the transcription of hormone biosyn
thesis, transport and signaling genes or physically interact 
with hormone signaling components. Good examples are 
the various interactions with the auxin pathway. For in
stance, PIFs induce the expression of YUCCA genes to pro
mote auxin biosynthesis (Li et al. 2012; Sun et al. 2012) and 
the transcription of auxin transport activating AGC kinases 
(Willige et al. 2012; Park et al. 2019). Furthermore, PIFs inter
act with ARF (AUXIN RESPONSE FACTOR) and AUX/IAA 
transcriptional regulators (Oh et al. 2014; Xi et al. 2021).

PIFs mainly act in concert with each other, showing at least 
partial redundancy for the different physiological responses 
they execute. An example of this redundancy can be seen 
in hypocotyl growth in response to warm temperatures 
and low R:FR. These growth responses are mainly stimulated 
by PIF4, 5, and 7, but PIF4 plays the major role in the context 
of thermomorphogenesis, while PIF7 is the master regulator 
in low R:FR and in conditions in which warm temperatures 
and low R:FR are perceived simultaneously (Burko et al. 
2022).

Like the classification of phytochromes as photolabile 
(phyA-type) and photostable (phyB-type) (Clough and 
Vierstra 1997), PIFs also fall into 2 separate groups. While 
PIF1, 3, 4, 5, and 8 are destabilized by R light and phyB activity 
(Bauer et al. 2004; Park et al. 2004; Shen et al. 2005, 2007; 
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Lorrain et al. 2008; Oh et al. 2020), PIF7 protein levels are 
stable in response to R light and are not negatively affected 
by phyB (Leivar et al. 2008a; Willige et al. 2021). 
Independently of their photostability, photoactivated phyB 
recruits PIFs to photobodies (Fig. 3). Here, binding by phyB 
leads to inactivation and phosphorylation of PIFs and subse
quently polyubiquitination and, eventually, degradation of 
red light labile PIFs (Bauer et al. 2004; Al-Sady et al. 2006; 
Shen et al. 2008; Ni et al. 2013, 2014, 2017). Furthermore, 
PIFs also seem to play a role in phyB photobody formation. 
This is supported by the absence of early photobodies in 
pif3 mutants during de-etiolation in R light (Bauer et al. 
2004). In addition, both phyB and PIF7 can independently 
form nucleolus localized speckles when tethered to nucleoli. 
Interestingly, when only PIF7 is tethered to nucleoli, it re
cruits phyB into its speckles, which indicates that PIF7 helps 
photobody initiation/stabilization (Liu et al. 2014). This is 
supported by a recent study, where phyB formed faster 
and larger photobodies in a PIF7 overexpressor line after 
the transition from low R:FR to white light (Xie et al. 2023).

The founding member of the PIF family, PIF3, was originally 
identified in a yeast 2-hybrid screen using the C-terminal out
put module of phyB as bait protein (Ni et al. 1998). 
Nevertheless, PIFs do not only interact with phyB’s output 
module but also with the light-sensing knot lasso located 
in the photosensory domain (Ni et al. 1999; Kikis et al. 
2009). It was proposed that only the latter interaction is cru
cial for phyB signaling and PIF inactivation and degradation; 
deleting the output domain and forcing the remaining 
photosensory module to dimerize in the nucleus generates 
a protein that can trigger various phyB responses without 
being able to form photobodies (Matsushita et al. 2003; 
Oka et al. 2008). This suggested that the output domain 
and photobodies are dispensable for phyB signaling. 
Nevertheless, subsequent studies demonstrated that PIF 
interaction with both phyB modules is necessary to execute 
proper phyB signaling. Using the dimerizing photosensory 
domain revealed that this N-terminal module sequesters 
PIF3 and prevents its DNA binding without inducing PIF 
phosphorylation and degradation (Park et al. 2012). 
Additionally, this interaction with phyB’s N-terminal photo
sensory module suppresses PIF3’s transcriptional activity, 
which is mediated by a single, evolutionary conserved trans
activation domain (Yoo et al. 2021). However, phyB without 
its C-terminal output module does not properly inhibit 
hypocotyl elongation in growth conditions with light/dark 
cycles. Furthermore, a phyB C-terminal mutation that pre
vents phyB dimerization and photobody formation revealed 
that it is the output module that is responsible for the induc
tion of PIF phosphorylation and degradation (Qiu et al. 2017; 
Paik et al. 2019). The N-terminal sequestration function 
seems to mediate phyB’s fast response after photoactivation, 
while the C-terminal interaction initiates a more extended 
response that leads to a more profound outcome: the deg
radation of PIF transcription factors (Park et al. 2018). The 
sole exception seems to be PIF7 that does not accumulate 

in phyB mutants and that is not degraded by R light 
(Leivar et al. 2008a; Willige et al. 2021). Therefore, PIF7 seems 
to form a stable PIF pool that allows quick responses after 
phyB inactivation without the necessity of de novo PIF trans
lation. This could explain why PIF7 can bind to its DNA target 
sites within 5 minutes of low R:FR light exposure (Willige 
et al. 2021). However, PIF7 is sequestered into photobodies 
and is phosphorylated by phyB activity, indicating that 
both phyB’s N- and C-terminal modules are also relevant 
for PIF7 inactivation. Hence, photobodies serve to inactivate 
all PIFs by posttranslational modifications and for this pur
pose diverse enzymes are recruited into photobodies.

Recruitment of PIF modifying kinases and 
phosphatases by photobodies
The current model proposes that PIFs bound by phyB are 
first phosphorylated and subsequently polyubiquitinated to 
induce their degradation by the 26S proteasome (Al-Sady 
et al. 2006; Lorrain et al. 2008; Ni et al. 2013). This raises 
the possibility that phyB itself phosphorylates the PIF pro
teins, since bacterial (and fungal) phytochromes bear histi
dine kinase activity. Interestingly, phyB carries this heritage 
in its HKRD at its C terminus, which is necessary for PIF phos
phorylation (Qiu et al. 2017). However, not all amino acid re
sidues that are crucial for the catalytic activity of histidine 
kinases are present in phytochrome HKRDs (Boylan and 
Quail 1996), and too tight packing of phyB’s ATP-binding 
pocket could prevent a potential kinase activity (Li et al. 
2022b). In addition to the HKRD, also the hinge region that 
links both phytochrome modules, the PAS-related domain 
as well as the photosensory module were proposed to bind 
ATP to confer serine/threonine kinase activity of plant phy
tochromes (Wong and Lagarias 1989; Yeh and Lagarias 1998; 
Shin et al. 2016). Nevertheless, the significance of a potential 
phyB kinase activity for its signaling processes has been de
bated for decades.

Several kinases have been reported to phosphorylate PIFs. 
The MLK/PPK (MUT9P-LIKE-KINASE/PHOTOREGULATORY 
PROTEIN KINASE) family form a small group of nuclear loca
lized Casein Kinases 1-like proteins that regulate hypocotyl 
growth and flowering time. The kinases were co-purified as 
an interactor of PIF3 and phyB in a R light-induced manner. 
Furthermore, in the dark, MLK4/PPK1 is evenly distributed in 
the nucleoplasm but concentrates in nuclear speckles after a 
R light exposure (Ni et al. 2017). However, the recruitment of 
MLK1/PPK2, MLK2/PPK3, and MLK4/PPK1 into photobodies 
requires the presence of PIF3. The transcription factor serves 
as a primary client that is required to relocate MLKs/PPKs 
into photobodies (Kim et al. 2023a).

Loss of MLK/PPK function attenuates the light-dependent 
phosphorylation and degradation of PIF3. Additionally, in vi
tro assays demonstrate that MLK4/PPK1 phosphorylates 
PIF3 at amino acid residues that were previously identified 
as light-inducible phospho-sites. Altogether, these results 
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make the MLK/PPK family a good candidate for a 
phytochrome-activated kinase that induces PIF degradation 
(Ni et al. 2017). However, surprisingly, higher order mlk/ 
ppk mutants show a reduced hypocotyl growth in contrast 
to the expected R light hyposensitivity that would go along 
with PIF stabilization (Huang et al. 2016a; Ni et al. 2017). It 
was proposed that the underlying cause for the repressed 
growth are the higher phyB protein levels in mlk/ppk mu
tants. Alternatively, MLKs/PPKs have pleiotropic functions 
(Wang et al. 2015, 2021; Liu et al. 2017a; Wirthmueller et al. 
2018; Zheng et al. 2018), and the short hypocotyls might 
not be directly derived from altered phyB signaling. This is 
also supported by the fact that viable quadruple mlk/ppk 
knockout mutants could not be generated yet, while the 
loss of PHYB is certainly not lethal.

SPA1 (SUPPRESSOR OF PHYA-105 1) possesses kinase ac
tivity and regulates PIF1 and 4 phosphorylation (Paik et al. 
2019; Lee et al. 2020). However, currently, it is unclear if 
SPA proteins serve as kinases that directly transfer R light- 
induced phyB activity into PIFs phosphorylation to promote 
their degradation.

SOS2 (SALT OVERLY SENSITIVE 2) is a serine/threonine ki
nase that phosphorylates and activates SOS1 under salt 
stress. Since SOS1 is a plasma membrane–localized Na+/H+ 

antiporter, its activation leads to a decrease of the cytosolic 
Na+ concentration (Mahajan et al. 2008). Additionally, it was 
recently demonstrated that SOS2 is also active within the nu
cleus, where it phosphorylates PIF1 and 3. Both transcription 
factors foster salt sensitivity. SOS2 interacts with the 2 PIF 
proteins and phyB in nuclear bodies, indicating that they al
together colocalize in photobodies. Phytochromes are able to 
activate SOS2 to induce PIF1 and 3 phosphorylation and re
duce their stability to increase salt tolerance (Ma et al. 2023). 
Notably, there are also reports that describe negative effects 
of phyB on salt stress tolerance (Kwon et al. 2018; Yang et al. 
2018; Liu et al. 2023).

In another study, it was shown that SOS2 also phosphory
lates PIF4 and 5 (Han et al. 2023). Surprisingly, this does not 
lead to increased PIF turnover, as in the case of PIF1 and 3, 
but to an increased stability of PIF4 and 5. By this means, 
SOS2 can act as a positive regulator of hypocotyl elongation 
in low R:FR and counter the reduced growth response during 

Figure 3. In the dark, phyB is located in the cytoplasm in its inactive Pr conformation. Hence, PIFs are abundant and active to regulate their target 
genes. Upon light activation and conformational switch to its Pfr form, phyB activates calcium channels by an unknown mechanism. Hence, an 
increased intracellular Ca2+ concentration leads to activation of CPKs (CALCIUM-DEPENDENT PROTEIN KINASEs) that phosphorylate the light 
receptor and induce its nuclear translocation where it inactivates PIFs. Subsequently, PIFs are phosphorylated and ubiquitinated to determine their 
degradation via the 26S proteasome. PIF phosphorylation, ubiquitination, and degradation are mediated by the output module, but it is unclear if 
these processes are all happening within the same photobody. PIF7 is only phosphorylated and inactivated by phyB activity but not targeted for 
degradation. U denotes ubiquitination, while P indicates phosphorylation events.
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salt stress (Hayes et al. 2019; Han et al. 2023). SOS2 interacts 
with PIF4 and PIF5 within nuclear bodies, but at this point it 
is unclear if these are formed by phyB.

The mitogen activated protein kinase MPK6 (MAP KINASE 
6) and PIF3 antagonistically regulate cotyledon opening. 
MPK6 can phosphorylate PIF3 in vitro and is activated by R 
light through phosphorylation by MKK10 (MAP KINASE 
KINASE 10). MPK6 and PIF3 are colocalized in nuclear bodies 
(Xin et al. 2018). Nevertheless, it is not shown yet if these 
speckles have phyB photobody identity. Additionally, we cur
rently do not understand how MKK10, MPK6, and phyB 
work together to mediate PIF3 phosphorylation.

Besides the herein described kinases, PIFs were also 
shown to be phosphorylated by BIN2 (BRASSINOSTEROID- 
INSENSITIVE 2) (Bernardo-García et al. 2014; Ling et al. 
2017) and CK2 (CASEIN KINASE 2) (Bu et al. 2011), but re
cruitment to photobodies has not been studied yet. 
Altogether, it is likely that PIFs are phosphorylated by a con
cert of kinases; some act downstream of phyB in photobo
dies, while others likely function to integrate PIF activity 
into connected signaling pathways.

PIF phosphorylation is reversible, but the underlying 
regulatory mechanisms are very little understood. PP6 phos
phatases and TOPP4 (TYPE ONE SERINE/THREONINE 
PROTEIN PHOSPHATASE 4) were reported to interact with 
diverse PIFs and regulate their phospho-status and protein 
stability (Yue et al. 2016; Yu et al. 2019). Currently, it is un
known if PIFs get dephosphorylated within photobodies or 
after their release from photobodies. Both mechanisms could 
coexist, as indicated by bimolecular fluorescence comple
mentation; in the dark, TOPP4 binds to PIF3 in the nucleo
plasm, while R light relocates their interaction to nuclear 
speckles (Yue et al. 2016). However, sequestering phospha
tases into photobodies could also represent a potential 
mechanism to inactivate these enzymes and limit PIF activity.

Recruitment of E3 ubiquitin ligases by 
photobodies
A plethora of E3 ubiquitin ligases initiate proteasomal deg
radation of proteins by polyubiquitination. Hereby, the sub
strate recognition by the E3 provides specificity to the 
degradation process (Mazzucotelli et al. 2006). There are sev
eral E3 ligase candidates that could induce PIF degradation 
within photobodies after phyB activation.

The LRB 1 to 3 (LIGHT-RESPONSE BTB1 to 3) form a 
small family of BTB (Broad-complex, Tramtrack, and 
Bric-à-brac) proteins that serve as substrate recognition 
adaptors of CULLIN3-based E3 complexes. The family 
was initially identified in a reverse genetic screen and de
scribed as negative regulators of phyB protein abundance 
and hence R light signaling (Christians et al. 2012). 
However, a subsequent study revealed that LRBs not only 
promote phyB turnover but also initiate PIF3 degradation 
after its phosphorylation in response to R light (Ni et al. 

2014). In the dark and in R light, LRB1 and 2 are evenly dis
tributed within the nucleoplasm and do not seem to be re
cruited to photobodies (Christians et al. 2012). This 
suggests that phyB activity leads to the recruitment of 
other E3 s into photobodies or that PIF3 is released from 
photobodies after phosphorylation to initiate its degrad
ation via LRB-mediated polyubiquitination within the 
nucleoplasm. The second option is supported by the ob
servation that mimicking phosphorylation of PIF3 in
creases its turnover even in etiolated seedlings (Ni et al. 
2013), where photobodies are absent. Nevertheless, both 
alternatives are certainly not mutually exclusive, especially 
since in recent years several other E3 ligases were identified 
that target PIF proteins. For instance, phyB utilizes EBF1 
and 2 (EIN3-BINDING F BOX PROTEIN 1 and 2) to induce 
degradation of PIF3 and of EIN3 (ETHYLENE-INSENSITIVE 
3) to promote photomorphogenesis via 2 distinct molecu
lar mechanisms: The phyB-dependent phosphorylation of 
PIF3 is sufficient to induce the recognition by EBF1/2 with
out further requirement of phyB activity (Dong et al. 2017). 
In contrast, phyB seems to directly enhance the binding af
finity of EBF1/2 to EIN3 by acting as a scaffold for the tran
scription factor and the F-box proteins (Shi et al. 2016).

We currently do not know if LRBs and EBFs are recruited to 
photobodies. However, other E3 ligases that control PIFs 
were at least shown to be located in some type of nuclear 
speckles. PIF1 interacts with the F-box protein CTG10 
(COLD TEMPERATURE GERMINATING 10) and PIF4 binds 
to BOP2 (BLADE-ON-PETIOLE 2) within nuclear localized 
speckles in bimolecular fluorescence complementation as
says. CTG10 negatively regulates PIF1 levels to induce ger
mination and promote photomorphogenesis, while BOP1 
and 2 reduce PIF4 abundance to lower the response to higher 
ambient temperatures and promote photomorphogenesis 
(Zhang et al. 2017; Majee et al. 2018).

The RING finger E3 ubiquitin ligase HOS1 (HIGH 
EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1) is 
mainly located at the nuclear envelope, which is in agree
ment with its function in nuclear-cytoplasmic mRNA export 
(Tamura et al. 2010; Lazaro et al. 2012; MacGregor et al. 2013). 
However, interaction with at least 1 of its protein substrates 
is concentrated in nuclear bodies: HOS1 promotes turnover 
of the flowering regulator CO (CONSTANS), which seems to 
be mediated by phyB (Jung et al. 2012; Lazaro et al. 2012, 
2015). Interestingly, HOS1 also represses PIF4, however, with
out inducing its turnover. Instead, HOS1 is phyB dependently 
recruited to PIF4 DNA binding sites and inhibits PIF4’s trans
activation activity (Kim et al. 2017).

The best characterized E3 ligases that regulate light re
sponses are COP1-SPA complexes. The Arabidopsis genome 
encodes for 1 COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 
1) gene and for 4 SPA paralogues. COP1-SPA complexes 
form E3 ligases that initiate the degradation of positive reg
ulators of photomorphogenesis. Many COP1-SPA substrates 
are transcription factors, like HY5, HYH, PIL1, and HFR1 
(Osterlund et al. 2000; Holm et al. 2002; Duek et al. 2004; 
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Luo et al. 2014). In addition, COP1-SPA complexes function
ally interact with DET1 (DE-ETIOLATED 1) (Nixdorf and 
Hoecker 2010). Arabidopsis plants with a loss of DET1 func
tion were the very first described mutants that showed a 
de-etiolated/constitutive photomorphogenic phenotype 
in darkness (Chory et al. 1989). Like COP1 and SPAs, 
DET1 forms CULLIN4-based E3 complexes that are neces
sary to suppress photomorphogenesis in the dark (Lau 
and Deng 2012). Currently, DET1 is functionally less under
stood than COP1 and SPA proteins. However, a recent 
study suggested that DET1 and COP1 jointly work in HY5 
degradation, since DET1 is able to interact with both 
COP1 and HY5 and fosters the interaction between HY5 
and COP1 and, hence, HY5 degradation (Cañibano et al. 
2021).

In addition to their role in degradation of positive light sig
naling components, COP1, DET1, and SPAs stabilize PIF tran
scription factors (Bauer et al. 2004; Leivar et al. 2008b; Dong 
et al. 2014; Shi et al. 2015; Gangappa and Kumar 2017; Pham 
et al. 2018). For example, COP1 and SPAs prevent PIF3 phos
phorylation by BIN2 kinases that otherwise mark PIF3 for 
degradation (Ling et al. 2017). Altogether, COP1, DET1, and 
SPAs act PIF dependently and independently to promote 
skotomorphogenesis, thermomorphogenesis, and shade 
avoidance and hence act as negative regulators of phyB 
activity.

Different light receptors inactivate COP1-SPA complexes 
by at least 3 mechanisms: (1) nuclear exclusion of COP1, (2) 
degradation of SPA subunits, and (3) light receptor–SPA 
protein interaction to prevent COP1-SPA complex forma
tion. COP1 nuclear exclusion by R light was described 
in the past but is disputed by more recent reports 
(Osterlund and Deng 1998; Jang et al. 2010; Balcerowicz 
et al. 2017). Nevertheless, COP1 re-accumulates in the nu
cleus under canopy shade (Pacín et al. 2013). In addition, 
phyB can sequester SPA proteins to prevent COP1-SPA 
binding and initiate the degradation of SPAs (Lu et al. 
2015; Sheerin et al. 2015). COP1 and SPA proteins colocalize 
in nuclear speckles that can have phyB photobody identity 
(Seo et al. 2003; Zheng et al. 2013; Kim et al. 2023a). This 
indicates that in analogy to PIF inactivation, photobodies 
serve to sequester, inactivate, and degrade these negative 
regulators of photomorphogenesis. In addition, photobo
dies seem to functionally repurpose COP1 and SPAs by 
turning them into positive regulators of phyB activity: 
COP1 is required for the R light-induced degradation of 
SPA2 and potentially other SPAs (Chen et al. 2015). 
Additionally, COP1 and SPA proteins are involved in the 
phosphorylation and degradation of PIFs in response to R 
light (Zhu et al. 2015; Pham et al. 2018; Paik et al. 2019). 
However, based on cop1’s de-etiolated phenotype, its role 
in suppressing phyB action is more profound than its role 
in promoting R light signaling. In agreement, COP1 is also 
a negative regulator of photobody formation and mainten
ance by regulating structural components of these sub
nuclear domains.

Structural photobody components regulate 
gene expression
As stated above, in the dark, the Pfr form of phyB slowly 
switches back into its inactive Pr form, a process called dark 
or thermal reversion. Interestingly, the in vivo dark reversion 
is much slower than the reversion in vitro (Rausenberger et al. 
2010). This indicates that phyB modifications or phyB binding 
proteins decelerate the dark reversion rate. One of these phyB 
interactors is PCH1 (PHOTOPERIODIC CONTROL OF 
HYPOCOTYL 1), a positive regulator of R light-mediated 
photomorphogenesis (Huang et al. 2016b). PCH1 not only 
directly interacts with phyB and is part of photobodies but 
also stimulates the formation of large photobodies and the 
maintenance of photobodies during the night. Hence, overex
pression of PCH1 accelerates the appearance of photobodies 
after activating phyB and prevents photobody dissociation in 
the dark. It turned out that PCH1 and its paralogue PCHL 
(PCH1-LIKE) slow down the dark/thermal reversion of phyB 
by stabilizing phyB’s Pfr form without interfering with its in
trinsic R-FR photoconversion (Fig. 4) (Enderle et al. 2017; 
Huang et al. 2019). Stabilizing the Pfr form and hence photo
bodies extends phyB activity and therefore R light signaling in 
the night. Therefore, pch1 mutants show long hypocotyls in 
short-day conditions and in long days that coincide with ele
vated temperatures (when the dark/thermal reversion is ac
celerated). Since the Pfr form of phyB sequesters PIFs and 
initiates their degradation, PIF4 protein levels in pch1 are in
creased during the night (Huang et al. 2019). This could also 
be the consequence of increased PIF4 transcript levels in pch1. 
Altogether, the increased PIF4 levels go along with higher PIF 
target gene expression. Furthermore, PCH1 and PCHL seem 
to regulate PIF activity also by another mechanism, since 
they not only regulate hypocotyl growth in the night but 
also various R light responses, including seed germination 
and chlorophyll biosynthesis (Cheng et al. 2020). 
Interestingly, PCH1/PCHL negative influence on PIF1 abun
dance is only partial phyB dependent: PCH1/PCHL directly 
interact with PIF1 in a phyB-independent way. Additionally, 
in PCH1/PCHL overexpressors, PIF1 protein levels are lower 
even in etiolated seedlings before any light inputs and hence 
prior phytochrome activity. This phyB-independent function 
has consequences for PIF1 DNA binding and target gene ex
pression: both are reduced in imbibed seeds of PCH1 overex
pressors after phyB inactivation by FR light. Nevertheless, 
phyB binds stronger to PIF1 in the presence of PCH1/PCHL. 
The latter might be due to a bridging activity by PCH1/ 
PCHL or due to the acceleration of photobody formation 
by these proteins.

In addition to phyB and PIFs, PCH1 also interacts with 
members of the TPL/TPR (TOPLESS/TOPLESS-RELATED) 
family, a group of transcriptional corepressors. These pro
teins are recruited to target genes by various transcription 
factors to negatively regulate gene expression (Plant et al. 
2021). phyB alone does not bind TPL protein, and hence 
PCH1 serves as a primary photobody client to pull TPL and 
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related proteins into photobodies. Interestingly, multiple tpl/ 
tpr mutants show reduced hypocotyl growth in R light, 
indicating that TPL/TPR-dependent gene repression serves 
to decrease phyB signaling (Kim et al. 2023a). Hence, incorp
oration of TPL/TPR proteins into photobodies could be a 
means of preventing their interaction with transcription fac
tors or could serve to isolate transcription factor-TPL/TPR 
complexes from their DNA binding sites. PCH1/PCHL also 
interact with COP1, which can lead to COP1-induced 
PCH1/PCHL ubiquitination and subsequent degradation in 
the dark (Cheng et al. 2020). In consequence, COP1 could 
promote the dark/thermal reversion of phyB by lowering 
PCH1/PCHL levels and thus decreasing Pfr stability.

Through binding of PIFs, COP1-SPA complexes and 
TPL/TPR proteins, photobodies regulate transcription indir
ectly. However, photobodies themselves are locations of 
active gene expression as work on TZP (TANDEM ZINC 
KNUCKLE PROTEIN) has demonstrated. TZP was originally 
identified in a study of natural variations for hypocotyl elong
ation and encodes a protein with 2 types of nucleotide bind
ing domains: 1 PLUS3 and 2 zinc finger domains (Loudet et al. 
2008). TZP is recruited by phyB into photobodies which are 
disrupted by chemicals that are known to block transcription 
(Kaiserli et al. 2015). This is an indication that photobodies 
are associated with transcriptional processes. Furthermore, 
TZP binds single, but not double stranded DNA in vitro, 

Figure 4. Function of photobody regulators. PCH1 and PCHL stabilize phyB’s Pfr form and hence prevent photobody disassembly. TZP also regulates 
photobody formation and growth, but it is currently unknown if this happens through the stabilization of phyB’s Pfr form as well. HMR, PAP8, RCB, 
and NCP are located within the nucleoplasm and chloroplasts. They exhibit a dual function, since they promote photobody growth and the assem
bly of plastid-encoded RNA polymerase complexes consisting of core proteins and PAPs. Additionally, the formation of the PEP holoenzyme com
plex is regulated by PIF-dependent nucleus-to-plastid signaling.
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which might indicate that TZP binds to separated DNA 
strands in active chromatin regions. This is supported by 
TZP’s binding to 2 loci of floral activators (CO and FT). 
TZP’s DNA binding and TZP-dependent gene activation is in
hibited in the absence of photobodies (by FR light treatment 
or loss of phyB function), supporting the hypothesis that 
TZP-dependent gene regulation is happening in transcrip
tionally active photobodies (Kaiserli et al. 2015).

As described above for PCH1/PCHL, TZP also physically in
teracts with COP1, which facilitates TZP degradation (Li et al. 
2022a). However, this is not the only common feature of 
PCH1/PCHL and TZP, since tzp pch1 double mutants syner
gistically suppress R light signaling in the context of hypo
cotyl growth (Fang et al. 2022). In tzp pch1 double 
mutants, PIF4 levels do not only accumulate during the 
dark phase but also during the day, even though PIF4 tran
scription is barely affected in these mutants. In consequence 
PIF target gene expression is upregulated in tzp pch1. TZP nu
clear body formation is impaired in pch1, which is not sur
prising, since TZP requires phyB to be incorporated into 
photobodies and PCH1 promotes phyB photobody forma
tion. However, TZP is a structural component of photobodies 
as well, since photobody formation and growth are also nega
tively affected in tzp mutants (Fang et al. 2022), but it is not 
demonstrated yet if this also happens through the stabiliza
tion of phyB’s Pfr form (Fig. 4).

The dual function of photobody regulators
After the discovery of phyB photobodies, forward genetic 
screens led to the identification of regulators of photobody 
formation. The first protein that was reported to be one of 
these regulators was HMR (HEMERA), a nucleus and plastid 
dual-localized protein (Chen et al. 2010). HMR was identified 
in a confocal-based forward genetic screen in a mutagenized 
PHYB:GFP background. Loss of HMR does not affect phyB 
protein levels but affects the size of phyB photobodies, which 
have a much smaller size than photobodies in the wild-type 
under continuous red light (Chen et al. 2010). HMR directly 
interacts with phyB in a light-dependent manner (Galvão 
et al. 2012). In addition, HMR directly interacts with and reg
ulates the degradation of PIF1 and PIF3 as a transcriptional 
coactivator (Qiu et al. 2015).

HMR is also known as PAP5/pTAC12 (PEP-ASSOCIATED 
PROTEIN 5/PLASTID TRANSCRIPTIONALLY ACTIVE 12), 
since it is one of the associated proteins of the plastid- 
encoded RNA polymerase (PEP) complex. HMR/PAP5/ 
pTAC12 was co-purified with the plastid transcriptionally ac
tive chromosome (pTAC) fraction from chloroplasts (Pfalz 
et al. 2006; Pfannschmidt et al. 2015). This is why hmr mu
tants show a combination of tall hypocotyl and albino phe
notypes due to defects in phyB signaling in the nucleus and in 
PEP activity that is essential for chloroplast biogenesis. 
Interestingly, it has been demonstrated that HMR is first tar
geted to plastids, where it is processed to its mature form and 
from there it is relocated to the nucleus (Nevarez et al. 2017). 

Altogether, these studies propose that once photoactivated 
phyB is translocated into the nucleus, HMR promotes the 
formation of large phyB photobodies in the nucleus while 
HMR is also assembled into the PEP complex in chloroplasts 
(Fig. 4).

The dual role of HMR in photobody formation in the nu
cleus and PEP activation in plastids is in line with the nuclear 
control of chloroplast biogenesis. A recent report showed 
that photo-activated phytochromes in the nucleus send a 
nucleus-to-plastid signal to trigger the assembly of PEP com
plexes and chloroplast biogenesis by promoting PIF degrad
ation (Yoo et al. 2019). Accordingly, forward genetic 
screens for hmr-like tall-and-albino mutants defective in 
phytochrome-mediated control of the PEP assembly identi
fied 2 novel phytochrome signaling components: 
REGULATOR OF CHLOROPLAST BIOGENESIS (RCB) and 
NUCLEAR CONTROL OF PEP ACTIVITY (NCP) (Yang et al. 
2019; Yoo et al. 2019). Like hmr mutants, both rcb and ncp 
mutants are defective in the formation of large photobodies, 
leading to the accumulation of PIF1 and PIF3 (Fig. 4) (Yang 
et al. 2019; Yoo et al. 2019). RCB/NCP-dependent photobody 
formation and PIF degradation in the nucleus triggers the as
sembly and activation of the PEP complex in chloroplast bio
genesis (Yang et al. 2019; Yoo et al. 2019). Although they are 
dual-localized proteins, RCB regulates the PEP assembly and 
complex primarily in the nucleus via nucleus-to-plastid sig
naling, while NCP located in plastids has an essential role 
in PEP assembly. Both proteins contain noncatalytic 
thioredoxin-like domains in their C terminus. The biochem
ical functions of RCB and NCP in regulating photobody for
mation and the assembly of the PEP complex are still 
unknown.

Recently, another subunit of the PEP complex, PAP8/ 
pTAC6, was reported to affect photobody formation pre
sumably by acting together with HMR/PAP5/pTAC12. 
Mutation of PAP8 suppresses the short hypocotyl phenotype 
of PHYB:GFP overexpressors under red light and leads to de
fects in the formation of large photobodies (Liebers et al. 
2020). PAP8 is also targeted to both the nucleus and chloro
plasts, where it directly interacts with HMR/PAP5. Since the 
size of nuclear PAP8 is similar to the transit peptide-cleaved 
form of chloroplast PAP8, this study proposes that PAP8 is 
translocated from chloroplasts to the nucleus. Here, PAP8 
physically interacts with HMR to promote the formation of 
large photobodies (Fig. 4). The regulation of photobody for
mation by PAP8 might work through HMR because the dir
ect interaction between PAP8 and phyB has not been 
demonstrated yet.

It is worth pointing out that all these regulators of photo
body stability share similar characteristics. First, HMR, RCB, 
NCP, and PAP8 are all dual-localized proteins in the nucleus 
and in chloroplasts. Second, they are required for the forma
tion of large photobodies without affecting phyB protein le
vel or nuclear localization. Third, they are essential for 
chloroplast biogenesis since all mutants are albinos. Fourth, 
HMR and PAP8 are essential components of the PEP 
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complex, while RCB and NCP are required for PEP assembly 
even though they are not thought to be components of the 
PEP complex. Fifth, none of these factors have been identified 
as structural components of photobodies. Altogether, these 
factors suggest that although the regulatory mechanism of 
photobody stability by these proteins is still unclear, the for
mation of large photobodies is tightly linked to the forma
tion of the PEP holoenzyme complex via PIF-dependent 
nucleus-to-plastid signaling (Fig. 4) (Hwang et al. 2022). 
The nature of this anterograde signal is unknown; however, 
photobody stability during light exposure must be important 
to initiate light-triggered chloroplast biogenesis in a seed
ling’s early development. It is also worth mentioning that 
these regulators are all plant-specific proteins evolved during 
land adaptation and do not exist in cyanobacteria or green 
algae (Chen et al. 2010; Nishiyama et al. 2018; Yang et al. 
2019). Their regulatory mechanisms on photobody stability 
might have evolved to optimize photomorphogenesis in
cluding chloroplast biogenesis during terrestrial adaptation.

Photobodies recruit splicing factors to 
regulate gene expression
A cell’s precursor mRNAs (pre-mRNAs) need to undergo spli
cing in order to form mature mRNAs that serve as templates 
for protein production. Hence, introns must be removed and 
exons must be fused. These reactions are mediated by the 
major spliceosome, which consists of over 100 proteins and 
several small protein–RNA complexes, called small nuclear ri
bonucleoproteins. These include U1, 2, 4, 5, and 6 that recog
nize splicing signals within pre-mRNA molecules (Will and 
Lührmann 2011; Matera et al. 2014; Lee and Rio 2015).

Mandatory retention of exons and removal of introns is 
called constitutive splicing, while the inclusion of introns, 
the exclusion of exons, or the use of nonconstitutive splice 
sites are called alternative splicing. Alternative splicing pro
duces multiple transcripts from a single gene by using differ
ent splice sites. Splicing factors such as SR proteins and 
heterogenous nuclear riboproteins promote or prevent ac
cess to these splicing signals. Therefore, they give specificity 
to each splicing process and determine the produced mature 
mRNA isoform (Reddy et al. 2013; Lee and Rio 2015). 
Interestingly, this specificity is regulated by photobodies.

About 7% of all Arabidopsis genes undergo phytochrome 
A and B-dependent alternative splicing after R light exposure 
for up to 3 h (Shikata et al. 2014). For example, phyto
chromes promote alternative splicing of SPA3 transcripts. 
This leads to a loss of SPA3’s C terminus due to the formation 
of premature termination codons. Unlike its full-length iso
form, the truncated SPA3 proteins act as repressors of hypo
cotyl elongation (Shikata et al. 2014). Another example of 
phyB-mediated alternative splicing affects PIF3 translation. 
The 5′UTR of PIF3 contains 2 introns. Within the second in
tro lies an upstream open reading frame. R light and phyB 
promote retention of this upstream open reading frame in 

the spliced PIF3 mRNA, which negatively affects PIF3 transla
tion (Dong et al. 2020).

These 2 examples demonstrate how phytochrome-activity 
promotes R light signaling through alternative splicing. So far, 
6 phyB interacting splicing factors were identified. For 2 
heterogenous nuclear riboproteins that regulate alternative 
splicing in the moss Physcomitrella patens (Shih et al. 2019; 
Lin et al. 2020), no photobody localization has been assessed 
yet. However, 4 different splicing factors were identified in 
Arabidopsis. They colocalize with phyB in nuclear speckles, 
indicating that photobodies directly influence pre-mRNA 
splicing.

RRC1 (REDUCED RED-LIGHT RESPONSES IN CRY1CRY2 
BACKGROUND 1) was identified in a screen for R light hypo
sensitive mutants (Shikata et al. 2012). RRC1 encodes for an 
ortholog of the human splicing factor SR140. RRC1 and 
SR140 are SR proteins that carry a serine and arginine-rich 
domain at their C termini (RS domain) and an N-terminal 
RNA recognition domain (RRM domain). Loss of RRC1’s 
C-terminal RS domain leads to reduced phyB signaling. 
These mutations or loss of PHYB affect alternative splicing 
of several SR protein genes in response to R light. However, 
rrc1 null mutants show pleiotropic developmental defects, 
which indicates that RRC1’s function is not limited to phyB 
signaling (Shikata et al. 2012).

RRC1 interacts with SFPS (SPLICING FACTOR FOR 
PHYTOCHROME SIGNALING). Both splicing factors have 
several features in common (Xin et al. 2017, 2019). Like 
RRC1, SFPS was also identified in a screen for R light hyposen
sitive mutants. SFPS is related to the human splicing factor 
SPF45. The human orthologues of RRC1 and SFPS (SR140 
and SPF45) associate with the small nuclear ribonucleopro
tein U2 and the same seems to be true for RRC1 and SFPS 
(Xin et al. 2017, 2019). U2 and its associated factors bind to 
3′ splice sites and intronic branch points (typically located 
up to 50 bp upstream of the 3′ splice site). Hence, 
pre-mRNA binding by U2 and its associated factors define 
the actual 3′ splice site of each individual splicing reaction 
(Wahl et al. 2009; Matera et al. 2014). Interestingly, the inter
action of RRC1 and SFPS is conserved, since human SPF45 
and SR140 were later found to interact as well (Martín 
et al. 2021), which supports the notion that these splicing fac
tors act jointly in various signaling pathways.

The above-mentioned similarities between RRC1 and SFPS 
go even further. Both proteins were shown to interact with 
phyB and to locate in nuclear speckles that at least partly co
localize with phyB photobodies (Xin et al. 2017, 2019). 
However, in the case of RRC1 colocalization and interaction 
with phyB could not be confirmed in all studies (Shikata et al. 
2012; Kim et al. 2023b), which could be explained by differing 
experimental conditions.

In rrc1 and sfps mutants, splicing of genes that are asso
ciated with light stimulus, photosynthesis, and the circadian 
clock is impaired. One example is that ELF3: rrc1 and sfps mu
tants contain higher levels of not fully spliced ELF3 transcripts 
that encode for a nonfunctional ELF3 protein (Xin et al. 2017, 
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2019; Kim et al. 2023b). The alternative splicing of clock gene 
transcripts in rrc1 leads to misregulation of rhythmic gene ex
pression and in consequence to higher PIF4, PIF5, and PIF7 
protein levels and increased hypocotyl growth (Kim et al. 
2023b).

Both RRC1 and SFPS bind independently and jointly to the 
splicing factor SWAP1 (SUPPRESSOR-OF-WHITE-APRICOT/ 
SURP RNA-BINDING DOMAIN-CONTAINING PROTEIN1) 
(Kathare et al. 2022). As shown for RRC1 and SFPS, SWAP1 
also interacts with phyB and colocalizes with phyB and U2 
subunits in nuclear speckles. Altogether, phyB might recruit 
RRC1, SFPS, and SWAP1 to photobodies to concentrate these 
splicing factors to induce splicing of light signaling and circa
dian clock genes. The increased concentration of particular 
splicing factors could enhance the efficiency of specific spli
cing reactions to promote R light signaling. The association 
of RRC1, SFPS, and SWAP1 with U2 suggests that they link 
phyB activity with the selection of 3′ splice sites. It is worth 
pointing out that an alternative model was proposed in 
which phyB and RRC1 promote light responses spatially se
parated. While PHYB expression within the epidermis is suf
ficient to repress hypocotyl growth, RRC1 seems to act 
mainly within the endodermis to promote R light responses 
(Kim et al. 2023b).

While RRC1, SFPS, and SWAP1 act as positive components 
of phyB signaling, SMP2 (SWELLMAP 2) is a splicing factor 
that suppresses photomorphogenesis—it antagonizes phyB 
signaling to promote hypocotyl elongation (Yan et al. 
2022). SMP2 was found as a phyB interactor in a yeast two- 
hybrid screen using the C-terminal output module. It is a 
homolog of human Slu7 that is also involved in 3′ splice 
site selection. SMP2 was found to regulate RVE8 (REVEILLE 
8) pre-mRNA splicing. RVE8 is a transcription factor that in
duces the expression of several transcription regulators in
volved in hypocotyl growth repression (Hsu et al. 2013). 
Alternative splicing of RVE8 pre-mRNA can lead to non
functional mature mRNA isoforms (James et al. 2012). In 
smp2, more functional RVE8 mRNA isoforms are produced, 
which might explain the reduced hypocotyl growth in these 
mutants. SMP2 is localized in the nucleoplasm and in nuclear 
speckles, and some of these speckles exhibit photobody iden
tity, since they colocalize with phyB (Yan et al. 2022). In ana
logy to the sequestration of other negative regulators of phyB 
signaling (like PIFs or SPAs), photobodies might isolate SMP2 
from cofactors or pre-mRNA substrates to impair its activity.

Regulation of chromatin dynamics by 
photobodies
Active phyB also regulates gene expression by modifying 
gene activity on a macromolecular level. For example, phyB 
is involved in light-dependent chromatin compaction. 
Here, phyB activity stimulates the formation of highly con
densed heterochromatin domains (chromocenters) that 
are transcriptionally inactive (Tessadori et al. 2009; van 

Zanten et al. 2010). In addition to chromatin compaction, 
phyB modifies the location of light-induced genes within 
the nucleus as shown for the reposition of the CAB 
(CHLOROPHYLL A/B BINDING PROTEIN) gene cluster. This 
gene cluster moves phyB dependently from the nuclear inter
ior to the nuclear periphery. Since this repositioning seems to 
happen before the gene cluster is fully transcriptionally in
duced, it might be a mechanism to increase light-dependent 
gene expression. In contrast, in the dark, PIFs retain these 
light-inducible loci in the nuclear interior (Feng et al. 2014). 
This suggests that phyB activation and photobody formation 
induce PIF degradation to translocate light-inducible loci. It is 
possible that these loci move into the proximity of nuclear 
pore complexes to promote transcription, since these struc
tures are not only important for gene activation in yeast and 
metazoan systems, but also in plants (Tamura 2020). 
However, it needs to be tested, if phyB-dependent gene re
position colocalizes with photobodies and/or nuclear pore 
complexes.

Another antagonistic function of phyB and PIFs is the con
trol of nucleosome occupancy by the histone variant H2A.Z. 
Nucleosomes consist of a histone octamer and approximate
ly 146 base pairs of DNA that are wrapped around it (Luger 
et al. 1997). The octamer is formed by 4 different histones, 
including H2A. H2A can be exchanged by H2A.Z within 
gene bodies, and by this means, gene expression and gene re
sponsiveness is regulated. In Arabidopsis, higher H2A.Z levels 
within gene bodies are found to correlate with reduced gene 
activity (Coleman-Derr and Zilberman 2012; Yelagandula 
et al. 2014; Sura et al. 2017; Carter et al. 2018). Two evolution
ary conserved chromatin remodeling complexes can ex
change H2A for H2A.Z and vice versa. The SWR1 complex 
incorporates H2A.Z into nucleosomes, while the INO80 com
plex evicts H2A.Z and deposits H2A (Mizuguchi et al. 2004; 
Papamichos-Chronakis et al. 2011). These H2A-H2A.Z dy
namics enable transcriptional responses to various environ
mental stimuli in plants, including light. Mutations of 
INO80 cause R light hypersensitivity, in part due to reduced 
H2A.Z occupancy at the HY5 gene body, which leads to in
creased expression of HY5 (Yang et al. 2020). However, 
SWR1 and INO80 complexes need to be recruited to light- 
responsive genes. Several recent studies have identified an
tagonistic phyB and PIF-dependent mechanisms to regulate 
H2A.Z occupancy. phyB was found to be able to bind 2 sub
units of the SWR1 complex (SWC6 and ARP6) in a R light- 
dependent fashion (Wei et al. 2021). Using in vitro assays, 
the photosensory module and the output module interacted 
independently with both subunits. However, in planta inter
actions were found only in the presence of R light, indicating 
that the photobody forming Pfr form is necessary for these 
interactions. Like loss of PHYB function, mutations of both 
SWR1 subunits show light-hyposensitive growth and in
creased expression of auxin biosynthesis and response genes, 
suggesting that the SWR1 complex represses growth by low
ering auxin biosynthesis. This is supported by the R light and 
SWR1-dependent deposition of H2A.Z at the YUCCA9 locus. 
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Interestingly, this incorporation of H2A.Z is not only phyB 
but also HY5 dependent (Wei et al. 2021). The cause for 
the HY5 dependency is likely HY5’s ability to bind to 
SWC6 and ARP6 as well. This interaction allows the recruit
ment of SWR1 complexes to HY5 target loci (Fig. 5) (Mao 
et al. 2021). Altogether, this indicates that light-dependent 
H2A-H2A.Z dynamics happen upstream (Yang et al. 2020) 
and downstream (Mao et al. 2021; Wei et al. 2021) of HY5.

PIF7 is the major PIF for the induction of hypocotyl growth 
in response to low R:FR (Li et al. 2012; Willige et al. 2021). 
After exposure to low R:FR, PIF7 gets dephosphorylated 
and changes its subnuclear localization. While PIF7 is concen
trated in large photobodies in white light, it is released from 

these domains after low R:FR exposure (Willige et al. 2021; Xie 
et al. 2023). These responses likely precede PIF7 DNA binding 
to its target genes. These target genes are highly enriched in 
transcriptional regulators, suggesting that PIF7 acts upstream 
of a transcription factor cascade. Interestingly, 5 minutes of 
low R:FR exposure is sufficient to induce PIF7 DNA binding, 
while longer exposure times intensify this binding and lead 
to more binding events (Willige et al. 2021). This rapid 
DNA binding is accompanied by H2A.Z removal from gene 
bodies of PIF7 target genes. Hereby, PIF7 DNA binding and 
H2A.Z seem to precede the low R:FR-induced transcriptional 
activation of these genes. Importantly, this H2A.Z eviction 
in response to low R:FR is strongly compromised in pif457 
mutants, demonstrating its PIF dependency.

EEN (EIN6 ENHANCER), the ortholog of the yeast and hu
man Ies6 (INO80 Subunit 6) protein, is a small but essential 
subunit of the INO80 complex (Zander et al. 2019). Based on 
available cryo-EM structures of the INO80 complex, Ies6 is 
directly involved in nucleosome binding by the INO80 com
plex (Watanabe et al. 2015; Ayala et al. 2018; Eustermann 
et al. 2018). At least PIF4, 5, and 7 can interact with 
EEN, and een mutants show hyposensitivity to low R:FR. 
Additionally, een exhibits defects in low R:FR induced 
H2A.Z eviction (Willige et al. 2021). This indicates that PIFs 
recruit the INO80 complex via interaction with EEN to regu
late H2A.Z removal and hence gene expression (Fig. 5). 
However, PIFs seem not only bind to EEN, since at least 
PIF4 also interacts with the N-terminal region of INO80, 
the largest subunit of the INO80 complex. In response to 
warm temperatures, these interactions mediate H2A.Z evic
tion at PIF4 target genes to facilitate gene activity and hence 
thermomorphogenesis (Xue et al. 2021).

Promoting H2A.Z eviction is not the only way PIFs regulate 
H2A.Z occupancy. It was shown that several PIFs are able to 
physically interact with SWC6, the aforementioned subunit of 
the SWR1 complex. This interaction happens within nuclear 
speckles, but at this point it is not clear if these foci are photo
bodies. Interestingly, PIF-SWC6 binding seems to compete with 
the HY5-SWC6 interaction that serves to recruit the SWR1 
complex to HY5 target loci (Chen et al. 2023). Hence, besides 
facilitating H2A.Z eviction, PIFs also seem to prevent H2A.Z de
position that is promoted by HY5 (Fig. 5).

Overall, PIFs play an opposing role to phyB and HY5 in 
regulating H2A.Z occupancy. The promoters of photo
morphogenesis interact with the SWR1 complex to deposit 
H2A.Z to reduce gene expression. In contrast, environmental 
signals such as low R:FR and warm temperatures reduce 
photobody formation/maintenance. In consequence, HY5 le
vels are reduced, but PIF activity is promoted. This leads to 
reduced H2A.Z occupancy and hence increased expression 
of PIF target genes.

Conclusions and perspectives
As summarized above, the current state of knowledge indi
cates that phyB photobodies are biochemical hotspots that 

Figure 5. Negative regulation of H2A.Z occupancy by PHYTOCHROME- 
INTERACTING FACTORs. A) PIF4 and 7 recruit the INO80 complex to 
promote H2A.Z eviction and gene activity of PIF target genes in re
sponse to low R:FR or elevated temperatures. PIF4, 5, and 7 can inter
act with the small INO80 complex subunit EEN (EIN6 ENHANCER), a 
homolog of Ies6 (Ino eighty subunit 6) found in yeast. PIF4 was also 
shown to interact with the N-terminal region of INO80 itself. B) 
HY5 interacts with 2 SWR1 complex subunits, ARP6 and SWC6, to re
cruit the chromatin remodeling complex. This promotes H2A.Z 
incorporation into nucleosomes. Several PIFs physically interact 
with SWC6 as well, which seems to compete with the HY5’s SWR1 
recruitment.
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concentrate factors to accelerate enzymatic reactions and to 
give these reactions specificity. Conversely, this does not ne
cessarily mean that these biochemical processes are inactive 
in the absence of photobodies since muted phyB responses 
can be observed even without photobody formation. 
Nevertheless, these nuclear foci are required to adjust the 
growth and development of plants to environmental condi
tions. In this context it is noteworthy that photobodies re
spond not only to light and temperature changes that 
directly influence the Pr-Pfr conversion. For example, photo
bodies are also influenced by salinity and jasmonate. 
Relatively little is understood about how these other abiotic 
and potentially biotic factors influence photobodies, if they 
modify the stability of phyB’s Pfr form, or if they utilize other 
mechanisms to influence photobodies. In addition, it is un
clear how all these signals are integrated to regulate the out
come of phyB signaling.

One key factor to unravel photobody signal integration is 
the understanding of the functional and compositional com
plexity of differing photobodies. One open question is if mul
tiple speckles within a single nucleus are functionally similar 
and have overlapping protein compositions. These foci 
might interact with different genomic sites and fusion of 
photobodies could lead to intrachromosomal but also inter
chromosomal interactions. By this means, regulatory DNA 
elements could be brought into proximity of distant protein 
coding regions to allow flexible gene regulation. In contrast, 
multiple photobodies within a nucleus could be functionally 
specialized and might focus on certain functions of phyB 
signaling.

The finding that multiple speckles within a nucleus seem 
to have differing thermal stabilities indicates that they are 
compositionally diverse. The recently published mass spec
trometry analysis of photobodies is a huge step in our under
standing photobody composition. However, there are still 
many unknowns regarding not only photobody protein com
position but also DNA and RNA sequences that might be 
structural components and determine photobody stability 
and size. Furthermore, we currently do not know if tissue- 
and cell type–specific photobodies exist that might provide 
another level of phyB signaling complexity.
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