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Abstract

Background: Targeted agents and immunotherapies have revolutionized cancer treatment, 

offering promising options for various cancer types. Unlike conventional phase I clinical trial 

designs, the principle of “more is better” is not always applicable to these therapies due to their 

unique biomedical mechanisms. As a result, various phase I-II clinical trial designs have been 

proposed to identify the optimal biological dose that maximizes the therapeutic effect of targeted 

therapies and immunotherapies by jointly monitoring both efficacy and toxicity outcomes.

Method: This review paper examines several innovative phase I-II clinical trial designs that 

utilize accumulated efficacy and toxicity outcomes to adaptively determine doses for subsequent 

patients and identify the optimal biological dose, maximizing the overall therapeutic effect. 

Specifically, we highlight three categories of phase I-II designs: efficacy driven, utility based, 

and designs incorporating multiple efficacy endpoints.

Result: For each design, we review the dose-outcome model, the definition of the optimal 

biological dose, the dose-finding algorithm, and the software for trial implementation. To illustrate 

the concepts, we also present two real phase I-II trial examples utilizing the EffTox and ISO 

designs. Finally, we provide a classification tree to summarize the designs discussed in this paper.

Conclusion: Phase I-II designs are effective and dependable alternatives to conventional phase I 

designs for dose-finding trials assessing targeted therapies and immunotherapies.
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Introduction

Targeted therapy is a type of cancer treatment that specifically targets and attacks cancer 

cells while minimizing damage to normal tissues. It is based on the idea that cancer cells 

have specific characteristics or genetic mutations that make them vulnerable to certain 

types of treatment, while normal tissues do not. Targeting these unique features of cancer 

cells can be more effective and cause fewer side effects than traditional chemotherapy 

and radiation therapy. Several targeted agents exist, such as monoclonal antibodies, small 

molecule inhibitors, and hormone therapies.1,2 Immunotherapy is a cancer treatment that 

uses the patient’s immune system to fight cancer. It stimulates or enhances the immune 

system’s ability to recognize and attack cancer cells. Several types of immunotherapies 

exist, including checkpoint inhibitors, CAR T-cell therapy, and cancer vaccines.3–6 Targeted 

therapy and immunotherapy revolutionize how physicians treat cancer and have been used to 

treat many types of cancer, including breast, lung, colorectal, melanoma, lung, kidney, and 

other types of cancer.7–9

In phase I dose-finding trials for cytotoxic agents such as chemotherapy and radiotherapy, 

the primary goal is to determine the highest safe dose of a new drug that can be given 

to patients without causing unacceptable toxicity, referred to as the maximum tolerated 

dose. The underlying mechanism is that higher doses of the drug can be more effective 

in treating cancer, but there is also a greater risk of toxicity. However, because of their 

specific biomedical mechanisms, the “more is better” principle often does not hold for 

targeted therapy and immunotherapy. Increasing the dose of these agents beyond the optimal 

therapeutic range may fail to improve treatment outcomes and increase the risk of toxicity. 

Hence, the goal of dose-finding trials for targeted agents and immunotherapies is to identify 

the optimal biological dose that yields the best therapeutical effect by considering the 

toxicity and efficacy outcomes jointly. In Figure 1, we provide an illustrative example of the 

difference between the maximum tolerated and optimal biological doses. The dose-limiting 

toxicity rate monotonically increases with the doses, and dose 3 is the maximum tolerated 

dose with the highest acceptable toxicity rate of 0.3. However, the dose-efficacy curve is 

plateaued, and doses 2 and 3 yield the same objective response rate of 0.5. Although doses 2 

and 3 are safe, dose 2 has a much lower toxicity rate than dose 3. Therefore, dose 2 should 

be the optimal biological dose by jointly considering the toxicity and efficacy outcomes. 

Since toxicity and efficacy outcomes are involved in a single dose-finding design to find the 

optimal biological dose for targeted agents and immunotherapies, it is typically referred to as 

the phase I-II design.

A phase I-II design includes several essential elements such as primary toxicity and efficacy 

endpoints for dose-finding, a risk-benefit trade-off criterion to define the optimal biological 

dose, a statistical model to characterize dose-toxicity and dose-efficacy relationships, 

and adaptive decision rules for dose escalation/de-escalation. Figure 2 provides a 

general diagram for conducting a dose-finding clinical trial using the phase I-II design. 

Numerous publications on phase I-II designs for targeted agents and immunotherapies 

are available in the literature.10–13 These innovative designs have gained popularity 

among the pharmaceutical industry and regulatory agencies due to their potential benefits 

in identifying the true optimal dose. As evidence, various organizations have created 
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innovative design working groups, which have suggested techniques, approaches, and 

implementation policies to be evaluated by regulatory agencies. Among these groups are 

the Biopharmaceutical Division of the American Statistical Association, the Pharmaceutical 

Research and Manufacturers of America, the Biotechnology Industry Organization, and the 

Drug Information Association. The Food and Drug Administration (FDA) has also provided 

guidance to sponsors and applicants on interacting with the FDA on complex, innovative 

drug development trial design proposals, including phase I-II designs.14

Moreover, considering the emergence of targeted therapies and immunotherapies that require 

tailored dose-finding designs, the FDA has recently launched “Project Optimus” to re-

evaluate the dose optimization and selection approach used in developing oncology drugs.15 

Given the significance of this research and the potential impact it can have in the field 

of clinical medicine, in what follows, we review the dose-outcome model, the definition 

of the optimal biological dose, the dose-finding algorithm, and the software development 

for several innovative phase I-II clinical trial designs. We also provide real trial examples 

using phase I-II designs discussed in this paper. Finally, we conclude this paper with a brief 

discussion.

Efficacy driven designs

If identifying the optimal biological dose is to attain the highest possible efficacy while 

ensuring patient safety, efficacy driven designs should be employed. One such design is the 

ISO design proposed by Zang et al.16 The ISO design is developed based on the observation 

that the dose-efficacy curves for targeted agents and immunotherapies are typically unimodal 

or plateau within the therapeutic dose range. Thus, identifying the optimal biological dose 

can be transformed into locating the inflection point of the dose-response curve (e.g., the 

OBD in the dose-efficacy curve of Figure 1). The model selection method is used under the 

ISO design to determine the location of the inflection point. The idea is that although the 

underlying true location is unknown, the number of possible locations is limited because 

only a few doses can be considered in a dose-finding trial. For example, assuming a total of 

5 doses of a new agent are under investigation in a trial, we can specify at most 5 statistical 

models representing different locations of the inflection point. Specifically, model 1 to 5 

indicates that dose 1 to 5 is the true optimal biological dose, respectively. The efficacy rates 

are then repeatedly estimated under each model. Finally, among multiple sets of efficacy 

rate estimates, the best set is selected by optimizing a statistical goodness-of-fit objective 

function.

While the ISO design is primarily efficacy driven, monitoring toxicity during the dose-

finding process is crucial to ensure patient safety. This is done by calculating a posterior 

probability of toxicity at each dose based on the observed toxicity data, which measures the 

chance that the toxicity rate is unacceptably high. Then, during each interim analysis, any 

dose with a posterior probability higher than a cut-off value (e.g., 0.9) will be claimed as 

excessively toxic and excluded from further consideration. The first step in the dose-finding 

procedure is to monitor the toxicity outcomes and exclude the overly toxic doses. The 

second step is calculating the best efficacy rate estimates using the model selection method. 

The optimal biological dose is identified as the dose with the highest efficacy rate while still 
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safeguarding patients. Where there are ties, the lowest dose among the ties is selected. The 

dose decision for the next cohort of patients is then made by comparing the location of the 

current dose with the identified optimal biological dose. Once the maximum sample size 

is reached, the latest identified optimal biological dose using all accumulated toxicity and 

efficacy outcomes is selected. A freely available R Shiny App to implement the ISO design 

is available at https://trialdesign.org/one-page-shell.html#MTADF.

The ISO design is applicable for unimodal and plateaued dose-response curves, but the 

latter is often more clinically relevant in practice. The mISO design is advantageous when 

the underlying dose-efficacy curve can be specified as plateaued.17 The idea is that doses 

within the plateau have nearly the same efficacy rate, allowing us to combine efficacy 

outcomes across these doses. This combination transforms the plateaued dose-response 

curve into a monotonically increasing curve, making it amenable to the conventional phase 

I dose-finding designs. However, the lowest dose within the plateau is unknown. Like the 

ISO design, the mISO design addresses this issue using the model selection method based 

on the AIC information criterion. Additionally, unlike the ISO design, which only excludes 

excessively toxic doses, the mISO design excludes any doses with unacceptable toxicity or 

efficacy profiles from further consideration. Suppose all the doses are found unacceptable 

during any interim analysis time. In that case, the whole trial is early terminated, and no 

dose should be selected as the optimal biological dose. Simulation studies have shown that 

the mISO design performs better than the ISO design when the underlying dose-response 

curve is plateaued. A computer software package for implementing the mISO design is 

available at https://github.com/yongzang2020/mISO.

Utility based designs

Unlike efficacy driven designs, utility based designs consider efficacy and toxicity outcomes 

as co-primary endpoints and use utility functions to assess the risk-benefit trade-off. The 

optimal biological dose is then defined as optimizing the utility function to balance the 

efficacy and toxicity outcomes. The EffTox design is the first utility-based phase I-II 

design.18 Similar to the mISO design, the EffTox design restricts the dose-finding procedure 

to doses that exhibit acceptable efficacy and toxicity profiles only to enhance the safety 

and ethics of clinical trials. The design uses a complicated six-parameter parametric 

dose-outcome model to characterize the dose-efficacy, dose-toxicity, and efficacy-toxicity 

correlations. Based on this dose-outcome model, the utility function is formulated as a 

nonlinear function of the toxicity and efficacy rates at different doses. The idea is that 

a higher risk of toxicity is a reasonable trade-off for a greater benefit of efficacy. The 

utility function quantifies the risk-benefit trade-off and transforms the two-dimensional 

(toxicity, efficacy) outcomes into a single utility value criterion, which measures the overall 

desirability at each dose. For example, through a specific configuration of the utility 

function, a dose with 15% efficacy rate and no toxicity, a dose with 100% efficacy rate and 

50% toxicity rate, and a dose with 30% efficacy rate and 15% toxicity rate can be considered 

as equally desirable in terms of their utility values. The parametric model estimates the 

toxicity and efficacy rates at different doses during each interim analysis. The estimates are 

then utilized in the utility function to determine the dose with the highest overall desirability 

to which the next cohort of patients will be assigned. At the end of the trial, the dose with 
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the largest desirability is selected as the optimal biological dose. A graphical user interface-

based software for implementing EffTox is available at https://biostatistics.mdanderson.org/

SoftwareDownload/SingleSoftware/Index/2.

An alternative utility-based design, BOIN12,19 is based on elicited utilities of all the 

possible (efficacy, toxicity) outcomes. For binary efficacy and toxicity endpoints, there are 

four possible outcomes: 1=(no toxicity, efficacy), 2=(no toxicity, no efficacy), 3=(toxicity, 

efficacy), and 4=(toxicity, no efficacy). A utility score of 100 is assigned to the most 

desirable outcome (no toxicity, efficacy), and a utility score of 0 is assigned to the least 

desirable outcome (toxicity, no efficacy). Then, using these two boundaries as references, 

the physicians can elicit the scores of the other two outcomes, which should be between 0 

and 100. An illustrative example of a utility table is provided in Table 1. Let u1,…,u4 denote 

the utility scores for outcome 1,…, 4 and let π = (p1, …, p4) be the respective outcome 

probability, the mean utility function is denoted as U(π) = p1u1 + p2u2 + p3u3 + p4u4. As a 

toy example, consider a dose with the probabilities of 0.3, 0.4, 0.1, and 0.2 by observing all 

the possible outcomes (no toxicity, efficacy), (no toxicity, no efficacy), (toxicity, efficacy), 

and (toxicity, no efficacy) respectively. Then, using the utility table in Table 1, the mean 

utility for that dose is calculated as 0.3*100+0.4*40+0.1*60+0.2*0=52.

Under the BOIN-12 design, the optimal biological dose is defined as the dose with the 

highest mean utility and acceptable toxicity and efficacy profiles. The dose-finding rules 

of the BOIN-12 design incorporate both the BOIN design20 and the mean utility. At each 

interim dose decision time, the BOIN design is initially used to determine whether the 

current dose is below, above, or close to the maximum tolerated dose. If the dose is above 

the maximum tolerated dose, the next cohort of patients is treated at a lower dose. If the 

dose is close to the maximum tolerated dose, and at least six patients have been treated, the 

next cohort is treated at the dose with the higher mean utility between the current dose and 

the lower dose. Suppose fewer than six patients have been treated or the dose is below the 

maximum tolerated dose. In that case, the next cohort is treated at the dose with the highest 

mean utility among the current and neighboring doses. At the end of the trial, the maximum 

tolerated dose is identified using the BOIN design, and the final optimal biological dose is 

chosen as the dose with the highest mean utility among those not higher than the maximum 

tolerated dose. A freely available R Shiny App to implement the BOIN12 design is available 

at https://trialdesign.org/one-page-shell.html#BOIN12.

Multiple efficacy endpoints

Traditionally, tumor response, such as complete or partial remission, has been used as the 

primary efficacy endpoint for many phase I-II clinical trials. However, to better understand 

the treatment efficacy, a growing trend is to include multiple efficacy endpoints in a single 

trial, such as immune response, pharmacodynamic endpoint, and survival endpoint. In line 

with this pattern, several new phase I-II designs have been proposed to integrate multiple 

efficacy outcomes.

One such design proposed by Liu et al.21 focuses on immunotherapies and simultaneously 

considers toxicity, efficacy, and immune response (LGY2018 hereafter). Parametric 
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modeling approaches characterize the plateaued dose-immune response curve and the joint 

distribution of efficacy and toxicity outcomes conditional on the immune response. The 

model also specifies that severe immune-related toxicity will occur only when the immune 

response exceeds a certain threshold. The utility function is also amended to incorporate 

the immune response. For dose-finding, LGY2018 adaptively randomizes patients to doses 

with acceptable efficacy and toxicity profiles based on the continuously updated estimates 

of the posterior mean utility. This adaptive randomization allocates more patients to doses 

with larger posterior mean utility. Simulation results indicate that LGY2018 outperforms 

conventional phase I-II designs that only consider efficacy and toxicity. However, no 

publicly available software is available to implement LGY2018 in clinical practice.

From a pharmacological perspective, pharmacodynamic information is an appropriate 

indicator for evaluating therapeutic effectiveness. Compared to primary efficacy endpoints 

such as tumor response, which may require long follow-up time, the assessment window for 

pharmacodynamic evaluation is relatively short, making it an appropriate surrogate efficacy 

endpoint. The DROID design22 proposes incorporating pharmacodynamic information into 

the dose-finding procedure. The key innovation of the DROID design is that it incorporates 

the dose-ranging framework widely used in non-oncology studies into the oncology dose-

finding methodology and develops a two-stage dose optimization design. In the first 

stage, patients are sequentially enrolled and adaptively assigned to investigational doses 

to establish the therapeutic dose range, defined as the range of doses with acceptable toxicity 

and pharmacodynamic profiles. At the end of stage I, a recommended phase 2 dose set is 

selected as a subset of the doses in the therapeutic dose range, yielding desirable efficacy 

performances. The recommended phase 2 dose set is refined from the therapeutic dose range 

to exclude doses that lack clinical efficacy but show sufficient pharmacodynamic effect. In 

stage 2, more patients are randomized to the recommended phase 2 dose set to assess the 

dose-response relationship. Toxicity and futility monitoring rules are applied at each interim 

analysis time in stage 2 to drop overly toxic or ineffective doses from the recommended 

phase 2 dose set. At the end of stage 2, based on all the accumulated data, the optimal 

biological dose is selected as the lowest dose that reaches the pharmacodynamic plateau and 

achieves desirable toxicity and efficacy performances. A freely available R Shiny App to 

implement the DROID design is available at https://trialdesign.org.

Compared to cytotoxic agents, targeted therapies and immunotherapies aim to stop tumor 

growth rather than kill cancer cells. Therefore, evaluating the treatment effect of these 

novel agents often requires considering progression-free survival rather than just tumor 

response. Furthermore, using tumor response as the primary endpoint to select the optimal 

biological dose may result in suboptimal progression-free survival due to high relapse rates 

after the initial response, leading to high failure rates in subsequent phase III studies. The 

Gen I-II design23 has been developed to address this issue. This design jointly models 

toxicity, short-term efficacy, and long-term survival outcomes, and the optimal biological 

dose is defined by survival outcome. The joint short-term efficacy-toxicity outcome is 

modeled independently among different doses, whereas a flexible parametric dose-response 

assumption is made to model the survival outcome. The Gen I-II design is a three-stage 

design (Figure 3). In stage 1, any conventional phase I-II design can be used to identify 

a candidate dose set containing doses with acceptable short-term efficacy and toxicity. In 
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stage 2, more patients are randomized to the candidate dose set to explore acceptable doses 

more thoroughly, with the candidate dose set updated using accumulated data. In stage 3, 

additional patients are randomized to the latest candidate dose set, and all patients in the 

candidate dose set are followed for an extended period to harvest their survival outcomes. 

The optimal biological dose is selected with the best survival outcome and acceptable 

toxicity rate at the end of stage 3. Simulation studies show that the Gen I-II design has 

correct optimal biological dose selection rates that may be an order of magnitude larger 

than those of conventional phase I/II designs using only toxicity and short-term efficacy. 

An R package for implementing the Gen I-II design is available at https://github.com/

yongzang2020/Gen-I-II.

Trial examples

This section provides two real examples of phase I-II trials using innovative designs. The 

first trial investigates the combination of sitravatinib and nivolumab in immunotherapy-naïve 

patients with advanced clear renal cell carcinoma.24 The primary objective is to identify 

the optimal biological dose of sitravatinib in combination with a fixed dose of nivolumab, 

based on a trade-off between efficacy and toxicity. The primary toxicity endpoint is the time 

to dose-limiting toxicity within 12 weeks of starting therapy, while the primary efficacy 

endpoint is the absence of progressive disease at 6 weeks by investigator assessment and 

Response Evaluation Criteria in Solid Tumors 1.1. Secondary endpoints include objective 

response rate, disease control rate, progression-free survival time, overall survival time, and 

quality-of-life. To handle the late-onset outcomes (e.g., pending outcomes for the existing 

patients while new patients are coming), a modified version of the EffTox design25 is 

used for dose finding. Four doses of sitravatinib (60-, 80-, 120-, and 150-mg daily) are 

investigated, and the trial begins with the 80-mg dose. Using the modified EffTox design, 

15, 24, and 3 patients are treated at the 80-, 120-, and 150-mg doses, respectively, resulting 

in dose-limiting toxicity rates of 26.7%, 41.7%, and 100%, and objective response rates 

of 26.7%, 37.5%, and 100%. The estimated EffTox desirability scores are 0.787, 0.755, 

and 0.630 for the 80-, 120-, and 150-mg doses, respectively. Since the 80-mg and 120-mg 

doses have comparable desirability scores, additional criteria are used to select the optimal 

biological dose. Specifically, the 120-mg dose has significantly better progression-free 

survival and quality-of-life results than the 80-mg dose. Hence, the 120-mg dose is selected 

as the optimal biological dose.

The second example describes a phase I-II clinical trial of hydroxychloroquine that induces 

the secretion of tumor suppressor Par-4 from normal cells.26 The trial aims to determine 

the optimal biological dose of hydroxychloroquine for patients with early-stage solid 

malignancies. The trial enrolled 9 patients with early-stage solid malignancies, divided 

into 3 cohorts of 3 patients each, who received hydroxychloroquine twice daily at either 

200-mg or 400-mg doses. The trial uses the ISO design for dose finding, and the procedures 

are outlined in Figure 4. The primary toxicity outcome was dose-limiting toxicity, and 

the primary efficacy outcome was the two-fold induction of Par-4 levels. The first cohort 

received a low dose 200-mg, with no dose-limiting toxicity observed, and all three patients 

exhibited a two-fold induction of Par-4 levels. Thus, the ISO design recommended dose 

escalation, and the next cohort received a high dose of 400-mg. No dose-limiting toxicity 
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was observed, and two out of three patients achieved the desired Par-4 level induction. 

The corresponding efficacy rates were estimated to be 100% and 67%, respectively, for 

the 200-mg and 400-mg doses. Therefore, the final cohort of three patients received the 

low dose of 200-mg again. No dose-limiting toxicity was observed, but only one patient 

had desirable efficacy outcomes. Using all the accumulated data, the trial found that the 

200-mg and 400-mg doses had an identical dose-limiting toxicity estimate of 0% and an 

efficacy estimate of 67%. This indicates that the dose-response curve had plateaued. Under 

these circumstances, the ISO design favors the low dose 200-mg and selects it as the 

optimal biological dose. On the other side, assuming a phase I design, such as the BOIN 

design, is used to run this trial, with the conventional 30% toxicity rate as the targeted 

toxicity rate. Then, because no dose-limiting toxicity was observed for the first and second 

cohorts of patients, the last cohort would be treated at 400-mg dose instead of 200-mg dose. 

Subsequently, unless all the patients in the last cohort experienced dose-limiting toxicity, the 

400-mg dose would be selected at the end of the trial. However, the 200-mg and 400-mg 

doses give the same efficacy rate of 67%. The 200-mg dose selected by the phase I-II design 

is preferable to the 400-mg dose selected by the phase I design because a lower dose always 

indicates a lower risk of toxicity. Besides, treating the last cohort of patients at the 200-mg 

dose is also safer than treating them at the 400-mg dose.

The original efficacy outcome used in this hydroxychloroquine trial is the Par-4 levels, a 

continuous outcome. However, it is generally challenging to directly utilize the continuous 

toxicity or efficacy outcome in early-phase clinical trials because (1) most popular 

early-phase trial designs (e.g., 3+3, BOIN, Simon’s two-stage design) are developed for 

binary outcomes only; (2) modeling continuous outcomes requires larger sample size than 

the binary outcomes whereas the sample size for early-phase trial is typically limited; 

(3) collecting and recording continuous outcomes can be resource-intensive and time-

consuming and (4) continuous data is more susceptible to missing data and measurement 

error issues, which can complicate the data management procedure and increase the overall 

cost. Hence, to apply the ISO design to the hydroxychloroquine trial, the efficacy outcome 

has been dichotomized into the binary outcome based on a clinically meaningful cut-off, a 

commonly used strategy in clinical practice.

We also note that the hydroxychloroquine trial’s result may be affected by the small sample 

size utilized in the study. This limitation leads to a considerable degree of variability in 

the estimates obtained through the mISO design, thereby introducing significant uncertainty 

regarding the selection of the 200-mg dose. To address this uncertainty, we recommend 

considering a subsequent cohort expansion stage, should clinical practice permit, in order to 

confirm the optimal biological dose selection.

Discussion

This paper overviews several innovative phase I-II clinical trial designs for identifying 

optimal biological doses in targeted agents and immunotherapies. To better summarize the 

paper, in Figure 5, we present a classification tree depicting all the reviewed designs based 

on the type of optimal biological dose (efficacy driven or utility based), the dose-outcome 

model (model based or model free), the shape of the dose-response curve (unimodal 
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or plateaued), the secondary efficacy endpoint (immune response, pharmacodynamic, or 

survival), and the availability of software. It should be noted that there are many other 

efficacy driven designs,27–32 utility based designs,33–39 or designs incorporating multiple 

efficacy outcomes40–47 not reviewed due to the page limits. Besides, many other phase I-II 

clinical trial designs have been proposed to handle more complicated clinical settings for 

targeted agents and immunotherapies such as the late-onset outcomes,25,48–49 drug-drug 

combination,50–53 dose schedule54–59 and personalized medicine.41,46,47,60–67 The phase I-II 

clinical trial designs belong to the class of seamless designs and are dedicated to the early 

stages of drug development. Many other types of seamless designs, such as the phase II-III 

design, have also been developed, focusing on the later stage of the drug development, such 

as the treatment effect confirmation and validation.68–70

Compared with cytotoxic agents, the toxicity and efficacy outcomes of targeted agents 

and immunotherapies (e.g., immune-related toxicity, disease progression) typically require 

longer follow-up and can be treated as the time-to-event outcomes. However, the competing 

risks often arise if multiple time-to-event outcomes are monitored in a single phase I-II 

trial. For example, the occurrence of immune-related toxicity can terminate the follow-up for 

disease progression and vice versa. Several phase I-II designs have been proposed, which 

use the competing risks and semi-competing risks models developed for survival analysis to 

resolve this issue.71–74

Through the integration of phase I and II trials, a phase I–II trial requires a larger sample 

size than a traditional phase I trial, resulting in increased costs and longer trial durations. As 

per the FDA guidelines, no general mathematical formulas are available for determining 

the sample size of phase I-II designs.15 Before implementing any phase I-II trial in 

practice, it is critical to conduct preliminary simulation studies to determine the required 

sample size based on desirable simulation operating characteristics. This helps to confirm 

whether conducting a phase I-II trial is statistically and clinically feasible compared to 

conducting a phase I trial. Determining the sample size for a phase I-II trial is not solely 

a statistical calculation procedure but requires extensive collaboration between statisticians 

and clinicians. The performance of phase I-II clinical trials is also sensitive to the missing 

data, which can significantly impact the trial’s integrity by leading to an incomplete 

safety and efficacy profile, introducing interim analysis biases, hindering accurate final 

dose selection, and requiring additional resources and time. Adequate trial design, data 

management, and statistical analysis methods are essential to mitigate these impacts and 

ensure phase I-II clinical trials’ credibility and ethical conduct.
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Figure 1. 
An illustrative example for maximum tolerated dose (MTD) and optimal biological dose 

(OBD).
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Figure 2. 
Diagram of the phase I-II design
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Figure 3. 
The schematic for the Gen I-II design. Blue color indicates the doses under evaluation. Red 

color indicates doses that are overly toxic or less efficacious. Golden color indicates the 

selected optimal dose.
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Figure 4. 
The dose-finding procedures for the hydroxychloroquine trial example.
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Figure 5. 
Classification tree for all the discussed phase I-II designs.
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Table 1.

An illustrative utility table for utility-based designs.

Toxicity

Efficacy

Yes No

No u1 = 100 u2 = 40

Yes u3 = 60 u4 = 0
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