
Nature Metabolism | Volume 6 | May 2024 | 963–979 963

nature metabolism

https://doi.org/10.1038/s42255-023-00959-9Resource

Sexual dimorphism and the multi-omic 
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Subcutaneous white adipose tissue (scWAT) is a dynamic storage and 
secretory organ that regulates systemic homeostasis, yet the impact of 
endurance exercise training (ExT) and sex on its molecular landscape 
is not fully established. Utilizing an integrative multi-omics approach, 
and leveraging data generated by the Molecular Transducers of Physical 
Activity Consortium (MoTrPAC), we show profound sexual dimorphism in 
the scWAT of sedentary rats and in the dynamic response of this tissue to 
ExT. Specifically, the scWAT of sedentary females displays -omic signatures 
related to insulin signaling and adipogenesis, whereas the scWAT of 
sedentary males is enriched in terms related to aerobic metabolism. 
These sex-specific -omic signatures are preserved or amplified with ExT. 
Integration of multi-omic analyses with phenotypic measures identifies 
molecular hubs predicted to drive sexually distinct responses to training. 
Overall, this study underscores the powerful impact of sex on adipose 
tissue biology and provides a rich resource to investigate the scWAT 
response to ExT.

ScWAT is a dynamic storage and secretory organ composed of 
lipid-storing adipocytes and numerous other cell types (for example, 
immune cells, endothelial cells and mesenchymal cells)1–3. Through the 
release of a diverse array of signaling molecules such as adipokines, 
cytokines, growth factors and lipid-derived compounds, scWAT 
impacts multiple biological processes that are critical for maintaining 
systemic health1,2,4–6. Indeed, numerous factors secreted by or residing 
in scWAT are implicated in the development of lifestyle-related diseases 
such as obesity, type 2 diabetes, insulin resistance and cardiovascu-
lar disease. Accordingly, regulation of scWAT biology, particularly in 

response to physiological stressors such as exercise, diet and age, is 
an important area for study.

ExT improves scWAT metabolic flexibility, lipid flux, insulin sen-
sitivity and immune-cell polarization and expansion (factors that are 
linked to the risk and severity of cardiometabolic diseases2,4,7–9). The 
profound effect of exercise on scWAT is illustrated by the impact of as 
little as 11 d of voluntary wheel running on the expression of thousands 
of genes in murine adipose tissue7. Despite recent advances in the field 
of adipocyte biology, the molecular landscape of scWAT remodeling 
with exercise is not fully understood. This is especially true because 
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adipocytes revealed differences in size distribution with training in 
both sexes (Fig. 1e and Supplementary Table 1a,b). Notably, the scWAT 
of 4-week-trained females showed significant increases in smaller 
adipocytes (diameter < 20 μm) and corresponding decreases in larger 
adipocytes (diameter ≥ 45 μm), consistent with the decrease in fat 
mass in females at the 4-week time point (P = 0.02, Extended Data 
Fig. 1d). Further aligning with changes in fat mass in 8-week-trained 
females, adipocyte size distribution patterns were similar to those of 
SED controls (Fig. 1e and Extended Data Fig. 1d), potentially reflecting 
a compensatory response to preserve scWAT fat stores in female rats 
with prolonged training. In contrast, scWAT from 8-week-trained male 
rats showed a significantly higher percentage of small adipocytes and 
a significantly lower proportion of larger adipocytes compared to SED 
(Fig. 1e and Extended Data Fig. 1d), indicating a training-induced reduc-
tion in scWAT adipocyte size. Thus, despite similar training-induced 
cardiorespiratory improvements in both sexes, sexually dimorphic ExT 
responses occurred in overall body composition and scWAT-specific 
adipocyte morphology.

To further investigate sexual dimorphism in the ExT response, 
we measured levels of common training-responsive clinical analytes 
in plasma (Supplementary Table 1c–e). In rats selected for multi-omic 
analysis, plasma glycerol, a marker of adipose lipolysis, was higher in 
1- and 2-week-trained males and lower in 1- and 2-week-trained females 
relative to SED (P = 0.048, P = 0.0021, P = 0.021 and P = 0.014, respec-
tively; Fig. 1f). Non-esterified fatty acids (NEFAs) tended to be higher at 
early stages of training in male rats but decreased at week 8 (P = 0.015), 
suggestive of triacylglycerol (TAG) mobilization from scWAT in the 
early training response that could not be sustained as total fat stores 
depleted with prolonged training (Extended Data Fig. 1e). Consistent 
with this interpretation, leptin was higher in SED males compared 
to females and displayed a more robust decrease with training that 
correlated positively with fat loss (P < 0.001; Fig. 1g and Extended 
Data Fig. 1g). In 4-week-trained females, glucagon decreased, glucose 
increased and plasma insulin levels did not change (glucagon and glu-
cose P < 0.001; Fig. 1h,i and Extended Data Fig. 1f). In contrast, none of 
these variables were affected by ExT in male rats. Overall, the results 
highlight sexual dimorphism in systemic and scWAT-specific physi-
ological adaptations to training, several of which serve as indices of 
enhanced lipid mobilization in males and retention of lipids in adipose 
stores in females. Sexual dimorphism was also apparent with regard 
to plasma glucose, glucagon and insulin levels (Fig. 1h,i and Extended 
Data Fig. 1f), with overall lower plasma insulin levels in females. Despite 
sexual dimorphism in adipose-associated phenotypes, both sexes 
displayed similar metabolic adaptations in the skeletal muscle such 
as hexokinase 2 (HK2) protein abundance (Extended Data Fig. 1h) 
with ExT; a more comprehensive overview of striated muscle and liver 
adaptations to training shared in both sexes is detailed by the MoTrPAC 
Study Group13.

Sedentary rat scWAT displays molecular sexual dimorphism
Considering the sexually divergent phenotypic responses to ExT, we 
performed a more thorough characterization of the rats selected 
for multi-omic analysis; scWAT was analyzed at the transcriptomic 
(n = 5), metabolomic (n = 5), global proteomic (n = 6) and phosphopro-
teomic (n = 6) levels as described in the MoTrPAC study design20 using 
sample-level data available through the MoTrPAC Data Hub (https://
motrpac-data.org/). We first investigated molecules and pathways 
that were differentially expressed between SED males and females.

Robust sex differences were observed in the abundance of mol-
ecules from all -omes; specifically, 10,336 transcripts, 4,226 proteins, 
6,028 phosphosites and 615 metabolites showed a statistically sig-
nificant difference between SED males and females (-ome-wide false 
discovery rate (FDR) < 0.05), representing 20–60% of all quantified 
features in each dataset (Fig. 2a and Supplementary Table 2a–d). Top 
transcripts elevated in SED male scWAT included those related to lipid 

most ExT studies focus on animal models of obesity. Therefore, defin-
ing training adaptations in the adipose tissue of lean animals provides 
an important complement to such studies, yielding a more balanced 
understanding of scWAT remodeling mechanisms.

In humans and rodents, WAT distribution and content varies con-
siderably between sexes, possibly contributing to sexual dimorphism 
in disease risk9–12. Although WAT is one of the most sexually dimorphic 
tissues13,14, few studies account for sex when studying exercise adapta-
tions. While many sex-driven differences may be attributable to sex 
hormones9,15–18, scWAT is also sexually distinct before puberty, which 
suggests other potential contributors9,10,15,16. Despite these interest-
ing and translationally relevant differences in male and female WAT, 
the molecular hubs orchestrating sexual dimorphism in WAT and its 
response to ExT remain largely unexplored.

To provide insight into potential molecular transducers of exercise 
within and across tissues, the Molecular Transducers of Physical Activ-
ity Consortium (MoTrPAC) recently published a multi-omic analysis 
of 18 solid tissues and blood from male and female Fischer 344 (F344) 
rats that underwent progressive endurance ExT13. Notably, this work 
identified a strong sex-specific response to exercise in multiple tis-
sues, especially in scWAT. Leveraging this dataset, here we perform 
a deep dive into the sex-specific and temporal multi-omic response 
of scWAT to 1, 2, 4 or 8 weeks of treadmill ExT in male and female rats. 
Our approach allows for scWAT-specific temporal resolution of -omic 
features (annotated proteins, phosphosites, transcripts, lipids and 
metabolites) and utilizes weighted gene coexpression network analy-
sis (WGCNA) to identify molecular networks driving temporal -omic 
and phenotypic responses. Using this model, we identify profound 
differences in male and female scWAT both at rest and in response to 
training and identify candidate molecular and cellular transducers 
that drive distinct phenotypes by sex and in the dynamic response to 
exercise. Further, our manuscript showcases methods to leverage the 
first publicly available MoTrPAC multi-omics dataset to drive future 
hypothesis-based research.

Results
Sexually dimorphic phenotypic responses to endurance 
training
Beginning at 6 months of age, male and female F344 rats underwent a 
progressive ExT program consisting of five consecutive days of tread-
mill running per week for 1, 2, 4 or 8 weeks at a targeted intensity of 
70–75% the maximum rate of oxygen consumption (VO2max) (Fig. 1a; 
https://www.motrpac.org/protocols.cfm). This workload was selected 
for its translational relevance to human studies19,20. Sedentary control 
(SED) rats were age- and sex-matched with the 8-week-trained group. 
VO2max and nuclear magnetic resonance (NMR)-derived body com-
position were measured at baseline and the start of the final training 
week in SED, 4- and 8-week-trained rats. Tissues were collected from 
animals 48 h after the last training session to reduce potential acute 
impacts of exercise on outcome measures. A subset of 5–6 animals 
was randomly selected for multi-omic analyses from a larger cohort of 
12–20 rats per experimental group (ten combinations of sex and time 
point). In animals selected for multi-omic analyses, VO2max (relative 
to lean or total body mass) increased similarly in both sexes following 
8 weeks of ExT, whereas VO2max relative to total body mass decreased 
significantly in SED rats after 8 weeks of inactivity (Fig. 1b and Extended 
Data Fig. 1a,b). Body mass and whole-body fat decreased in male rats 
after 8 weeks of ExT (Fig. 1c and Extended Data Fig. 1b,c). In females, fat 
mass decreased after 4 weeks of training but returned to pretraining 
levels at 8 weeks (Fig. 1c and Extended Data Fig. 1b,c). Over the same 
time period in SED rats, both males and females increased fat mass  
(Fig. 1c and Extended Data Fig. 1c)13. Therefore, 8 weeks of ExT attenu-
ated increases in fat mass in females and reduced fat mass in males.

Given the changes in body composition, we examined scWAT 
adipocyte size following ExT (Fig. 1d). Analysis of nearly 56,000 total 
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metabolic processes (Car2 and Acss2) and unsaturated fatty acid (FA) 
synthesis (Fads2 and Fads1) (Fig. 2a and Supplementary Table 2a). 
Transcripts that showed higher expression in SED females include 
molecules involved in growth factor/Akt signaling (Igf1r, Dapk1 and 
Kit), adipogenesis (Adipoq) and glucose uptake (Slc2a4) (Fig. 2a). At the 
proteomic level, top differential proteins in males were related to lipid 
metabolism (Acot1, Hadh and Acbd7), cholesterol transport (Npc2) 

and ketogenesis (Hmgcl) (Fig. 2a). The scWAT of SED females showed 
higher abundances of proteins related to nuclear and cellular structural 
integrity (Lmnb1, Col14a1 and Svil) (Fig. 2a and Supplementary Table 
2b). Consistent with transcriptomic data, Adipoq and Slc2a4 (Glut4) 
protein abundances were higher in female scWAT. The antioxidant Sod1 
was elevated in males relative to females at both the messenger RNA 
and protein levels (Fig. 2a).
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Fig. 1 | Sexually dimorphic phenotypic responses to endurance training.  
a, Diagram of training protocol. F344 male and female rats underwent a 
progressive treadmill training protocol. Tissues were collected from animals that 
completed 1, 2, 4 or 8 weeks of training as well as SED. VO2max and NMR body 
composition analysis was performed as indicated. b, Relative VO2max values 
(normalized to NMR lean body mass) recorded pre- and post-training from the 
animals selected for multi-omics analysis in SED, 4W and 8W time points. 4W, 
4-week-trained; 8W, 8-week-trained. c, Total fat mass pre- and post-training 
in SED, 4W and 8W-trained animals, as measured by NMR. Each arrow in b,c 
represents a different rat and they span from pre- to post-training values. The rats 
within each group are arranged in ascending order by their pre-training measure. 
Paired t-tests (n = 6 per group) were performed to test for (post − pre) training 
differences. d, Representative histological images (20X magnification) of 

scWAT from sedentary, 4W and 8W female and male rats. e, Adipocyte diameter 
distributions of histological sections (n = 6 rats per group). Tissue sections from 
each rat were automatically quantified using CellProfiler, with ten fields captured 
per section for analyses. Dunnett’s test was used to compare each trained group 
to their sex-matched sedentary controls. f–i, Measurements and Dunnett’s test 
results for circulating plasma levels of glycerol (f), leptin (g), glucose (h) and 
insulin (i) from rats selected for multi-omic analysis from each group (n = 6). 
Boxes show the 95% confidence intervals of the group means. The confidence 
intervals for insulin are just for consistency; time point was not a significant 
predictor, so timewise comparisons were not performed. In all plots, asterisks 
indicate statistical significance (*P < 0.05; **P < 0.01; ***P < 0.001); statistical 
models and tests are described in detail in the Methods.
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Building upon these differential analyses, we performed fast 
gene set enrichment analysis (FGSEA)21 to test for enrichment of Gene 
Ontology (GO) terms (BP, biological processes; MF, molecular func-
tions; CC, cellular components) (Supplementary Table 3a,b). We also 
evaluated pathway-level consistency between transcriptomic and 
proteomic profiles of SED male and female scWAT (Fig. 2b). GO terms 
related to oxidative metabolism, mitochondrial complex assembly, 
branched-chain amino acid (BCAA) catabolism, proteasome activation 
and ribosome subunits were consistently enriched in males at both 
the transcriptomic and proteomic levels (Fig. 2c). In females, terms 
including lamellipodium and actin filament bundles were enriched 
in both -omes (Fig. 2c). When probing the top proteomic networks 
displaying sexually distinct enrichments, SED males showed enrich-
ment of terms related to aerobic metabolism, multivesicular traf-
ficking (including vesicle ubiquitination-dependent catabolism and 
sorting) and translational regulation (Fig. 2d). Females displayed 
upregulation of networks related to messenger RNA (mRNA) nuclear 
regulation, mRNA splicing and mRNA degradation and noncoding 

RNA regulatory processes (5.8S RNA maturation and small nucleolar 
RNA metabolism) at the proteomic level, with immune and develop-
mental terms such as immune effector processes, positive regulation 
of cytokine production and axon, vasculature and skeletal muscle 
development terms upregulated at the transcriptomic level (Fig. 2d 
and Supplementary Table 3a,b).

FGSEA of RefMet chemical subclasses of metabolites22 also 
uncovered sexual dimorphism, with enrichment of amino acid and 
acyl-CoA species in SED males (Supplementary Table 3e). Female 
scWAT displayed enrichment of TAG, primarily driven by several 
long-chain (>40 carbons) TAG species. Some of these metabo-
lomic differences are consistent with enrichment of mitochon-
drial and amino acid metabolic pathways at the transcriptomic and 
proteomic levels in males. Taken together, we observed notable 
differences in the scWAT of SED male and female F344 rats at the 
transcriptomic, proteomic and metabolomic levels, providing a 
foundation for understanding the sexually dimorphic response of  
scWAT to ExT.
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Fig. 2 | Sexual dimorphism in the molecular landscape of rat scWAT. a, Volcano 
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(METAB) from the differential analysis results comparing male and female SED. 
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the normalized enrichment scores (NES) for gene sets that were tested in both 
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Sex-specific multi-omic scWAT adaptations to ExT
Next, sample-level datasets were analyzed to identify differentially 
expressed features at each training time point by sex (for example, 
1-week-trained females versus SED females; Fig. 3a,b and Supplemen-
tary Table 4a–d). In general, female scWAT had a similar number of dif-
ferential -omic features at all four ExT time points, whereas the number 
of differentially expressed features increased with training duration 
in males (Fig. 3a,b).

Transcriptomics. ExT induced distinct temporal patterns of differ-
entially regulated transcripts, representing a combined 788 and 474 
differentially expressed transcripts across all time points in males 
and females, respectively (FDR < 0.05) (Supplementary Table 4a). 
The greatest number of differential transcripts were observed in 1- 
and 8-week-trained females (167 and 193 transcripts, respectively) 
and 2-week-trained males (529 transcripts) (Fig. 3a,b and Extended 
Data Fig. 2a). Six transcripts displayed differential expression at all 
training time points in females. Notably, Grb14, a negative modulator 
of insulin signaling23, was downregulated with ExT, whereas Olah, a 
medium-chain (MC) FA thioesterase and Hmgcs2, a ketogenic enzyme 
with lipogenic roles24, were increased at all training time points in 
females. The only transcript that displayed differential expression at 
all training time points in males was the hypoxia-inducible carbonic 
anhydrase (Ca12)25, which was downregulated. FGSEA further high-
lighted sex differences in the progressive transcriptomic response 
to ExT (Fig. 3c, Extended Data Fig. 3a,b and Supplementary Table 5a). 
After 1 and 2 weeks of ExT, male scWAT was positively enriched for 
terms related to immune receptor activity and binding of cytokines, 
growth factors, extracellular matrix, integrins and collagens (Fig. 3c). 
Enrichment of these pathways was driven by genes involved in tissue 
stress (Hif1a, Tlr4, C4b and Nlrp3), tissue remodeling (Itgb1, Timp3, Lifr, 
Pten and Fgfr1) and angiogenesis (Kdr, Flt1, Pdgfb and Vegfa) (Fig. 3c 
and Extended Data Fig. 3a). Enrichment of the GO-MF cytokine bind-
ing and immune receptor activity pathways was driven by transcripts 
related to T helper 17 (TH17) cell activation (Cd4, Il17ra, Tgfbr2, Il6st and 
Ctsl) in male scWAT at 2 weeks. Females displayed early enrichment of 
terms related to transcriptional/translational regulation that generally 
peaked at 1 week and remained enriched throughout training (Fig. 3c 
and Extended Data Fig. 3a,b). Both males and females displayed an early 
(1 week) adaptive immune response that was attenuated at later time 
points in females but remained positively enriched in males throughout 
ExT (Extended Data Fig. 3a). Terms related to oxidative phosphoryla-
tion (OXPHOS) activity decreased in both sexes at 1 week but recovered 
by 2 weeks in males and 4 weeks in females (Fig. 3c). In 8-week-trained 
rats, terms related to the adaptive immune system, immune receptor 
activity, azurophil granules and vacuolar lumen were enriched in males, 
whereas transcription and translation regulatory processes, aerobic 
respiration and azurophil granules were enriched in 8-week-trained 
females (Fig. 3c and Extended Data Fig. 3b).

Proteomics. There was a robust change in the scWAT proteome in male 
rats that increased with training duration (654 differentially expressed 
proteins at 8 weeks), whereas the response in females was much smaller, 
with most differences occurring after 2 weeks (221 differential proteins) 
(Fig. 3a,b, Extended Data Fig. 2b and Supplementary Table 4b). In males, 
18 proteins were differentially abundant at all time points, most of which 
were related to mitochondrial function (Maip, Atp6v0d1 and Immt), 
mitochondrial solute transport (Slc25a11, Slc25a3 and Slc25a15) and 
vesicle transport (Tmed2 and Sec61a1). Lrpprc, a protein that regulates 
transcription of mitochondrial genes to promote lipid oxidation26, 
increased throughout training in males. Slc25a15, a mitochondrial 
ornithine carrier that promotes arginine synthesis, was also elevated 
throughout training in male scWAT. Arginine promotes lipolysis par-
tially through Ampk activation27. FGSEA revealed a robust increase 
in GO terms related to OXPHOS and mitochondria-specific ribosome 

biogenesis in male scWAT starting at 2 weeks of ExT (Fig. 3d, Extended 
Data Fig. 3c and Supplementary Table 5b). Males also displayed enrich-
ment of terms related to vesicle transport and ribosome activity and 
biogenesis throughout training (Fig. 3d and Extended Data Fig. 3c,d). 
Females displayed differential abundance of five proteins at all four time 
points. Consistent with transcriptomic profiling, the insulin signaling 
repressor Grb14 (ref. 23) decreased in females at all four time points. 
Further, 4 or 8 weeks of training in females increased expression of 
anti-inflammatory and insulin-sensitizing Orm1 (ref. 28) (Extended Data 
Fig. 2), suggesting candidate mechanisms by which training improves 
scWAT insulin signaling in lean females in the absence of fat loss. In 
contrast to males, female scWAT displayed negative enrichment of 
terms related to mitochondrial processes at 1 and 2 weeks, with modest 
enrichment of mitochondrial-related terms at 8 weeks (Extended Data 
Fig. 3c,d). Both sexes displayed enrichment of terms related to transcrip-
tion and translation at 8 weeks, with a more robust proteomic than 
transcriptomic response in males (Fig. 3d and Extended Data Fig. 3c,d).

Phosphoproteomics. Several hundred protein phosphorylation sites 
were differentially regulated with ExT, with sexually dimorphic tem-
poral patterns similar to proteomic ExT responses (Supplementary 
Table 4c). In general, males displayed a more robust phosphoprot-
eomic response following 4 and 8 weeks of ExT (Fig. 3a,b and Extended 
Data Fig. 2c). Females modulated 14 phosphoproteins at all four train-
ing time points, including decreased phosphorylation of proteins 
related to inflammatory responses (Pde4 a–b and Lrrfip1-S85) and 
Camk2b-T398, a negative regulator of adipocyte insulin signaling29. 
Males exhibited consistent modulation of the phosphorylation of 
15 proteins throughout ExT, including increased phosphorylation of 
proteins regulating vesicle transport (Htt-S621, Klc1-S521/S524 and 
Uhrf1bp1l-S418) and autophagy (Bnip3-T66 and Ulf1-S458). To allow 
for inference of kinase activity based on changes in phosphorylation 
of known substrates, we utilized curated kinase–substrate relation-
ship data from PhosphoSitePlus (PSP)30 to conduct kinase–substrate 
enrichment analysis (KSEA) (Fig. 3e and Supplementary Table 5d). The 
results of this analysis showed decreased activity of MAP3K8, LRRK2 
and MYLK kinases in 2-week-trained males (Fig. 3e), whereas activity 
of the lipolysis-inducing kinase PRKAA1 (AMPK1ɑ1) increased in 4- and 
8-week-trained males. DYRK2 activity decreased at 8 weeks in males 
(Fig. 3e), which was largely driven by changes in CARHSP1 phosphoryla-
tion (S30, S32 and S41). In females, AKT1 activity increased at 4 weeks 
before subsiding by week 8 when MAPK1 and mTOR activity increased. 
Given the well-defined role of mTORC1 in anabolic signaling, including 
in adipose tissue31, coupled with the observed downregulation of pro-
teins and phosphoproteins associated with insulin signaling repression 
(for example Grb14 and Camk2b) in female scWAT, we sought to char-
acterize the phosphoproteins indicative of enriched mTOR activity. 
Increases in mTOR activity are supported by phosphorylation of the 
insulin-dependent RAGC-T394 phosphosite32, RPS6-S236, EIF4EBP1 
at S65 and T70, AKT1S1 (PRAS40) at S183 and MAF1 at S68 and S75; a 
graphical illustration of phosphosites driving mTOR enrichment is 
presented in Fig. 3f to exemplify how this dataset may be used to drive 
mechanistic research. In 4-week-trained females, phosphosites driving 
AKT1 enrichment included the AKT-dependent inactivation site (S253) 
of catabolic FOXO3 and two sites (S425 and T447) near the activation 
site of the FA synthesis protein ATP citrate lyase (ACLY)33. In adipocytes, 
ACLY promotes Glut4 expression and de novo lipogenesis in a manner 
that is more pronounced in females34. Together with findings from our 
differential -omic analyses, these data suggest enrichment in anabolic 
insulin/AKT/mTORC1 as a candidate mechanism to promote scWAT 
insulin sensitivity and lipid storage/recycling in females31.

Metabolomics. We employed a comprehensive suite of metabolomics 
technologies to characterize changes in the scWAT metabolome/
lipidome with ExT. This included non-targeted methods, as well as 
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Fig. 3 | Sex-specific multi-omic scWAT adaptations to ExT. a,b, UpSet plots 
of statistically significant (FDR < 0.05) transcripts, proteins, phosphosites 
and metabolites from each comparison between trained and sex-matched 
sedentary control female (a) and male (b) rats. c,d, Top MF from the GO database 
that are most significantly enriched in any of the eight comparisons from the 
transcriptomics (c) or proteomics (d) FGSEA results. Circles are colored by the 
NES and scaled by row so that the most significant comparison is of maximum 
area (‘Fast Gene Set Enrichment Analysis’ Supplementary Methods).  

UTR, untranslated region. e, Inferred activity of the indicated kinases in each 
of the trained groups versus sex-matched sedentary controls from KSEA of the 
phosphoproteomics differential analysis results. f, Schematic of phosphosites  
(in pink) driving mTOR enrichment in 8W-trained females (diagram created  
with BioRender.com). g, RefMet chemical subclasses that are significantly 
enriched in at least one of the eight comparisons according to the metabolomics 
FGSEA results.
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quantitative targeted methods focused on groups of chemically related 
analytes such as amino acids, acylcarnitines and nucleotides20. Overall, 
the scWAT metabolome displayed the least sexually dimorphic ExT 
response, with the most differentially regulated metabolites appear-
ing at 2 and 8 weeks in both sexes (2 weeks, 135 and 161 differential 
metabolites in females and males, respectively; 8 weeks, 139 and 211 
differential metabolites) (Fig. 3a,b, Extended Data Fig. 2d and Supple-
mentary Table 4d). The 4-week-trained time point displayed the most 
sexual dimorphism with 154 differentially regulated metabolites in 
males and only 20 in females. In both sexes, FGSEA of RefMet metabo-
lite subclasses22 revealed positive enrichment of phosphatidylcholine 
(PC), ether phosphatidylcholines (O-PC) and acylcarnitine species in 
1-week-trained rats, followed by negative enrichment of TAGs at 8 weeks 
(Fig. 3g and Supplementary Table 5e). Females displayed a prolonged 
early enrichment of PC and O-PC phospholipid species, along with a 
negative enrichment of sphingomyelin (SM) and unsaturated FAs at 1 
and 2 weeks. Males showed positive enrichment of O-PC, diacylglyc-
erols (DAGs) and lysophosphatidylcholines (LPCs) at 1, 4 and 8 weeks 
of ExT and PC at all four ExT time points (Fig. 3g). Males additionally 
displayed an increase in phosphatidylethanolamine (PE) at 4 weeks 
that subsided by week 8 (Fig. 3g). PE and PC are the major phospholipid 
species present in the phospholipid monolayer of the lipid droplet (LD). 
The increase of PC relative to PE in 8-week-trained males is consistent 
with our observation of reduced adipocyte size, which suggests that 
males display attenuated LD formation after 8 weeks5,35 and is sup-
ported by phenotypic changes in adipocyte size distribution and total 
fat mass. Notably, acyl-CoAs, which were elevated in the scWAT of SED 
males, decreased in 4-week-trained males (Fig. 3g and Extended Data 
Fig. 4a), whereas amino acids increased sharply at 8 weeks, further sup-
porting increased lipid utilization and a switch to amino acid metabo-
lism with ExT in males. This interpretation is also consistent with the 
surge in mono- and di-nucleotide phosphate species and reduction in 
nucleotide triphosphates and increased AMP:ATP ratio corresponding 
to scWAT fatty acyl-CoA abundance at 8 weeks in males (Extended Data 
Fig. 4c). Conversely, females displayed positive enrichment of amino 
acids at 1, 2 and 8 weeks (Fig. 3g and Extended Data Fig. 4b).

Sexual dimorphism in the temporal response to ExT. We next exam-
ined differences between sexes in response to progressive ExT. To this 
end, we compared the male ExT response to the female response at 
each time point (for example (males 1-week − males SED) − (females 
1-week − females SED)), an analysis that reveals differences in the mag-
nitude and/or direction of training responses between sexes (Sup-
plementary Table 6a–d). At the transcriptomic level, these analyses 
uncovered pathways related to immune-receptor activation, GTPase 
activation and transcriptional/translational regulation as responding 
most differently to ExT between the sexes (Extended Data Fig. 5a,b 
and Supplementary Table 7a). At the proteomic level, differences 
were observed in pathways related to mitochondrial activity, vesicle 
transport and transcriptional/translational processes (Extended Data 
Fig. 5c,d and Supplementary Table 7b). The strongest phosphopro-
teomic differences were predicted increases in the kinase activity 
of mTOR in 8-week-trained females and PRKAA1 (AMPKɑ1) in 4- and 
8-week-trained males (Extended Data Fig. 5e and Supplementary  
Table 7c). The metabolomic response to ExT displayed sexual diver-
gence in amino acid, acyl-CoA, DAG, PC, O-PC and LPC abundance 
(Extended Data Fig. 5f), with females displaying enrichment in amino 
acids in the early training response, which is suggestive of an early 
anabolic response to training (Supplementary Table 7d).

Integrative phenotypic–omic responses to ExT
To integrate -omics datasets, we used WGCNA to generate modules 
(groups of highly correlated features) for metabolomics/lipidomics, 
proteomics and transcriptomics datasets (Extended Data Fig. 6a–c). 
We then assessed correlations of the module eigenfeatures (MEs), the 

principal eigenvector of each module, with select clinical plasma ana-
lytes and other phenotypic markers (Fig. 4a), as well as correlations 
between metabolomics and other -omics MEs (Fig. 4b). Afterwards, 
over-representation analysis (ORA) was performed to test for locali-
zation of GO terms or RefMet chemical subclasses in each module.

Metabolomics. The ME of the largest metabolomics/lipidomics mod-
ule, M1, was higher in females throughout training (Extended Data  
Fig. 6a); M1 was over-represented by long-chain (>48 carbons) TAG 
species (Fig. 4c and Supplementary Table 8f). In addition to M1, other 
modules with MEs higher in females were M4 (over-represented by SM 
and O-PE species) and M5 (over-represented by PC and O-PC species) 
(Extended Data Fig. 6a). The M1, M4 and M5 module MEs correlated 
negatively with plasma glucose and the M1 and M4 MEs correlated 
positively with scWAT adiponectin and change in fat mass (Fig. 4a). This 
suggests a relationship between these modules with glucose regulation 
and lipid storage. The second largest module, M2, was over-represented 
by acyl-CoA species (Fig. 4c); its ME was higher in males and nega-
tively correlated with scWAT adiponectin and changes in body fat  
(fat loss) (Fig. 4a). M3 contained predominantly 38–40 carbon PC spe-
cies (Fig. 4c) and its ME increased at 8 weeks in males (Extended Data 
Fig. 6a). The MEs of M3 and the amino-acid-containing M6 module 
correlated positively with scWAT adipocyte count per field (reduced 
adipocyte size) and negatively with body fat changes (Fig. 4a,c), sug-
gesting correlation with adipocyte lipid mobilization and utilization.

Transcriptomics. T1 was the largest transcriptomics module and 
its ME was highest in males and slightly increased with training in 
females (Extended Data Fig. 6b and Supplementary Table 8a). T1 was 
over-represented by terms relating to vesicle export and recycling 
processes, including autophagosome and protease terms (Fig. 4d 
and Supplementary Table 8d). T1 also contained terms relating to 
mitochondrial complex assembly and FA catabolic processes; its ME 
negatively correlated with the ME of the TAG-localizing M1 metabo-
lomics module (Fig. 4b and Supplementary Table 8c,f), indicative 
of an inverse relationship between the aforementioned processes 
and scWAT TAG storage. The T7 ME was also higher in males and the 
module was over-represented by aerobic respiration terms (Fig. 4d 
and Extended Data Fig. 6b). This ME was negatively correlated with 
the TAG-localizing M1 module and positively correlated with the ME 
of the acyl-CoA-containing M2 ME (Fig. 4b and Extended Data Fig. 6b). 
The MEs of T2–T4 were higher in females and correlated with scWAT 
adiponectin protein abundance (Fig. 4a and Extended Data Fig. 6b). 
T2 and T3 were over-represented by terms related to developmental 
processes (Fig. 4d), including markers of adipogenic progenitors (Cd34, 
Dpp4, Icam1 and Pdgfrb), suggestive of elevated adipogenic potential 
or different preadipocyte phenotypes in female scWAT. The T5 ME 
also correlated with the ME of the TAG-localizing M1 and remained 
relatively stable in females, increasing and then decreasing at 8 weeks 
in males, which resulted in elevated ME abundance in females relative 
to males at 8 weeks (Fig. 4b and Extended Data Fig. 8b). ORA of T5 
revealed localization of transcripts involved in lipid storage and fat cell 
differentiation (Fabp4, Lipe, Cebpa, Plin1, Pparg, Adipoq, Lpl and Slc2a4 
(Glut4)). T4 and T10 were over-represented by immune signaling terms 
(most notably, lymphocyte activation) that increased only in males with 
prolonged training (T4 transcripts, Btk, Cd28, Cd8a, Ctla4, Klrd1, Klrk1 
and Rela (Nfkb); and T10 transcripts, Ptprc (Cd45), Cd19, Cd22, Foxp3, 
Il21, RT1-DOa and Themis) (Fig. 4d and Extended Data Fig. 6b). Notably, 
both MEs were negatively correlated with scWAT and plasma leptin lev-
els (Fig. 4a), potentially suggestive of lymphocyte-associated lipolysis.

Proteomics. The ME of the largest proteomics module, P1, was much 
higher in males and increased in both sexes with training (Extended 
Data Fig. 6c and Supplementary Table 8b). P1 was dominated by terms 
relating to mitochondrial aerobic respiration/OXPHOS (Fig. 4e and 
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Supplementary Table 8e). The P1 ME was negatively correlated with 
fat and body mass, the TAG-containing M1 ME and scWAT adiponectin 
levels (Fig. 4a,b and Supplementary Table 8c,f), again illustrating a 

negative association between lipid oxidation and scWAT TAG abun-
dance. Notably, P1 also contained proteins related to peroxisomal teth-
ering and biogenesis (Pex11a, Pex13 and Pex19), proteasomal proteins 
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Fig. 4 | Integrative phenotypic–omic responses to ExT. a, Heat maps of 
Spearman correlations between MEs and clinical measurements. Change 
in phenotypic measures represents post − pre differences. b, Heat maps of 
Spearman correlations between the metabolomics MEs and the MEs of the other 
-omes. In both a and b, statistical significance was determined by two-sided 

Student’s t-tests of the transformed correlations and P values were adjusted to 
control the FDR using the BH procedure. c, All over-represented RefMet chemical 
subclasses in each metabolomics WGCNA module. d,e, Top over-represented  
GO-BP terms in each transcriptomics (d) or proteomics (e) WGCNA module.
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and activation of the innate immune system (for example, azurophil 
granule), suggestive of an effect of immune signaling to promote α and 
β oxidation in scWAT with ExT. The MEs of the next largest modules, 
P2–P4 and P6, were more abundant in females; their MEs correlated 
with changes in body fat and scWAT adiponectin levels (P2–P3) and 
were negatively correlated with plasma glucose, insulin and leptin 
(P2–P4) (Fig. 4a). The P6 module contained proteins related to lipid 
synthesis (Gpat3, Dgat2, Acsl1, Elovl1, Agpat2–4 and Mboat7) and 
insulin-regulated glucose transporter GLUT4 (Slc2a4), which were 
correlated positively with the TAG-containing M1 ME and negatively 
with the amino acid and acyl-CoA-containing M6 module ME. Together, 
our analyses reveal molecular hubs that mediate a sexually dimorphic 
response to ExT in the scWAT.

Lipid-regulatory networks display sexual dimorphism  
with ExT
FGSEA of the MitoCarta3.0 database36 provided deeper insight into the 
impact of sex on mitochondrial metabolism in scWAT. Consistent with 
our previous FGSEA findings, SED males showed strong enrichment of 
MitoCarta terms compared to SED females (Figs. 2c and 5a and Supple-
mentary Table 3c), including increased abundance of proteins involved 
in FA oxidation, and carbohydrate and BCAA metabolism. With training, 
males showed robust enrichment of catabolic pathways such as BCAA 
and carbohydrate metabolism and FA oxidation (Fig. 5b and Supple-
mentary Table 5c). In contrast, females displayed greater enrichment of 
mitochondrial ribosome and translation pathways with ExT, displaying 
unique increases in Fe–S cluster biosynthesis and detoxification terms 
(Fig. 5b). Despite changes in mitochondrial metabolism pathways in 
both sexes, mitochondrial content as assessed by mitochondrial DNA 
content, percentage of RNA sequencing (RNA-seq) reads mapping to 
mitochondrial genes and cardiolipin CL(72:8) abundance were unaf-
fected by training in either sex (Fig. 5c and Extended Data Fig. 7a). This 
suggests that mitochondrial abundance in scWAT was not altered by 
ExT in either sex.

Specific analysis of proteins regulating scWAT lipid recycling 
(re-esterification and lipolysis) revealed sexual dimorphism in 
long-chain acyl-CoA synthetase (Acsl) isoforms, an enzyme family that 
regulates metabolic partitioning of fatty acyl-CoAs (Supplementary 
Tables 2b and 4b). Females expressed higher levels of the major WAT 
isoform Acsl1 than males (Fig. 5d). Abundance of glycerol-3-phosphate 
acyltransferase (Gpat) isoforms (the rate-limiting enzymes of glyc-
erolipid synthesis) also displayed sexual dimorphism, with Gpat3 
higher in females compared to males at all time points and Gpat4 
higher in males (Fig. 5d). Gpat3 is responsible for ~80% of the enzyme 
activity in WAT and is expressed during adipogenesis37; conversely, 
the male-dominant isoform Gpat4 is predominant in brown adipose 
tissue (BAT)37. Agpat, an enzyme family involved in glycerolipid and 
phospholipid synthesis, also displayed sexual dimorphism, with Agpat1 
and Agpat5 highest in males and Agpat2–Agpat4 highest in females. 
Increased levels of Agpat2 in females suggests a lipid-storing pheno-
type, as this is the most abundant Agpat isoform in WAT, whereas Agpat1 
(predominant in males) has bi-directional enzymatic activity in lipid 
synthesis38. Diglyceride acyltransferases (Dgat) and phosphoenolpyru-
vate carboxykinase (Pck) are also key re-esterification enzymes. Con-
sistent with fat mass preservation, females displayed higher levels of 
Dgat1 and Pck2 at all time points (Fig. 5d). The lipid-synthesis protein 
Acaca (Acc1) was elevated in SED male scWAT and increased with 8 
weeks of training in females (Fig. 5d and Extended Data Fig. 7d).

These changes in lipid esterification enzymes were complemented 
by differences in the perilipin (Plin) protein family, regulators of LD 
surface stability and accessibility for lipolysis, as Plin1 was upregulated 
in females (Fig. 5d, Extended Data Fig. 7e and Supplementary Tables 2b 
and 4b) and Plin2 in males (Fig. 5d). Plin1 is predominant on the surface 
of LD of large adipocytes and, in its inactive state, limits LD accessibility 
and lipolysis. Plin3, with roles in limiting lipolysis39, was also elevated 

in female scWAT. Conversely, the male-dominant Plin2 displays greater 
permissiveness toward lipolysis39. Together, this suggests that male 
scWAT is enriched in proteins favoring hydrolysis of lipid droplets, 
whereas female LD protein isoforms are indicative of a storage phe-
notype. Further emphasizing the catabolic effects of ExT on the male 
scWAT proteome, males displayed enrichment in key lipid oxidation 
proteins, including those involved in β-oxidation (Cpt1a, Slc25a20, 
Acads and Acadvl), lipid peroxisomal α- and β-oxidation (Abcd3 and 
Hacl1), LD tethering to peroxisomes (Spast and Abcd1) and peroxisome 
biogenesis (Pex11b) (Fig. 5d).

Finally, we examined changes in scWAT TAG abundance and 
other metabolomic markers of lipid metabolism. Consistent with 
decreased fat mass, plasma leptin and adipocyte size distribution, 
males decreased median total scWAT TAG abundance by ~70% after 
8 weeks of ExT (Fig. 5e; bar plots). While females did not show sub-
stantial changes in scWAT TAG levels over the same time course  
(Fig. 5e), they exhibited changes in TAG composition. This is indica-
tive of scWAT TAG remodeling or recycling with ExT in the absence of 
reduced fat mass (Fig. 5e and Extended Data Fig. 7b,c). This was char-
acterized by an increase in short-chain (SC) and MC TAG abundance 
in 4- and 8-week-trained females, with decreases in long-chain (LC) 
TAG species (>40 carbons) at 8 weeks. Conversely, males displayed 
a reduction in SC TAGs in the early training response, indicated by a 
reduction in 30–40 carbon species (Extended Data Fig. 7b,c). At 8 
weeks of ExT in males, the abundance of SC species was not different 
from SED and LC TAG species decreased, albeit to a lesser extent than 
in females (Fig. 5f and Extended Data Fig. 7b,c). Acyl-CoA and acyl-
carnitine species measured in this study report on the metabolism of 
FAs (Fig. 5f and Extended Data Fig. 4a). Females had higher levels of 
nearly all species of MC and LC (>8 carbons) acylcarnitines at all train-
ing time points, whereas males had higher levels of SC acylcarnitines, 
representing products of complete FA oxidation, with the exception 
of C2 (acetyl) (Fig. 5f). Females also displayed a robust increase in MC 
and LC acylcarnitines at 1 week, suggestive of reduced FA oxidation, 
consistent with reduced levels of OXPHOS proteins. These profiles 
are consistent with activation of FA oxidation to consume LC acyl-
carnitines and produce SC acylcarnitines in males and preservation 
of LC species in females, possibly for recycling to TAGs for storage. 
Together, changes in scWAT lipid metabolites are indicative of lipid 
utilization and depletion of fat stores in males versus lipid recycling 
to preserve fat mass in females.

Discussion
The molecular hubs that differentiate male and female WAT and its 
response to ExT, remain largely unexplored. Building upon findings 
from the recently published MoTrPAC study13, here we use a multi-omic 
approach to comprehensively analyze the effects of sex and progres-
sive endurance training on the biology of scWAT. Among 18 solid tis-
sues with extensive -omic profiling in the same rats, the notable sexual 
dimorphism in the scWAT response to ExT described here contrasts 
with multi-omic responses in other tissues, such as the striated muscle, 
which displayed more consistent responses across sexes13. This led us 
to perform a scWAT-tissue-focused analysis to gain deeper insight into 
molecular hubs driving sexual dimorphism at rest and in response to 
progressive ExT. We show that male rat scWAT displays enrichment in 
markers of aerobic metabolism and lipid utilization in the sedentary 
state that are further increased with training, likely contributing to 
enhanced depletion of fat stores in males relative to females following 
8 weeks of ExT. In contrast, the scWAT of females displays enrichment 
in markers of adipogenesis, insulin signaling and developmental and 
transcriptional/translational regulatory processes in sedentary and 
trained states, which likely impacts differential phenotypic responses 
to ExT. Utilization of WGCNA highlights molecular modules corre-
lated with sexually distinct phenotypic responses, including changes 
in key regulatory hormones, metabolites and adipokines indicative 
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ofdynamic molecular modules linked to lipid sparing and lipid uti-
lization. We also identify differences in lipid-regulatory protein iso-
forms across sexes, with male scWAT having an increased abundance 
of BAT-associated protein isoforms in sedentary and trained states, 
despite no overt browning response. Together, our findings describe 
sexual dimorphism in the scWAT molecular landscape and the pro-
gressive response to ExT, thereby offering a unique resource for 

translational insight into factors linking scWAT biology to sex-stratified  
disease risk.

Despite increased fat mass, females have a reduced risk of cardio-
metabolic disease relative to age-matched male counterparts, in part 
attributed to the cardioprotective role of their increased scWAT relative 
to visceral WAT mass9,10,12,18. Increased scWAT adipogenesis and lipid 
deposition in females is associated with reduced inflammation and 
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Fig. 5 | Integrative -omics reveals sexual dimorphism in scWAT mitochondrial 
metabolism and lipid recycling with ExT. a, Top significantly enriched 
(FDR < 0.05) MitoCarta terms from the proteomics sedentary male versus 
sedentary female FGSEA results. Points are scaled according to the number 
of genes in the leading-edge subset (the set of genes from each term that 
contributed to the enrichment score). Terms were only significantly enriched in 
males relative to females, so all points are colored blue. b, Heat map of the  
top MitoCarta terms that were most significantly enriched in any of the eight 
trained versus sedentary control comparisons from the proteomics FGSEA 
results. c, Percentage of reads from mitochondrial genes calculated from the  
raw transcriptomics data before any filtering (top) and the log2-transformed 

sample-level values of cardiolipin CL(72:8) (bottom). Both panels display 5  
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representing the mean ± s.d. d, Proteins involved in lipid metabolism. Values 
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e, Bar plot of the median total TAG concentration (μg mg−1 tissue) in scWAT 
samples of male and female rats at each time point. The heat map displays the 
standardized median concentration (peak area normalized by internal standard) 
of the top 20 most-abundant TAG species. f, Heat map of acylcarnitine species 
grouped according to their metabolomics WGCNA module. Values shown are the 
group means of the standardized sample-level values for each species.
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improved glucose homeostasis and lipid profiles10,16. Our study offers 
the opportunity to identify molecular and cellular regulators driving 
lipid buffering and insulin sensitivity in females versus males, with 
potential relevance in explaining mechanisms of protection against 
metabolic-related diseases in women before menopause. Despite the 
more robust catabolic response to training in males, females display 
characteristics of healthier scWAT, such as molecular features indica-
tive of increased adipogenesis, lipid buffering and recycling capac-
ity and insulin signaling9,10,12. Utilizing WGCNA, we substantiate this 
model by showing associations between lipid storage, glucose uptake 
and adipogenic molecular modules in females, with increased scWAT 
TAG content and reduced levels of plasma glucose. Given these meta-
bolically advantageous phenotypes in female scWAT, increased lipid 
catabolism in male scWAT may be critical to promote metabolically 
favorable training adaptations.

Although WAT is one of the most sexually dimorphic tissues13,14, 
few studies have examined differential adaptability of scWAT to endur-
ance exercise between sexes employing an integrative, multi-omic 
strategy. Another aspect of this research includes studying the pro-
gressive scWAT ExT response in adult rats, as training adaptations in 
young mice of a single sex and training time point are traditionally 
studied. Addressing this gap, our work identifies marked sex-specific 
differences in temporal transcriptional, proteomic and phosphopro-
teomic signatures in the scWAT in response to ExT. For example, at the 
transcriptional level, males displayed the largest response at 2 weeks 
of ExT (529 differential transcripts), whereas in females this occurred 
at 8 weeks (193 differential transcripts). Moreover, when compared 
to females, males had ~66% more differentially expressed transcripts 
throughout training (788 versus 474). At the proteomic level, males had 
~2.5 times more proteins that were impacted by training compared to 
females (1,454 versus 574), with the proteomic response peaking at 2 
weeks of ExT in females (221 features) and progressively increasing at 
4 and 8 weeks in trained males (571 and 654 features, respectively). The 
temporal metabolomic response to training was the most consistent 
between the sexes, with both males and females displaying the greatest 
number of differential features at 8 weeks (females, 139 and males, 211) 
and 2 weeks (females, 135 and males, 161). Our findings are consistent 
with previous literature demonstrating a strong ExT-mediated -omic 
response in scWAT7,17,40.

Notably, this work provides a multi-omic view of GO terms, facili-
tating broad insight into molecular regulators of the scWAT progres-
sive training response. FGSEA revealed early (1 week) enrichment of 
transcriptional and translational regulatory terms in females, whereas 
the 1-week response in males was enriched for GO terms related to 
tissue remodeling, including transcripts indicative of angiogenesis. 
Both sexes shared early increases in PC and O-PC species and terms 
related to adaptive immune cell activation. ORA of WGCNA modules 
gave results similar to those from FGSEA, indicative of an early adaptive 
immune response in females and males (T4 ME), which correlated with 
MEs of the plasmalogen-containing M4 and M5 modules. Plasmalogens 
are a major phospholipid class in cellular membranes, affecting cel-
lular structural integrity, lipid raft formation and protein scaffolding 
and thus likely play an important role in transducing cellular signals 
and adipose remodeling. In lean adipose tissue, immune cells have 
recently been found to have positive tissue regulatory roles on adi-
pocyte metabolism, lipid utilization and flux6,41,42, where depletion of 
regulatory T cell subsets contribute to insulin resistance42. Similarly, we 
observed an inverse association between plasma glucose and regula-
tory T cell term-containing T10 ME. Therefore, examining the role of 
plasmalogens as markers and/or regulators of immune cell subsets in 
the scWAT microenvironment is ripe for investigation.

The impact of sex on adipose tissue metabolism is likely multifac-
torial. While sex hormones clearly exert an effect on adipogenesis, lipol-
ysis and re-esterification9,10,18, other factors such as genetic imprinting 
and embryonically established tissue-resident cellular populations 

likely contribute to sex differences in systemic metabolism9,43,44. We 
observed substantial sexual dimorphism in the scWAT of sedentary 
rats, where females displayed enrichment in transcriptomic terms 
relating to developmental processes and immune cell phenotypes, 
suggesting that the cellular landscape of the scWAT is intrinsically 
sexually dimorphic. In the genetically diverse hybrid mouse diversity 
panel cohort, ex vivo WAT mitochondrial function differs based on 
genetic background in a sex-dependent manner44. This emphasizes 
that gene by sex hormone interactions imprint metabolic phenotypes 
potentially through establishment of distinct cellular phenotypes. 
Recently, WAT has been shown to have substantial heterogeneity of adi-
pocyte, preadipocyte and various immune cell populations that change 
with obesity and high-fat feeding3. Future studies performing cellular 
deconvolution or single cell analyses using this or other datasets may 
help to define how sex and training impact scWAT cellular populations 
and their relation to systemic metabolism. Fluctuations in estrous cycle 
hormones also impact training-associated phenotypes, such as lipid 
utilization and recycling9,18. In our study, training and tissue collection 
were temporally staggered. It is thus expected that female rats are at 
different stages of their 4–5-d estrous cycle regardless of time point, 
such that no single group is biased to any stage of the cycle. While this 
may have contributed to higher variance for some measures in females, 
it also means that our findings represent the comprehensive impact of 
training on measures throughout the female estrous cycle.

Phosphoproteomics identified probable molecular transducers 
of the sexually dimorphic scWAT response to training. With ExT, male 
scWAT exhibited changes consistent with enhanced lipid-mobilizing 
AMPK activity45, whereas female scWAT exhibited profiles consistent 
with enrichment of anabolic AKT and mTOR activity. In females, overall 
enrichment of anabolic multi-omic signatures (for example, amino 
acids, insulin-permissive signaling molecules, adipogenic MEs and 
predicted AKT and mTOR kinase activity) illuminate metabolically 
favorable mechanisms by which scWAT adapts to training, even in the 
absence of fat loss, to promote cardiometabolic health and protect 
reproductive fitness. Supporting these observations, mTORC1 signal-
ing promotes scWAT lipogenesis and adipogenesis31. Notably, ablation 
of mTOR and LKB prevents diet-induced obesity, yet promotes insulin 
resistance46. Further supporting metabolically beneficial adaptations 
in female scWAT with ExT was the consistent downregulation of the 
insulin signaling repressor, Grb14, at all training time points. Estradiol 
inhibits insulin-induced Grb14 expression47, highlighting a poten-
tial mechanism by which female sex hormones might contribute to 
increased scWAT insulin sensitivity. Females did display increased 
scWAT metabolism evident through MitoCarta analyses with OXPHOS 
proteins increasing in females with training, albeit less than that of 
males. Female scWAT displayed TAG species remodeling, likely indica-
tive of lipid utilization and subsequent re-esterification, reflected by 
the increased abundance of short-to-medium chain TAGs. This is fur-
ther supported by WGCNA, which localized transcripts related to neu-
tral lipid biosynthetic processes to the T5 module, the ME of which was 
highly correlated with change in fat mass and the M1 LC TAG-localizing 
metabolomics ME.

Our work provides a critical foundation for understanding the 
coordinated molecular responses to chronic endurance exercise, as 
these rats were intentionally studied 48 h following the last bout of 
exercise to capture durable adaptations to ExT. Translation of these 
findings to outbred rodent and human models are key next steps for 
building upon this work. Our findings highlight that, while adaptations 
in scWAT in response to physical activity were largely dimorphic, both 
male and female rats display metabolically favorable responses to ExT. 
In the present study, we observed no significant decrease in fat mass 
in female rats in response to training, but scWAT was significantly 
remodeled to display a healthier phenotype and a lack of ExT led to an 
increase in fat mass in both sexes. We note that longer training duration 
or volume can promote fat loss in females and that such responses are 

http://www.nature.com/natmetab


Nature Metabolism | Volume 6 | May 2024 | 963–979 974

Resource https://doi.org/10.1038/s42255-023-00959-9

likely dependent on genetic background and baseline fat mass40,48. Fur-
ther, our study focused on a single subcutaneous fat depot in rodents; 
other fat depots may respond differently to chronic training12,49,50. Our 
study design did not control for or measure food intake or ambulatory 
movement, so we cannot determine whether the sexual dimorphism 
in the observed training response was affected by changes in caloric 
consumption and non-exercise energy expenditure. Finally, given the 
scope of the study, we did not have age-matched sedentary controls 
at all time points and chose to age-match only for the 8-week-trained 
group. We based this on our expectation that most training effects 
would occur at this later time point and that transcriptomic changes 
associated with aging only become evident at 12 months or older51. 
Nevertheless, future studies may benefit from inclusion of age-matched 
controls at all training time points.

In summary, our study characterizes sexually distinct temporal 
dynamics in the multi-omic response of scWAT to ExT. Our data repre-
sent a companion analysis of the larger MoTrPAC multi-omic study of 
training responses across multiple tissues13. The focused analysis of 
scWAT summarized here highlights the utility of the dataset to provide 
insight into tissue-specific adaptations, yielding knowledge to drive 
new hypothesis-based research. Our study identifies opportunities 
for future investigation of causal links between -omics clusters and 
phenotypic responses to training, including the impact of sex on such 
pathways. Identifying sex-specific and sex-conserved scWAT responses 
to training creates a framework for deeper understanding of adipose 
tissue biology and re-emphasizes the need to consider biological sex 
when strategizing precision-based interventions.

Methods
Animals
Adult male and nulliparous female Fischer 344 (F344) inbred rats were 
obtained from the National Institute on Aging (NIA) rodent colony. Rats 
of the same sex were housed two per cage (146.4 in2 of floor space) in 
ventilated racks (Thoren Maxi-Miser IVC Caging System) on Tekland 
7093 Shredded Aspen bedding and fed the LabDiet 5L79 pelleted diet, 
which are the standard bedding and diet used at the NIA rodent colony. 
The animal housing room was monitored daily and maintained at 
68–77 °F and 25–55% humidity. Rats were adapted to a reverse dark–
light cycle with lights off at 9:00 and lights on at 21:00 for a minimum of 
10 d, and rats were handled daily by staff to reduce stress and promote 
acclimation to human handling and the research facility. Red lights 
were used during the dark cycle to provide adequate lighting for rou-
tine housing tasks, rodent handling and training to ensure rats were 
handled during their nocturnally active phase. All animal procedures 
were approved by the Institutional Animal Care and Use Committee 
at the University of Iowa.

Treadmill familiarization and exercise training
Before ExT, all animals underwent a 12-d treadmill familiarization con-
sisting of 5–10 min of low-intensity (6–10 m min−1) daily exercise. Only 
rats able to maintain treadmill compliance (for example, continuous 
forward running) were randomized to control or intervention groups. 
Following treadmill familiarization, ExT (Panlab five-lane rat treadmill, 
Model LE8710RTS, Harvard Instruments) began at 6 months of age and 
lasted for 1, 2, 4 or 8 weeks. Training began and ended on a staggered 
schedule over a 3–5-d period to accommodate the termination sched-
ule, so female rats were at different stages of their estrous cycle upon 
tissue collection, regardless of time point. Rats were trained for five 
consecutive days per week at 70–75% of VO2max using a progressive 
treadmill protocol that eventually reached a duration of 50 min d−1. 
Sedentary control rats were placed on the treadmills for 15 min d−1 
at a speed of 0 m min−1 for five consecutive days per week, follow-
ing a schedule similar to the 8-week-trained rats, to control for any 
non-exercise-related treadmill effects. Rats unable to exercise for at 
least 4 d per week were removed from the study.

Body composition
Body composition was determined for all rats 13 d before the start 
of training using the minispec LF90II Body Composition Rat and 
Mice Analyzer (Bruker). Post-training body composition was deter-
mined for rats in the control, 4- and 8-week-trained groups 5 d before  
tissue collection.

VO2max
VO2max was determined before the onset of training in all rats and 
during the last week of training for the 4- and 8-week exercise groups. 
Rats were acclimated to a single-lane enclosed treadmill (Columbus 
Instruments Metabolic Modular Treadmill) 2 d before testing. On the 
day of testing, the rat was placed in the treadmill, and testing began 
once oxygen consumption was stabilized. VO2, VCO2 and respiratory 
exchange ratio (RER) were recorded at 5-s intervals while in the tread-
mill and blood lactate levels were recorded at 2-min intervals. Testing 
began with a 15-min warmup at a speed of 9 m min−1 and 0° incline. 
Following this, the incline was increased to 10° and the treadmill speed 
was increased by 1.8 m min−1 every 2 min19. Post-training males and 
females remained at speeds of 23.4 and 27 m min−1, respectively, for 
a total of 4 min; the first 2 min were spent at an incline of 10° and the 
last 2 min at an incline of 15°, which was then maintained for the dura-
tion of the testing period. Criteria for reaching VO2max was a plateau 
in oxygen uptake despite increased workload, RER above 1.05 and a 
non-hemolyzed blood lactate concentration ≥6 mmol l−1 (ref. 19).

Statistical analyses of phenotypic measures
Multiple linear regression models with sex, time point and their inter-
action were included as predictors of the post − pre differences for 
various phenotypic measures: VO2max relative to whole body mass 
(recorded on the day of the VO2max test) or NMR lean mass, body 
mass (recorded on the same day as NMR body composition meas-
ures), NMR fat mass and fat percentage. Inverse group variances were 
included as weights in the models if heteroscedasticity was observed, 
and model parsimony was achieved by examining F-tests and model 
diagnostic plots (such as residuals versus fitted, scale–location and 
quantile–quantile). Then, we tested the null hypothesis that the mean 
post − pre difference of each of the SED, 4-week- and 8-week-trained 
groups were equal to 0 by sex. The Holm multiple comparison proce-
dure was applied to each set of three comparisons by sex to control 
the family-wise error rate.

Tissue collection
Tissues were collected from all rats at 48 h following the last training 
session. As training began and ended on a staggered schedule (see 
‘Treadmill familiarization and exercise training’ section), collection was 
also performed over the course of a 3–5-d period for each experimental 
group. On the day of collection, food was removed at 8:30, 3 h before 
the the start of dissections, which occurred between 11:30 and 14:30. 
Rats were sedated with inhaled isoflurane (1–2%), during which blood 
was drawn via cardiac puncture and subcutaneous white fat (inguinal 
fat depot from right side) was removed and immediately frozen in 
liquid nitrogen, placed in cryovials and stored at −80 °C. Removal of 
the heart resulted in death.

Measurement and statistical analyses of clinical analytes
We measured a set of nine common clinical analytes in plasma: glucose, 
lactate, glycerol, total ketones, NEFAs, glucagon, insulin, leptin and 
corticosterone. The first five were measured using a Beckman DxC 600 
clinical analyzer with reagents from Beckman and Fujifilm Wako (total 
ketones and NEFAs). The others were measured in immunoassays using 
commercial kits from Meso Scale Discovery and Alpco (corticosterone). 
For each of the analytes, we first examined their mean–variance rela-
tionship. Informed by these results, we fit log-link gamma (glucagon 
only) or Gaussian generalized linear models (GLMs). For the Gaussian 
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GLMs, we included reciprocal group variances as weights to account 
for heteroscedasticity. Regression diagnostic plots (such as residuals 
versus fitted, scale–location and quantile–quantile) were checked 
to ensure all assumptions were met. Then, we compared each of the 
trained time points to their sex-matched sedentary controls using the 
Dunnett multiple comparison procedure if time point was included 
as a predictor. We also compared males to females by time point, 
applying the Holm multiple comparison procedure to each set of five  
P values. As a log link was used, results are presented as ratios of group 
means. Tests were only performed on the subset of samples selected 
for multi-omics analyses (n = 6 per experimental group) for glucagon, 
glucose, glycerol, insulin, leptin and NEFAs. The other analytes were not 
tested. Clinical analyte measures and results of statistical analyses are 
provided in Supplementary Table 1c–e.

WAT histology
scWAT tissue samples were collected from the contralateral side of rats 
used for multi-omics analyses, embedded in OCT and flash frozen for 
histological analyses. Tissue samples were sectioned with a thickness of 
15 μm in a cryostat, stained with hematoxylin and eosin and visualized 
with bright-field microscopy. A total of ten fields of view were imaged 
per sample using automated CellProfiler software52 to quantify adi-
pocyte cell size. Adipocytes were binned in 5-μm intervals according 
to their diameter. A log-link negative binomial regression model that 
included sex, time point, diameter bin (ordered factor, ten levels) and 
their interactions as predictors was used to model the expected rate 
of adipocytes (offset of log(total adipocytes per sex and time point 
group)). The regression assumptions were checked with diagnostic 
plots (such as residuals versus fitted, scale–location and quantile–
quantile). Within each bin, we compared the 4- and 8-week-trained 
time points to their sex-matched sedentary controls using the Dunnett 
multiple comparison procedure. The ratios of the expected values are 
shown in Extended Data Fig. 1d if the adjusted P values were below 0.05. 
Measures of adipocyte diameter, area and volume, as well as results 
of the statistical analysis are provided in Supplementary Table 1a,b.

Multi-omic data generation and processing
Full details of the methods used for sample processing, data collec-
tion, data processing, data normalization and batch correction for 
transcriptomics, proteomics, phosphoproteomics and metabolomics/
lipidomics platforms are described elsewhere13 and summarized in the 
Supplementary Methods, which also contain additional details for the 
statistical analyses described below.

Differential analysis
RNA-seq data were analyzed using the edgeR53 and limma54 
Bioconductor/R packages, following the workflow described by Law 
et al.55. Briefly, low-abundance transcripts were removed from the 
raw count data with edgeR::filterByExpr to estimate the mean–vari-
ance relationship more accurately. Then, a multidimensional scaling 
(MDS) plot was generated from the log2 TMM-normalized counts 
per million reads to explore the average log2 fold change between 
samples (Extended Data Fig. 8a). Two samples (90423017005, from 
a 1-week-trained male and 90410017005, from a 4-week-trained 
female) were identified as outliers in the principal-component 
analysis plots and MDS plots and removed13. Furthermore, higher 
variability was observed in females relative to males, and biological 
replicates (for example, all 4-week-trained males) appeared to cluster 
poorly. To account for this, limma::voomWithQualityWeights was 
chosen to simultaneously combine observation-level weights (pre-
dicted from the mean–variance trend in Extended Data Fig. 8b) with 
sample-specific quality weights. These weights are incorporated into 
the linear model to down-weight low-abundance observations and 
all observations from more variable samples, increasing power to  
detect differences56,57.

Proteomics, phosphoproteomics and metabolomics data were 
also analyzed using limma and differences in sample variability were 
again apparent from their respective MDS plots (Extended Data  
Fig. 8c–e). As such, sample-specific quality weights were calculated 
with limma::arrayWeights (method= ‘genebygene’) and incorporated 
into the linear models58. Additionally, RNA integrity number, median 
5′-3′ bias, percent of reads mapping to globin and percent of PCR dupli-
cates as quantified with unique molecular identifiers were included as 
covariates in the RNA-seq model after they had been mean-imputed and 
standardized13. For each -ome, we set up a no-intercept model contain-
ing the experimental group (each combination of sex and time point; 
factor with ten levels) and any covariates.

Following linear modeling with limma::lmFit, contrasts were 
constructed with limma::contrasts.fit to test sex-specific training 
responses (for example, 1-week-trained versus SED males; Supplemen-
tary Table 4a–d), baseline sexual dimorphism (SED males versus SED 
females; Supplementary Table 2a–d) and sexually dimorphic train-
ing responses (the sex by training interaction effect; Supplementary  
Table 6a–d). Then, robust empirical Bayes moderation was carried  
out with limma::eBayes to squeeze the residual variances toward a 
common value (RNA-seq) or a global trend (proteomics and phos-
phoproteomics; Extended Data Fig. 8f,g)59. For metabolomics, the 
empirical Bayes moderation was performed separately for each of 
the 13 platforms with robust = trend = TRUE (both FALSE if a platform 
measured fewer than ten metabolites).

To control the FDR, P values were adjusted across sets of related 
comparisons by -ome using the BH procedure. Counts of differential 
features (FDR < 0.05) from the timewise comparisons are shown in the 
UpSet plots (Fig. 3a,b).

Fast gene set enrichment analysis
Gene set enrichment analysis (GSEA) is a rank-based approach that 
determines whether any a priori defined gene sets, such as genes 
involved in the same biological process or participating in the same 
pathway, display concordant changes in their expression, even when 
those changes are fairly modest60. FGSEA21 is a fast implementation of 
pre-ranked/gene permutation GSEA. It requires ranking metric values 
(the gene-level statistics) and a collection of gene sets. We chose the 
signed −log10-transformed P value (calculated from the differential 
analysis results for each contrast) as the ranking metric, where the sign 
indicates the direction of the log2 fold change.

For each contrast, ranking metric values were calculated at the 
level of individual features (proteins, transcripts and metabolites). 
Proteomic and transcriptomic-ranking metrics were aggregated to 
the Entrez gene ID level by taking the arithmetic mean. Any features 
that did not map to an Entrez gene were discarded before analysis.

For proteomics and transcriptomics, gene sets from the three 
C5:GO subcollections (BP, MF and CC)61,62 of the Molecular Signatures 
Database63 (MSigDB v.7.5.1) were considered for testing. For proteomics 
only, we additionally tested gene sets from the MitoCarta3.0 database36 
(file ‘Human.MitoCarta3.0.xls’) (Fig. 5c,d). Human gene symbols were 
remapped to their rat orthologs (Entrez gene IDs) before analysis. 
Finally, the FGSEA procedure was applied to the metabolomics data 
by grouping metabolites according to RefMet chemical subclasses 
(for example, acylcarnitines and triacylglycerols), provided by the 
Metabolomics Workbench RefMet database (https://www.metabo-
lomicsworkbench.org)22.

Results are provided in Supplementary Tables 3a–e, 5a–e and 7a–d.

Kinase–substrate enrichment analysis
To infer kinase activity from our phosphoproteomics data, we utilized 
the curated kinase–substrate information provided by PSP30 (v.6.6.0.4). 
As data are markedly more comprehensive for humans than for rats, 
we first remapped the 30,304 quantified phosphorylation sites on rat 
proteins to human orthologs using the data generated by the MoTrPAC 
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Study Group13 (Methods ‘Mapping PTMs from rat to human proteins’). 
This resulted in 19,137 unique phosphorylation sites on human pro-
teins. FGSEA21 was then performed for each of the phosphoproteom-
ics contrasts using the single-site-level signed −log10-transformed  
P value as the ranking metric. Kinase sets were constructed from the 
PSP kinase–substrate dataset by grouping sites phosphorylated by the 
same kinase. Only those kinases with at least three annotated substrate 
sites (excluding instances of autophosphorylation) were tested for 
enrichment. Results are provided in Supplementary Tables 3d and 5d.

Weighted gene coexpression network analysis
WGCNA64 was carried out to identify non-overlapping groups of related 
proteins, metabolites and transcripts (hereby referred to as ‘modules’) 
(Supplementary Table 8a–c). The modules are arranged in descending 
order by size and labeled with the first letter of their respective -ome (M, 
T or P). MEs, the principal eigenvector of each module, were extracted 
and Spearman correlations were calculated between metabolomics/
lipidomics and proteomics MEs, between metabolomics/lipidomics 
and transcriptomics MEs (Fig. 4b) and between each ME and select 
sample measures (Fig. 4a). We assessed the significance of each cor-
relation by applying two-sided Student’s t-tests to the transformed 
correlations (Supplementary Methods) and adjusted these P values 
within each correlation matrix using the BH procedure.

WGCNA module over-representation analysis
To characterize the WGCNA modules, ORA was performed in R with 
fgsea::fora21 on the same feature sets that were used for FGSEA. All 
Entrez or RefMet IDs from the appropriate WGCNA results (excluding 
those from the ‘gray’ modules) were set as the background for these 
hypergeometric tests. The top over-represented (scaled P value < 0.05) 
feature sets by module are shown in Fig. 4c–e. Full results are provided 
in Supplementary Table 8d–f.

Mitochondrial DNA quantification
Quantification of mtDNA was performed and described by Amar et al.65. 
Briefly, real-time qPCR was performed in duplicate for each of the 
scWAT samples selected for -omics analysis. The 2−ΔΔCT  method66 was 
then applied to estimate the relative expression of the mitochondrial 
D-loop. As both target (D-loop) and internal control (β-actin) were 
amplified in the same well, ΔCT was calculated as the mean of 
(CT,D-loop − CT,β-actin) for each sample. Then, ΔΔCT values were obtained 
by subtracting each ΔCT value by the mean ΔCT of the SED female group 
(the calibrator). Kruskal–Wallis tests were performed on the 2−ΔΔCT  
values separately by sex.

Sample size and assumptions of statistical analyses
Experimental groups consisted of n = 5 biological replicates for metab-
olomics/lipidomics, transcriptomics and mtDNA data and n = 6 biologi-
cal replicates for proteomics/phosphoproteomics, histology, plasma 
clinical analytes and phenotypic measures data. No statistical methods 
were used to predetermine sample sizes, but these sample sizes are con-
sistent with what has been reported in previous rodent studies3,7,18,46,67.

For all statistical analyses, we first ensured that the relevant model 
assumptions were satisfied before proceeding with hypothesis testing. 
This is detailed in the vignettes of the MotrpacRatTraining6moWAT-
Data R package (Data Availability).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Processed data and analysis results are available in the MotrpacRat-
Training6moWATData R package (github.com/MoTrPAC/Motrpa-
cRatTraining6moWATData). MoTrPAC data are publicly available via 

motrpac-data.org/data-access. Data access inquiries should be sent to 
motrpac-helpdesk@lists.stanford.edu. Additional resources can be 
found at motrpac.org and motrpac-data.org. We used external datasets 
from MitoCarta3.0 (ref. 36) (Human.MitoCarta3.0.xls, accessed from 
https://www.broadinstitute.org/mitocarta/mitocarta30-inventory-
mammalian-mitochondrial-proteins-and-pathways), MSigDB63 (v.7.5.1), 
PhosphositePlus30 (v.6.6.0.4; Kinase_Substrate_Dataset.xlsx, accessed 
5 June 2022 from https://www.phosphosite.org/staticDownloads), the 
Metabolomics Workbench RefMet database22 (https://www.metabo-
lomicsworkbench.org) and published data from The MoTrPAC Study 
Group13 and Amar et al.65.

MoTrPAC data relevant to this manuscript is deposited in the  
following public repositories:
NCBI Gene Expression Omnibus: RNA-seq
Data types: processed pipeline outputs raw counts, merged peakset 
and coverage files. To review Gene Expression Omnibus accession code 
GSE242358, enter token abmhgaoktbmtjwv into the box.
Metabolomics Workbench: targeted and untargeted metabolomics
Data types: raw + results files
Project ID PR001020
Project https://doi.org/10.21228/M8V97D
http://dev.metabolomicsworkbench.org:22222/data/DRCCMetadata.
php?Mode=Project&ProjectID=PR001020&Access=QhxG2479
MassIVE: proteomics
Data types: raw + results files

•  MassIVE MSV000092911 (https://doi.org/10.25345/C5R78603Q): 
MoTrPAC, Endurance Exercise Training Study in 6-Month-Old Rats 
(Global Protein Abundance in Gastrocnemius, White Adipose, Cor-
tex, Lung and Kidney)

•  MassIVE MSV000092925 (https://doi.org/10.25345/C52F7K23N): 
MoTrPAC, Endurance Exercise Training Study in 6-Month-Old Rats 
(Protein Phosphorylation in Gastrocnemius, White Adipose Tissue, 
Cortex, Lung and Kidney) Source data are provided with this paper.

Code availability
R scripts detailing all processing and analysis steps are contained within 
the data-raw/ folder or in the vignettes and articles of the MotrpacRat-
Training6moWATData R package (github.com/MoTrPAC/MotrpacRat-
Training6moWATData). Helper functions used to perform analyses and 
visualize results are contained within the MotrpacRatTraining6moWAT 
R package (github.com/MoTrPAC/MotrpacRatTraining6moWAT). For 
a list of the core R/Bioconductor packages used, please consult the 
Software section of the Supplementary Methods.
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Extended Data Fig. 1 | Additional phenotypic data.  a) Relative VO2max values 
normalized to total body mass from the animals selected for multi-omics 
analysis. b–c) Body mass and percent body fat measurements of animals selected 
for multi-omics analysis. Arrows represent rats and span from pre- to post-
training values. Within each group, they are arranged in ascending order by their 
pre-training measure. d) Proportions of adipocytes from histological analysis 
with diameters in the indicated ranges for both female and male animals after 4 or 
8 weeks of training, or sedentary controls. For comparisons between trained and 
sedentary groups where statistical significance was reached, the ratio between 
the group means (trained/sedentary) is specified above the appropriate bin. 
e–f) Additional measures of plasma clinical analytes: non-esterified fatty acids 

(NEFA) (e) and glucagon (f). g) Correlation between plasma leptin measurements 
and changes in percent body fat (post vs. pre-training) in each SED, 4 W, and 8 W 
animal selected for -omics analysis. h) Hexokinase 2 protein measures from the 
gastrocnemius. For (d–f, h), trained groups were compared to their sex-matched 
sedentary controls using Dunnett’s test after fitting a multiple regression model 
with sex, time point, and their interaction as predictors. Where applicable, the 
boxes are 95% confidence intervals for the mean of each group, and asterisks 
indicate a statistically significant difference (*, p < 0.05; **, p < 0.01; ***, p < 0.001) 
between pre- and post-training measures (a–c) or trained and SED groups (d–f, h) 
after adjustment for multiple comparisons.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Training response differential expression analysis: 
volcano plots.  a–d) Volcano plots displaying the magnitude and significance of 
comparisons of each trained group against sex-matched sedentary controls in 
transcriptomics (a), proteomics (b), phosphoproteomics (c), and metabolomics 
(d) datasets. Features that are differentially expressed in all female or all male 
comparisons are labeled and arranged from top to bottom by most to least 

significant and along the x-axis according to ranked magnitude of log2 fold-
change if there was sufficient space. For metabolomics (d) the 5 metabolites  
that are most significant, on average, across all female or male comparisons  
are labeled since specific metabolites are not mentioned in the differential 
analysis results.
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Extended Data Fig. 3 | Additional FGSEA heatmaps from training response 
differential expression analysis.  a–b) Top biological process (GO-BP) (a) or 
cellular component (GO-CC) (b) terms from the Gene Ontology database that 
are most significantly enriched (FDR < 0.05) in any of the 8 comparisons from 

transcriptomics FGSEA results. c–d) Top GO-BP (c) or GO-CC (d) terms that 
are most significantly enriched (FDR < 0.05) in any of the 8 comparisons from 
proteomics FGSEA results.
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Extended Data Fig. 4 | Metabolomic Visualizations.  a–c) scWAT metabolome heatmaps displaying acyl-CoAs (a), amino acids (b), and nucleotides (c). Sample-level 
values were standardized before calculating the mean of each group to better observe patterns.
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Extended Data Fig. 5 | Comparison of training response across sexes.  a–b) Top 
molecular function (GO-MF) (a) or cellular component (GO-CC) (b) terms from 
the Gene Ontology database that are most significantly enriched (FDR < 0.05) 
in any of the 4 comparisons of the male and female training responses from the 
transcriptomics FGSEA results. c–d) Top GO-MF (c) or GO-BP (d) terms that are 
most significantly enriched (FDR < 0.05) in any of the 4 comparisons of the male 

and female training responses from the proteomics FGSEA results. e) Top kinases 
that are most significantly enriched (FDR < 0.05) in any of the 4 comparisons 
of the male and female training responses from the phosphoproteomics KSEA 
results. f ) Top RefMet chemical subclasses that are most significantly enriched 
(FDR < 0.05) in any of the 4 comparisons of the male and female training 
responses from the metabolomics FGSEA results.
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Extended Data Fig. 6 | WGCNA module eigenfeatures.  a–c) Plots of the module eigengenes (MEs) from the metabolomics (a), transcriptomics (b), and proteomics 
(c) WGCNA results. The size of each module is displayed along with the module labels. Boxes represent 95% confidence intervals for the mean of each group.
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Extended Data Fig. 7 | Sexual dimorphism in lipid dynamics with ExT.   
a) mtDNA 2−ΔΔCT values as measured by real-time qPCR. b–c) Changes in chain 
length (b) and double bond content (c) of TAG species in male and female rats 
after 1, 2, 4, and 8 weeks of exercise training. Loess curves are included with 95% 
confidence bands. The y-axes have been restricted to show patterns more clearly, 

so not all points are visible. d–e) log2 relative abundances of Acaca and Plin1 
proteins (n = 6 per group). Boxes are 95% confidence intervals for the means, 
and an asterisk indicates a significant (BH-adjusted p-value < 0.05) difference 
between group means from the proteomics differential analysis results.
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Extended Data Fig. 8 | Differential analysis model indicators.   
a) Multidimensional scaling (MDS) plots where distances between points 
approximate the typical log2 fold-changes between transcriptomics samples. 
b) Scatterplot of the average log2 counts per million vs. the square-root of the 
residual standard deviations from limma::voom. The loess curve (dashed red line) 
approximates the mean–variance relationship. c–e) MDS plots where distances 

between points approximate the typical log2 fold-changes between proteomics 
(c), phosphoproteomics (d), or metabolomics (e) samples. f–g) Average log2 
relative abundance vs. the square-root of the residual standard deviations of 
proteins (f) or phosphosites (g). The dashed red line indicates the robust mean–
variance trend from the limma::eBayes step. This is the ggplot2 equivalent of the 
limma::plotSA output.

http://www.nature.com/natmetab


Nature Metabolism

Resource https://doi.org/10.1038/s42255-023-00959-9

Extended Data Table 1 | List of abbreviations and their meanings
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