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Abstract
When two cognitive processes contribute to a behavioral output—each process producing a specific distribution of the behav-
ioral variable of interest—and when the mixture proportion of these two processes varies as a function of an experimental 
condition, a common density point should be present in the observed distributions of the data across said conditions. In 
principle, one can statistically test for the presence (or absence) of a fixed point in experimental data to provide evidence in 
favor of (or against) the presence of a mixture of processes, whose proportions are affected by an experimental manipulation. 
In this paper, we provide an empirical diagnostic of this test to detect a mixture of processes. We do so using resampling of 
real experimental data under different scenarios, which mimic variations in the experimental design suspected to affect the 
sensitivity and specificity of the fixed-point test (i.e., mixture proportion, time on task, and sample size). Resampling such 
scenarios with real data allows us to preserve important features of data which are typically observed in real experiments 
while maintaining tight control over the properties of the resampled scenarios. This is of particular relevance considering 
such stringent assumptions underlying the fixed-point test. With this paper, we ultimately aim at validating the fixed-point 
property of binary mixture data and at providing some performance metrics to researchers aiming at testing the fixed-point 
property on their experimental data.
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Introduction

One core objective of cognitive and behavioral sciences 
is to identify and decipher the hidden, internal variables 
and operations used by individuals to solve specific prob-
lems or tasks at hand. For example, in economic deci-
sion-making under risk, the dominant theories assume that 
individuals compute a subjective expected value for each 
available option, and choose the option with the highest 
value (McFadden, 1999; Rabin, 1998; Rangel et al., 2008). 

However, most cognitive tasks can be solved—more or 
less optimally—through a variety of strategies, implying 
different sets of operations and variables (Gigerenzer & 
Gaissmaier, 2011; Vlaev et al., 2011). Competing theories 
inspired by bounded rationality principles have therefore 
proposed that individuals rely on heuristics—i.e., simple 
deterministic rules—to make their choices (Brandstätter 
et al., 2006; Glöckner & Betsch, 2008; Payne et al., 1988). 
Usually, the debate about the latent variables and opera-
tions that are involved in economic decision-making under 
risk revolves around which of these theories best explains 
the overall, complex picture of choices produced by par-
ticipants over one or several experiments. Ultimately, how-
ever, individuals could not only use one dominant strat-
egy, but alternate between different strategies—i.e., use a 
mixture of strategies. Using different strategies to perform 
a specific problem or task has indeed been reported in a 
wide variety of experimental tasks, not only in adaptive 
decision-making (Collins & Frank, 2013; Domenech & 
Koechlin, 2015), but also in economic decision-making 
(Couto et al., 2020; Lopez-Persem et al., 2016), perceptual 
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decision-making (Ashwood et al., 2022; Roy et al., 2021), 
language processing (Ramotowska, 2022), and arithmetic 
problem-solving (Groeneweg et al., 2021). Furthermore, 
individuals could alternate between strategies as an adap-
tation to changing task demands (Cohen et al., 2007) or 
as an exploration of the different strategies to perform the 
task (Knox et al., 2012). This more flexible view of differ-
ent strategies generating human behavior is also endorsed 
by dual-process theories of cognition (Evans, 2003; Slo-
man, 1996). Accordingly, an increasing number of studies 
have acknowledged the importance of assessing whether a 
behavioral variable of interest is the product of one or sev-
eral different strategies (Archambeau et al., 2022; Visser 
& Speekenbrink, 2014), and of deciphering experimental 
factors that would favor one strategy over another (Couto 
et al., 2020; Roy et al., 2021).

In a series of recent papers, we described a method to 
identify the presence of a mixture of cognitive processes 
generating a behavioral variable—e.g., response times (RT) 
(Van Maanen et al., 2014, 2016). This so-called fixed-point 
property of mixture distributions entails that, independent 
of the mixture proportion, there will always be one prob-
ability density that is shared across all possible mixtures 
of the same two base distributions (Falmagne, 1968). This 
is illustrated in Fig. 1A, where distributions A and B are 
mixed with different proportions but all cross at the same—
fixed—probability density. The presence of a fixed point can 
be tested on distributions of a measured behavioral vari-
able for which two different generative cognitive processes 
are hypothesized and their mixture assumed to vary as a 
function of an experimental factor (Brown et al., 2006; Van 
Maanen et al., 2014). Consider an experiment where two 

Fig. 1   A Illustration of the fixed-point property in binary mixture 
data. The fixed-point property entails that any mixture of two base 
distributions (base A and B) cross at the same common density 
point, regardless of the mixture proportion, P (%). Densities with 
various mixture proportions of base A and B are displayed. The 
red dot indicates the fixed point. B Distributions of a measured 
behavioral variable (RTs) for which two different generative cog-
nitive processes are hypothesized (strategy A and B). For illustra-
tive purposes, the two strategies are displayed with different brain 

areas. C Illustration of the fixed-point property in experimental 
data for which the mixture of strategy A and B is manipulated 
with three experimental conditions. In condition 1, the mixture 
proportion of strategy A is P ≈ 100%, and the mixture proportion 
of strategy B is P ≈ 0%. In condition 2, the mixture proportion of 
both strategies is P = 50%. In condition 3, the mixture proportions 
of strategy A and B are the reciprocal of the mixture proportions 
in condition 1. D The observed RT distributions display the shared 
density point
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processes jointly account for the final behavior (e.g., RTs, 
Fig. 1B) and the relative contribution—i.e., mixture pro-
portion— of each process for the final behavior changes, 
depending on the experimental conditions (Fig. 1C). The 
fixed-point property entails that the observed distribu-
tions of a dependent variable for the different experimental 
conditions all cross at the same point (Fig. 1D). Because 
such a fixed point is extremely unlikely to be present in the 
data—i.e., only when the data come from a binary mixture 
is the experimental manipulation strong enough to affect the 
mixture proportions, and only the mixture proportions are 
affected and no other property of the data—observing such a 
property in the data would be strong evidence for a mixture 
of two strategies. Note that the fixed-point property does not 
require assumptions about the shape of the distributions; by 
extension, neither a mechanistic theory of the processes nor 
a model of the hidden cognitive variables and operations is 
required for testing the presence or absence of the mixture 
using the fixed-point property.

The procedure to statistically test for the presence or 
absence of the fixed-point property in experimental data 
(Van Maanen et al., 2014, 2016) involves four steps. In step 
1, a first statistical test evaluates whether the data collected 
across the different conditions exhibit signatures of a behav-
ioral change caused by the experimental manipulation. If 
there is no statistical difference between the distributions 
of the behavioral variable elicited across the different con-
ditions, the fixed-point property cannot be properly tested 
(Van Maanen et al., 2016). In step 2, the distributions of the 
behavioral variable of interest are estimated using a Gauss-
ian kernel-based density estimator for each participant and 
condition. This means that based on the collection of dis-
crete data points, a smoothed histogram (i.e., a distribution, 
or density) is produced that summarizes and interpolates 
how the behavioral variable is distributed in each condi-
tion. In step 3, for each pair of experimental conditions, the 
point where the respective density approximations cross is 
computed. Thus, in an experiment featuring three condi-
tions (Fig. 1C), there are three pairs of distributions (i.e., 
condition 1–condition 2, condition 2–condition 3, and condi-
tion 1–condition 3) and consequently three crossing points 
per participant (Fig. 1D). In step 4, a statistical analysis is 
performed to determine whether the three crossing points 
estimated from the empirical distributions of the participants 
are more likely to be sampled from a unique distribution—
which is evidence in favor of a fixed point–or from statis-
tically different distributions, which is evidence against a 
fixed point.

For this last step, the typical approach has been to com-
pute a Bayes factor (BF) in favor of the presence of a fixed 
point using Bayesian analysis of variance (Rouder et al., 
2012). A BF > 1 indicates that a fixed point is more likely 
to be present than to be absent, and a BF < 1 means that 

a fixed point is more likely absent than present. Using the 
four-step approach sketched above, we and others have 
found evidence for a mixture of processes in task-switching 
(Grange, 2016; Poboka et al., 2014; Van Maanen et al., 
2014) and in economic decision-making (Couto et  al., 
2020), and evidence against mixtures in speed/accuracy 
trade-offs in decision-making (Katsimpokis et al., 2020; 
Van Maanen, 2016). In all these studies, the conclusion 
about the presence or absence of a fixed point (and hence 
a mixture of cognitive strategies) depended on the value 
of the BF alone. We never explicitly considered the prob-
ability of a false positive outcome (i.e., a lack of specific-
ity of the method) or a false negative outcome (i.e., a lack 
of sensitivity of the method). The current paper assesses 
these probabilities through scenario analysis, consisting of 
resampling of real RT data.

Scenario analysis

A common approach for determining the specificity and sen-
sitivity of a test is to compute these under assumptions about 
the expected probability distribution of the data (Kuijpers 
et al., 2021; Molenaar et al., 2019). In the current paper, we 
develop a form of scenario analysis (Huss, 1988) to more 
closely reflect the true distribution in the data. In scenario 
analysis, a set of possible scenarios is determined, after 
which the distributions of possible outcomes are computed 
for each scenario, for example, through bootstrapping of 
a known data set. This approach has been widely applied 
in forecasting models, where (long-range) predictions are 
required under a fixed set of assumptions, such as in climate 
modeling (e.g., Xiao et al., 2019) and economic projections 
(e.g., Sandmann et al., 2021). In contrast, scenario analysis 
is less well known in the domains of psychological measure-
ment, where the aim is to assess the validity of a test under 
various scenarios.

We systematically investigate the sensitivity and speci-
ficity of detecting a fixed point in different scenarios using 
signal detection theory (SDT, Green & Swets, 1966; Mac-
millan & Creelman, 2005). In order to assess the ability of 
the fixed-point property to make correct detections (true 
positives) and correct rejections (true negatives), we sys-
tematically resampled experimental data produced under two 
different strategy instructions so as to generate sets of three 
synthetic conditions. Thus, we could generate both positive 
controls, in which the RT data are actually produced by two 
strategies and whose mixture proportions varied across the 
three different synthetic conditions, and negative controls 
in which the RT data are also produced by two strategies 
but whose mixture proportions were fixed across the three 
different synthetic conditions. Importantly, the use of real 
RT data allows us to preserve important authentic features 
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of the data which are only observed in real experiments, 
while maintaining tight control over the properties of the 
resampled data.

Leveraging this strategy, we investigated three types 
of scenarios. In Scenario 1, we assessed the ability of the 
fixed-point property to detect a mixture in the data, while 
varying how the mixture proportions changed in the differ-
ent conditions of the positive control. Meanwhile, we also 
assessed the ability of the fixed-point property to detect 
the absence of a mixture when the mixture proportions did 
not change, i.e., in the different conditions of the negative 
control. This is a reference scenario in the sense that the 

sensitivity (captured in the positive control) and specific-
ity (captured in the negative control) of the fixed-point 
test are affected only by the mixture proportion and no 
other properties in the data. In the second and third sce-
narios, the sensitivity and specificity of the fixed-point test 
are affected by other properties in the data, in addition to 
the mixture proportion—specifically, the duration of the 
experiment itself in Scenario 2 (what we call time-on-task 
effects) and the sample size of the experiment in Scenario 
3 (what we call sample size effects). The general proce-
dures for the resampled scenarios and their specifications 
are illustrated in Fig. 2.

Fig. 2   General procedure of resampled scenarios and their specifica-
tions. In all scenarios, RT data from two experimental conditions are 
resampled into three new conditions: in the positive control, the mix-
ture proportion of the two experimental conditions varies across the 
three new conditions; in the negative control, the mixture proportion 
is fixed. The fixed-point property is estimated on the three new condi-
tions, and the ability of the fixed-point property to detect a mixture in 
the positive control, as well as the absence of a mixture in the nega-
tive control, is assessed. In Scenario 1, only the mixture proportion 
varies; consequently, the sensitivity and specificity of the fixed-point 

test is affected only by the mixture proportion and no other property 
in the resampled data. In Scenarios 2 and 3, other properties of the 
resampled data vary—specifically, the probability that RT data are 
resampled from the beginning, middle, or end of the experiment 
in Scenario 2, and the amount of RT data resampled in Scenario 3. 
Consequently, the sensitivity and specificity of the fixed-point test 
are affected by the time the RT data are resampled across the experi-
ment in Scenario 2 (i.e., time on task) and by the amount of RT data 
resampled in Scenario 3 (i.e., sample size), in addition to the mixture 
proportion
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Methods

Experimental data

In all resampled scenarios reported below, we reanalyzed RT 
data from a functional magnetic resonance imaging (fMRI) 
experiment. Data and scripts for performing bootstrapping 
for all scenarios are available at https://​osf.​io/​9vs3y. The 
fMRI analyses and results are not reported here. In this 
experiment, participants were asked to choose between two 
lotteries that differed in the probability of winning a certain 
monetary outcome, as well as the value of the monetary 
outcome (Couto et al., 2020). In this setup, in the absence 
of explicit instructions, multiple strategies are available for 
participants to choose, such as computing and comparing the 
expected value of the options, or using a heuristic or rule of 
thumb (e.g., focus only on the probability of winning). In 
this study, to isolate the strategy that involves computing 
expected values, we explicitly instructed participants—and 
incentivized them accordingly—to either choose the option 
with the highest expected value or choose their preferred 
option, in a blocked design, resulting in different strategies.

Participants

Participants were recruited from the laboratory's participant 
database (www.​lab.​uva.​nl) of the University of Amsterdam. 
Participants provided all the necessary written forms before 
participating in the experiment (i.e., informed consent for 
the experiment itself and all the forms concerning safety 
which are required for fMRI experiments). Participants were 
rewarded with two research credits (RC) for their participa-
tion, with the possibility of a maximum monetary reward of 
€10, depending on two randomly chosen trials at the end of 
the experiment. All the experimental procedures followed 
the guidelines imposed (and approved) by the local Ethics 
Committee of the University of Amsterdam, Psychology 
Department (2019-PML-11490). The sample consisted of 
48 participants, but four participants were excluded from 
the analyses for not completing the task, leaving 44 partici-
pants in the reported analyses (29 female, mean age = 21.1, 
SD = 2.5).

Experimental design and procedure

The task consisted of a repeated binary decision-making task 
involving probabilistic monetary outcomes (Fig. 3A). On 
each trial, participants had to choose between a safe (i.e., 
p > 50% of winning a certain amount of money a) and a risky 
(1 − p of winning a higher amount A) lottery. The probabili-
ties of each lottery were presented as two complementary 

areas of a wheel of fortune, displayed on the middle of the 
screen, and the amounts as vertical bars of varying height, 
displayed on the left or right of the screen (depending on 
which side the corresponding lottery was presented). The 
lottery displayed on the left of the screen was colored in 
blue, and the lottery displayed on the right of the screen was 
yellow. The side of presentation (left or right) of the safe and 
risky lotteries was randomized across trials. Text describ-
ing exact probabilities and amounts of the lotteries was also 
presented at the bottom of the screen.

In the calculate (CA) condition, participants were 
instructed to calculate the expected value (EV) of the lot-
teries at stake (i.e., the product of probability and amount; 
e.g., EV = p × a, in the case of the safe lottery) and to select 
the lottery with the highest EV. In the preference (PR) condi-
tion, they were instructed to choose the lottery according to 
their own preference. Each trial was preceded by a cue (CA 
or PR, respectively) to remind participants of the current 
instruction. These instructions were associated with respec-
tive incentivization mechanisms (see below).

An experimental session consisted of 30 blocks of alter-
nating conditions, and each block consisted of eight trials 
(Fig. 3B). A short break was provided after five blocks. 
The order of CA and PR conditions was counterbalanced 
between participants. Before the experimental session, par-
ticipants experienced 16 trials with feedback so that they 
could familiarize themselves with the task. As feedback, the 
lottery they selected was either verified or executed, depend-
ing on whether they were instructed to calculate or to play 
the lottery, and the result was displayed. In case participants 
did not provide a choice within 6.5 seconds, a ”TOO SLOW” 
feedback was displayed instead. After the familiarization, the 
participants entered the fMRI scanner for the experimental 
session. The experimental session was identical to the train-
ing session, except that no feedback was provided (only the 
“TOO SLOW” feedback, in case of no choice). To incentiv-
ize compliance with the instructions, two of the participants’ 
choices—each one corresponding to one condition—were 
selected at the end of the experiment. If the selected choice 
from the CA condition was correct, participants received 
a bonus of €5. The selected lottery from the PR condition 
probabilistically determined a second bonus, the amount of 
which depended on the choice of lottery and a conversion 
rate. Conversion rates between experimental and real € were 
set such that participants could ultimately win up to €5.

Scenario 1: Reference scenario

Because in this experiment participants were explicitly 
instructed and incentivized to either calculate the expected 
values of the lotteries at stake or to choose the lottery 
according to their own preference, we consider these two 
explicitly instructed and incentivized conditions to be the 

https://osf.io/9vs3y
http://www.lab.uva.nl
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ground truth. With that in mind, we assume that the data 
from these conditions form the RT base distributions from 
which mixture distributions with various mixture propor-
tions can be generated. In Scenario 1, we repeatedly resa-
mpled from these RT base distributions in three synthetic 
conditions to assess the probability of finding a fixed point 
when the resampled data constitute a mixture of varying 
proportions (sensitivity), versus the probability of finding 
a fixed point when the resampled data do not constitute a 
mixture, or a mixture of fixed proportion (specificity).

To this end, we resampled 40 trials from the two experi-
mental conditions CA and PR to form three new resampled 
conditions A, B, and C (Fig. 3C). For positive scenarios—
which contain a mixture of cognitive processes—condition 
A contained a high proportion of CA trials, ranging from 
100% to 60% (with the remaining trials from the PR condi-
tion), condition B always consisted of an equal number of 
CA and PR trials, and condition C was always the reciprocal 

of condition A. In the negative scenarios—which do not 
contain a mixture of processes or a mixture of fixed propor-
tions—all trials in resampled conditions A, B, and C, were 
resampled from the CA and PR conditions with equal prob-
ability. However, to ensure that the resampled conditions dif-
fered (for a detailed rationale, see Van Maanen et al., 2016), 
we resampled from the different parts of the experiment, 
such that all trials in resampled condition A were from the 
first 33% of the data, all trials in B were from the second 
33% of the data, and all trials in C were from the last 33% 
of the data. Because participants sped up throughout the 
experiment (see Results), this led to a shift in the mean RT 
across the resampled conditions. We performed 1000 boot-
strapping samples.

The fixed-point property was estimated with the fp pack-
age for R (available at https://​cran.r-​proje​ct.​org/​web/​packa​
ges/​fixed​point​prope​rty/​index.​html). Following the procedure 
outlined in the Introduction, four steps were carried out: In 

Fig. 3   A Behavioral task. Successive screenshots displayed dur-
ing a given trial are illustrated from left to right, with durations in 
milliseconds. On each trial, following a variable jitter (0–2000 ms) 
and a cue (750 ms), participants had to choose between a risky 
(left: 35% chance of winning or losing €9.15) and a safe (right: 65% 
chance of winning or losing €6.95) lottery. Choice durations are fixed 
(6500 ms), and followed by a choice-confirmation screen, where the 
selected lottery is highlighted by a contour box; or followed by a 
”TOO SLOW” feedback if no lottery is selected (750 ms). Altogether, 
each trial is 10,000 ms long. B Experimental design. In total, partici-
pants performed 240 trials, spread over 30 blocks (i.e., 30 blocks of 8 
trials), and they were provided with a short break every five blocks. 
Within each participant, CA and PR conditions were alternated 
between blocks; and between participants, the order of CA and PR 
conditions was counterbalanced. C Resampling approach in Scenario 

1. For each participant (44 in total), 40 trials were resampled from the 
CA and PR conditions to form three new conditions A, B, and C. In 
the positive scenario, condition A contains a high proportion of CA 
trials (ranging from 100% to 60%) and a low proportion of PR trials 
(ranging from 0% to 40%); condition B, an equal number of CA and 
PR trials (50%); and condition C, a low proportion of CA trials (rang-
ing from 0% to 40%) and a high proportion of PR trials (ranging from 
100% to 60%). This mimics a mixture of processes under CA and PR 
conditions. In the negative scenario, condition A, B, and C contain an 
equal number of CA and PR trials (50%). This mimics the absence of 
a mixture of processes. To ensure that conditions A, B, and C differed 
in the negative scenario, in condition A, CA and PR trials were resa-
mpled from the beginning of the experiment (first 33% of the data); in 
condition B, from the middle (second 33% of the data); and in condi-
tion C, from the end (last 33% of the data)

https://cran.r-project.org/web/packages/fixedpointproperty/index.html
https://cran.r-project.org/web/packages/fixedpointproperty/index.html
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step 1, we computed pairwise BFs using Bayesian pairwise 
t-tests on the resampled conditions (Rouder et al., 2009). In 
step 2, the RT distributions for each participant and each 
resampled condition were approximated using a Gaussian 
kernel-based density estimator (Silverman, 1986). In step 
3, the RTs of the crossing points for each pair of density 
functions were computed. Given that we have three resam-
pled conditions, we also have three pairs of density functions 
(e.g., A–B, B–C, A–C), and consequently, three crossing 
points per participant. In step 4, we computed the BFs for 
the presence of the fixed point using Bayesian analysis of 
variance (ANOVA) (Rouder et al., 2012).

Scenario 2: Time‑on‑task effects

Considering that we ultimately aim at gauging sensitiv-
ity and specificity of the fixed-point property test for real 
RT data, it is important that we mimic mixtures that may 
be susceptible to certain experimental factors (in addition 
to the mixture proportion), and which may subsequently 
affect the sensitivity and the specificity of the fixed-point 
property test. One factor that is often neglected and/or not 
explicitly analyzed, though often present in experiments, 

is the duration of the experiment itself. Over the course 
of an experiment behavior may change, for example, due 
to increased familiarity with the task or learning (Correa 
et al., 2018; Van Maanen et al., 2012), fatigue (Ratcliff 
& Van Dongen, 2009), or even boredom (Mittner et al., 
2015). This potentially impacts the sensitivity of the fixed-
point property analysis, as changes in the base distribution 
compromise the stability of the fixed point (Van Maanen 
et al., 2016).

With this in mind, we generate different mixtures whose 
modulation of the two RT base distributions depends on the 
time on task. Specifically, in contrast to Scenario 1, we also 
varied the probability that trials were resampled from the 
beginning, middle, or end part of the data for the positive 
scenario. Because we chose to divide the experimental trials 
into three equal parts, there were six possible ways by which 
resampled conditions A, B, and C could be arranged over the 
three parts of the experiment (Fig. 4).

In all other respects, Scenario 2 follows the same setup as 
Scenario 1, i.e., a change in the mixture proportion for the 
positive scenarios (when the fixed point is present) and no 
change in the mixture proportion for the negative scenarios 
(when the fixed point is absent). In the positive scenarios, 

Fig. 4   Resampling approach in Scenario 2. The positive and negative 
scenarios follow the same setup as Scenario 1, i.e., the positive sce-
nario illustrates a change in the mixture proportion, and the negative 
scenario, no change in the mixture proportion. The difference in Sce-
nario 2 stands on the way the CA and PR trials are resampled over the 
experiment to form conditions A, B, and C in the positive scenario—
specifically, the probability that trials are resampled from the begin-
ning, middle, or end of the experiment. A variation in this probability 

is to ensure a dependency between the different mixtures in conditions 
A, B, and C and the different modulations of the RT base distributions 
of CA and PR conditions across the different parts of the experiment. 
Given that the experiment is divided into three equals parts (beginning, 
middle, and end), there are six possible ways by which the mixtures in 
conditions A, B, and C can be arranged, i.e., six possible permutations
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the mixture proportions are again systematically varied as 
in Scenario 1.

Scenario 3: Sample size effects

In Scenario 3, we explored the lower limit of the sample 
size. This is important given the potential application of the 
fixed-point property test in domains where it is difficult or 
uncommon to collect large amounts of data, either in terms 
of participants or in terms of observations per participant. 
Thus, the distinctive feature of Scenario 3 is that we varied 
the number of both participants and observations in resa-
mpled conditions A, B, and C (Fig. 5). The number of par-
ticipants was varied between 44 (the number of participants 
in the real experimental data) and 11, and the number of 
observations per participant was varied between 40 and 10 
trials per condition. Again, Scenario 3 mimics Scenario 1 
in all other respects, with the exception of the number of 
bootstrapping samples. We performed 10,000 bootstrapping 
samples to ensure that the results of Scenario 3 were stable, 
even when the number of participants and number of trials 
were extremely low.

Receiver operating characteristic (ROC) curve 
analyses

To determine the sensitivity and specificity of the fixed-point 
property test using scenario analysis, we compute a ROC 
curve under the assumption that a fixed point is detected 
when the BF for the presence of a fixed point exceeds a cer-
tain criterion BF (which we will refer to as the fixed-point 
criterion). However, the detection of a fixed point depends 
on another criterion (which we refer to as the condition cri-
terion) to assess whether the conditions initially differ (Van 
Maanen et al., 2016). The condition criterion safeguards 
against a situation where a detection of a fixed point may 
be wrongly inferred due to a lack of difference between RT 
distributions of the resampled conditions, rather than a true 

mixture proportion change. Detection or no detection of a 
fixed point therefore requires two sequential decision crite-
ria. Firstly, with the condition criterion, we check whether 
there is a difference in all pairwise RT distributions using 
Bayesian pairwise t-tests. Secondly, if all pairwise BFs 
exceed the condition criterion, we proceed with the fixed-
point criterion, where we check whether a fixed point is 
more likely to be present than absent. If one or more of the 
pairwise BFs do not exceed the condition criterion, we do 
not proceed with the fixed-point criterion and consider the 
fixed point to be absent. Together, these decision criteria 
demarcate what are traditionally known as true positive rate 
(TPR), true negative rate (TNR), false positive rate (FPR), 
and false negative rate (FNR). We thus computed a con-
ditional ROC, where the detection of a fixed point by the 
fixed-point criterion is conditional on a specific choice of 
the condition criterion.

Modeling sensitivity and specificity using a conditional 
ROC has a number of consequences. Firstly, chance per-
formance of the fixed-point property test is not at 50% as 
in standard binary choice, but at 25%, reflecting that there 
are two sources of classification instead of one. Secondly, 
because the condition criterion rejects some cases before 
they are matched against the fixed-point criterion, the TPR 
and TNR from the fixed-point criterion do not sum to 1. 
Consequently, the ROC curve may not reach the theoretical 
extreme where both the TPR and the FNR are 100% (see 
also Rotello et al., 2004; Wixted, 2007, for similar propos-
als, but for the study of human memory). These aspects are 
important to consider when interpreting the results.

A typical application of ROC analysis is to compute the 
area under the ROC curve (AUC) to reflect the ability to dis-
entangle positive and negative cases (Bradley, 1997; Hanley 
& McNeil, 1982). Because the ROCs of the fixed-point crite-
rion that we report here are conditional on a specific choice 
of the condition criterion, the AUCs also need to reflect this 
for a fair assessment. Therefore, we only consider the area 
where the curve is actually defined, by dividing the ROC 

Fig. 5   Resampling approach in Scenario 3. The positive and negative 
scenarios follow the same setup as Scenario 1, i.e., the positive sce-
nario illustrates a change in the mixture proportion, and the negative 
scenario, no change in the mixture proportion. The difference in Sce-
nario 3 stands on the number of participants and trials that are used 

and resampled to form conditions A, B, and C in the positive and 
negative scenarios. The number of participants is varied from 44 to 11 
participants, and the number of resampled trials from 40 to 10 trials
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by the overall FPR of the classification. This way, the prob-
ability of a true positive result by the fixed-point criterion, 
conditional on the probability of a false positive result by 
the choice of the specific condition criterion, is computed. 
Scripts to calculate the conditional AUCs are also available 
at https://​osf.​io/​9vs3y.

Results

To confirm that the two experimental manipulations that we 
depend on in the resampled scenarios are actually present in 
the data, we first investigated the effect of CA and PR condi-
tions, as well as the effect of time on task (Fig. 6). A linear 
mixed-effect regression reveals that, overall, participants are 

faster in PR than CA (βcondition = −730, SE = 105, p < .001). 
Additionally, their speed increases overall throughout the 
experiment (βtime-on-task = −217 , SE = 38, p < .001), espe-
cially in the PR condition (βtime-on-task × condition = −153, 
SE = 23, p < .001). These results validate our approach, as 
the two different—instructed—strategies (i.e., CA and PR) 
indeed generate different base distributions of our behavio-
ral variable of interest (i.e., RT). The significant effects of 
the time on task also substantiate our intuition that this fac-
tor might constitute an important confound if unaccounted 
for—a potential confound whose consequences are assessed 
in our Scenario 2.

Scenario 1: Reference scenario

Our first reference scenario features a mixture propor-
tion P = 100% and a condition criterion of 1 (Fig. 7A). A 
mixture proportion P = 100% means that the three resa-
mpled conditions are respectively composed of 100% 
CA and 0% PR trials, 50% CA and 50% PR trials, and 
100% CA and 0% PR trials. A condition criterion of 1 
means that any amount of evidence in favor of a differ-
ence between the conditions is considered sufficient to 
carry on with the detection of a fixed point by the fixed-
point criterion. Because such a condition criterion value 
is very permissive, no resampled cases are rejected at step 
1, and the highest FPR (obtained for the lowest value of 
the fixed-point criterion, which is 0) can reach 100%. In 
this case, the conditional ROC curve is closed (i.e., there 
is a fixed-point criterion value for which TPR = 100% and 
FPR = 100%). When the value of the condition criterion 
increases, more resampled cases are rejected at step 1 due 
to a lack of difference between the resampled conditions, 

Fig. 6   Observed RTs for the experimental conditions CA and PR in 
the beginning, middle, and end of the experiment. Each part of the 
experiment corresponds to one third of the total number of blocks 
(i.e., 10 blocks each part). Data points illustrate the mean of the 
median RTs, and error bars illustrate the standard deviation of the 
mean

Fig. 7   Results of Scenario 1. A Receiver operating characteristic 
(ROC) curve for the fixed-point criterion (FPC), conditional on a con-
dition criterion (CC) of 1, with the mixture proportion P = 100%. The 
red circle illustrates FPC = 3. B Conditional ROC curves for various 
levels of CC, with the mixture proportion P = 100%. Conditional ROC 
curves with CC < 1 are not displayed here as they overlap. Vertical 
lines demarcate the area where the curve is actually defined. C Areas 
under the conditional ROC curves (conditional AUC) for various lev-

els of CC and various mixture proportions. Data points and error bars 
illustrate the mean and 95% confidence intervals (CIs) of the condi-
tional AUC over 1000 bootstrapping samples. Dashed lines illustrate 
chance performance for CC = 0 (in orange) and CC > 0 (in purple). 
Because a CC = 0 reduces the situation to unconditional AUC, chance 
performance is illustrated at 50% as in standard binary choice

https://osf.io/9vs3y
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and therefore the highest FPR (obtained for the lowest 
value of the fixed-point criterion, which is again 0) mecha-
nistically decreases. In those cases, the conditional ROC 
curves do not reach the theoretical extreme (Fig. 7B).

To get a sense of the sensitivity and specificity of the 
fixed-point test, we computed the areas under the condi-
tional ROC curves (conditional AUC, cAUC) for different 
mixture proportions and for several values of the condition 
criterion (Fig. 7C). This systematic analysis reveals that, 
as the effect of the synthetic experimental manipulation 
on the mixture proportion decreases (i.e., as the mixture 
proportion P approaches 50%), the choice of a condition 
criterion has a large impact on the specificity of the fixed-
point property (Van Maanen et al., 2016). The intuition 
behind this result is that, as the difference between the 
resampled conditions vanishes, the chances increase that 
the detection of a fixed point by the fixed-point criterion 
is stopped at step 1 due to the condition-difference test 
(especially for the most stringent values of condition cri-
terion), mechanically inflating the FNR. Consequently, the 
TPR decreases and the AUC drops. This is illustrated in 
Fig. 7C, which shows the mean cAUC and 95% confidence 
intervals (CIs) over the resampled data (e.g., for CC = 64, 
cAUC​100 = 63.5% ± 3.3, cAUC​90 = 59.1% ± 3.3, cAUC​
80 = 42.9% ± 3, cAUC​70 = 7.2% ± 1.4, cAUC​60 = 0% ± 0). 
Here and throughout the paper, we interpret the CIs to 
understand changes in cAUC. This effect is naturally 
absent in the case where the condition criterion is set to 
0, as the detection of a fixed point by the fixed-point cri-
terion is not stopped at step 1, regardless of the mixture 
proportion. Consequently, the CIs do not reveal different 
mean cAUCs for a condition criterion of 0. Overall, these 
results reveal the importance of the choice of a condition 
criterion, as well as the effect size of the synthetic experi-
mental manipulation on the mixture proportion.

Scenario 2: Time‑on‑task effect

In Fig. 6, we observed an increase in RT speed over the 
course of the experiment. This observation substantiates our 
intuition that this might constitute an important confound 
if unaccounted for. In order to evaluate the consequences 
of this potential confound, we ran a scenario mimicking 
experimental designs that do not carefully distribute trials 
of the different conditions evenly throughout the experi-
ment (Fig. 4). We computed the conditional AUC averaged 
across the six possible permutations of the resampled condi-
tions (Scenario 2) and compared them with the conditional 
AUC from Scenario 1, which did control for the time on 
task in the different resampled conditions (Fig. 8). We first 
considered a situation of a permissive condition criterion 
(CC = 0). Note that a condition criterion of 0 means that no 
cases are excluded based on condition differences at step 1. 
This reduces the situation to unconditional AUC and chance 
performance to 50% as in standard binary choice. The resa-
mpled data under this situation revealed a severe drop in 
the AUC in Scenario 2 compared to Scenario 1 (Fig. 8A), 
with the AUC in Scenario 1 above chance performance and 
in Scenario 2 with no difference from chance. The intuition 
here is that the fixed-point test rejects the hypotheses that 
all crossing points are sampled from the same distribution 
at step 4, not because the mixture is absent but because it 
is occluded by the dependency generated between the mix-
ture proportion change and the base distributions change 
across the experiment (Van Maanen et al., 2016). When we 
increased the stringency of the condition criterion (Fig. 8B, 
CC = 1), the number of false negatives increased to a greater 
degree, such that the cAUC dropped even more (e.g., cAUC​
100 = 1.7% ± 1, cAUC​90 = 19.2% ± 1.2, cAUC​80 = 1% ± 0.8) 
than when the condition criterion was set to 0 (panel A, 
e.g., cAUC​100 = 41.6% ± 2.3, cAUC​90 = 43.7% ± 2.4, cAUC​

Fig. 8   Results of Scenario 2. A AUC conditional on a CC of 0 and 
various mixture proportions. B AUC conditional on a CC of 1 and var-
ious mixture proportions. Dots and error bars for Scenario 2 illustrate 
the median of the mean and the mean of the 95% CIs of conditional 
AUC over all six arrangements (i.e., all six possible ways by which the 

resampled conditions can be arranged), each arrangement with 1000 
bootstrapping samples. For comparison purposes, conditional AUC of 
Scenario 1 is added. Dashed lines illustrate chance performance
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80 = 43.6% ± 2.4). Interestingly, though, the severe drop in 
the more stringent condition criterion (Fig. 8B) is attenu-
ated when the effect of the synthetic experimental manip-
ulation on the mixture proportion decreases (i.e., cAUC​
70 = 18.5% ± 1.4, cAUC​60 =42.1% ± 2.4). Above chance 
performance is observed in the cAUC when the effect is 
almost null (i.e., for cAUC​60). This apparent improvement is, 
however, quite artificial, as it indicates that a larger number 
of resampled cases pass the stringent condition criterion at 
step 1, only to be rejected as false negatives later at step 4, 
inflating the conditional AUC. Overall, these results again 
emphasize the importance of the choice of a condition cri-
terion, and the importance of carefully designing an experi-
ment when one considers using the fixed-point property, 
as some apparently trivial details like the time on task can 
generate important confounds.

Scenario 3: Sample size effects

In this final section, we evaluate how the statistical power 
associated with the experimental design (i.e., number of tri-
als and number of participants) impacts the sensitivity and 
specificity of the fixed-point test. To do so, we first compute 
the conditional AUC for different mixture proportions and 
a standard condition criterion of 1 (Fig. 9A). As could be 
intuited ex ante, the conditional AUC is an increasing func-
tion of both participant and trial numbers, regardless of the 
effect of the synthetic experimental manipulation (i.e., of 
the mixture proportion)—in other words, the specificity and 
sensitivity of the fixed-point test generally increase as the 
number of participants and the number of trials increase, and 

they decrease as the number of participants and the number 
of trials decrease. The highest cAUC that we obtained was 
63.3% ± 0.8. This is significantly above chance performance, 
considering chance performance of 25%. This AUC or a 
comparable value was obtained for mixture proportions of 
80% and higher, and for 33 participants or higher. The obser-
vation that there is no further increase in the cAUC when 
the number of participants increases beyond 33 suggests 
that a sample size of 33 is reasonable. However, the general 
trend in the AUCs does suggest that larger trial numbers are 
preferred—but see Rouder and Haaf (2018), where larger 
numbers of participants seem to be preferred. To gain a finer 
understanding of this result, we recomputed the AUC with 
a condition criterion of 0, which reduces the situation to 
unconditional AUC and chance performance to 50% as in 
standard binary choice (Fig. 9B). In this case, the effects 
of the number of trials and participants on the AUC are 
significantly attenuated, suggesting that the main effect—
i.e., increase or decrease—of the statistical power operates 
through the condition criterion. These results emphasize 
once again the importance of the choice of a condition cri-
terion, especially when there is a restriction on the number 
of participants and/or trials per participant.

Discussion

The fixed-point property is a useful property of distributions 
of measured behavior for which a mixture of two cogni-
tive processes is hypothesized (Falmagne, 1968). Although 
researchers have applied fixed-point property analysis to 

Fig. 9   Results of Scenario 3. A AUC conditional on a CC of 1 
and various mixture proportions. B AUC conditional on a CC of 0 
and various mixture proportions. Dots and error bars illustrate the 

mean and 95% confidence intervals (CIs) of conditional AUC over 
10,000 bootstrapping samples. Dashed lines illustrate chance per-
formance
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identify mixture distributions in their data (Brown et al., 
2006; Couto et  al., 2020; Grange, 2016; Katsimpokis 
et al., 2020; Poboka et al., 2014; Van Maanen, 2016), lit-
tle is known about its ability to detect a mixture in the data 
when present (sensitivity of the fixed-point property) and 
to detect the absence of a mixture when absent (specific-
ity of the fixed-point property). The novel contribution of 
this paper is the systematic investigation of the diagnostic 
ability of the fixed-point test under three different resam-
pled scenarios, which mimic variations in the experimental 
design suspected to affect the sensitivity and specificity of 
the fixed-point test. This form of scenario analysis (Huss, 
1988), which though widely applied in forecasting models 
(Sandmann et al., 2021; Xiao et al., 2019) is not well known 
in the domains of psychological measurement, yields a much 
broader application of the fixed-point test than the typical 
approach. Importantly, it also preserves important authentic 
features of data which are typically observed in real experi-
ments while maintaining tight control over the properties of 
the resampled scenarios—for example, the true distribution 
in the data of each resampled scenario.

When cast in a signal detection framework, the condi-
tional AUC in the various scenarios did not approach the 
ceiling, indicating that true fixed points in the data were not 
always detected, false fixed points were detected, or both. 
The highest average AUC that we found was 64%, and this 
was found when we used a very permissive condition cri-
terion (i.e., CC = 0), so no cases were excluded based on 
condition differences. As soon as the condition criterion was 
higher, then detecting a fixed point became increasingly dif-
ficult, especially when the overlap between resampled distri-
butions increased. This occurred because of changes in the 
mixture proportion (Scenario 1), covarying trends in the data 
(Scenario 2), and statistical power (Scenario 3).

Although the conditional AUCs were not particularly 
high in any configuration of the data, the sensitivity and 
specificity of the fixed-point test should be discussed and 
interpreted in the light of its dual criterion. Specifically, the 
choice of the condition criterion is important. When the 
condition criterion is set to 1 or higher, chance performance 
of the fixed-point property test is only 25%, reflecting two 
sources of classification—one based on the condition crite-
rion and the other on the fixed-point criterion. This is sub-
stantially lower than the conditional AUCs that we report 
here, at least for some meaningful configurations of the data 
(i.e., scenarios). Consequently, a condition criterion of 0 is 
not always an optimal condition criterion. Putting this into 
perspective, a stricter condition criterion may actually be 
more optimal when the experimental conditions differ sub-
stantially (and this difference is not confounded with other 
experimental factors). This can for example be observed in 
the conditional AUCs of Scenario 1 for higher mixture pro-
portions in relation to chance performance in Fig. 8A and B. 

Similarly, a stricter condition criterion may be more optimal 
when large amounts of data are possible, either in terms 
of participants or in terms of observations per participant, 
as for example was the case for the conditional AUCs in 
Fig. 9A and B.

Altogether, these results provide some important per-
formance metrics to researchers aiming to apply the fixed-
point property on their experimental data. In addition to the 
choice of the condition criterion, maximizing the effect size 
between experimental conditions (e.g., by optimizing experi-
mental designs) and the sample size (e.g., by increasing the 
number of participants and trials) is particularly relevant 
for better performance of the fixed-point test. Although 
these research practices are already generally identified as 
good research practices (Ioannidis, 2005; Meyvis & van 
Osselaer, 2018; Simmons et al., 2011), there are still many 
methodological differences regarding these in the different 
domains. Taking the sample size as an example, both cogni-
tive psychology and experimental economics encourage the 
collection of large amounts of data; however, while cogni-
tive psychology does this in terms of both participants and 
observations per participant (Rouder & Haaf, 2018), experi-
mental economics focuses in particular on the number of 
participants (Gruener, 2019). The illustrative example from 
the current manuscript thus emphasizes how these research 
practices should be fully considered when testing the fixed-
point property, regardless of the research field. Regarding 
the choice of the condition criterion per se, there are no clear 
recommendations, as it greatly depends on those research 
practices. The general recommendation is that a very permis-
sive condition criterion is not always an optimal condition 
criterion—i.e., a stricter condition criterion may be more 
optimal if the effect size between the experimental condi-
tions and the sample size of the study are high. To make the 
choice of a condition criterion more systematic, however, a 
more concrete recommendation is that researchers engage 
on their own simulations, akin to parameter recovery and 
model identification exercises which are typically done in 
model-based analyses (Wilson & Collins, 2019).

Importantly, the fact that conditional AUCs were not par-
ticularly high in any configuration of the data could also 
be discussed and interpreted in light of the difficulty of the 
fixed-point test. Identifying a binary mixture of RT data is 
a notoriously difficult problem (Krajbich et al., 2015). This 
is because the detection of a mixture hinges on the estima-
tion of the probability densities of the observed distribu-
tions, which are necessarily noisy samples. To tackle this, 
researchers have relied on multivariate data, such as includ-
ing accuracy rates in addition to RTs (Archambeau et al., 
2022; Molenaar et al., 2016; Visser, 2011). But this is not 
the case of the fixed-point test, which relies only on the uni-
variate estimation of the RT densities. A second approach 
to tackle the difficulty in detecting binary mixtures is to 
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make assumptions about the shape of the RT distribution 
(Molenaar et al., 2018). This enforces a theoretical model 
on the observed data, which researchers may not be prepared 
to do. The fixed-point property test provides a completely 
model-free method for detecting mixtures, which may come 
at the cost of lower accuracy. Considering this, an interest-
ing analysis strategy could be the complementary use of 
model-free and model-based methods when investigating 
binary mixtures. The model-based approach may be more 
sensitive for small effects, but the model-free approach, such 
as fixed-point detection, allows for a corroboration of the 
assumptions underlying a model-based method.

In this data set, participants were explicitly instructed 
and incentivized to choose between lotteries according 
to two different strategies. This experimental task differs 
substantially from the tasks most often used in behavioral 
economics (Kirchler et al., 2017; Kocher & Sutter, 2006), 
where participants are subjected to time pressure or time 
constraints. The rationale behind these manipulations is that 
different strategies have different processing speeds (Evans, 
2003; Sloman, 1996), so when participants choose under 
time pressure or time constraints, they use a faster strategy 
(Rubinstein, 2007). Although these manipulations have been 
proven valuable tools for the identification of different strate-
gies in economic decision-making under risk (Spiliopoulos 
& Ortmann, 2018), they still face a number of challenges 
(Keren & Schul, 2009; Melnikoff & Bargh, 2018). Lack of 
precision in strategy specification is one of them. In fact, 
in the absence of explicit instructions, participants can use 
more than one faster strategy when subjected to these manip-
ulations. We attempted to mitigate this problem by isolating 
specific strategies through instruction and incentivization. 
The validity of the task in this respect was further indepen-
dently shown in a recent paper (Archambeau et al., 2022), 
which correctly identified the two instructed and incentiv-
ized strategies in the data (both RT and choices) using hid-
den Markov modeling (HMM) of the time series in the task. 
In case the HMM identified more than the two instructed 
and incentivized strategies, we could still use the fixed-point 
property, but only if our manipulation affected the propor-
tion of the two instructed and incentivized strategies, as that 
would reduce the problem to a binary mixture in the end. If 
the experimental manipulation affected the proportion of 
other strategy(ies), however, then the fixed-point property 
would not apply, and more complex, model-driven analy-
ses such as the HMM would be needed (Archambeau et al., 
2022; Dutilh et al., 2011; Visser & Speekenbrink, 2014).

In conclusion, although the diagnostic ability of the fixed-
point test has been revealed to be less than perfect, we have 
identified, through systematic investigations, which con-
figurations of the data can improve its ability. Specifically, 
this includes an appropriate choice of a condition criterion, 
together with a maximization of the effect size—so that the 

experimental conditions differ substantially, and this differ-
ence is not confounded with other experimental factors—and 
a maximization of the sample size, in terms of both partici-
pants and observations per participant. We emphasize that 
the decision of the condition criterion is up to the researcher, 
who must decide according to the experimental design and 
sample size of the study, and ideally, based on their own sim-
ulations. We further argue in favor of the fixed-point test as 
a valid tool to detect different strategies, given its nature—
i.e., dual criterion—and difficulty, as well as in favor of the 
lottery task in which the test was analyzed so as to detect 
different strategies in economic decision-making under risk.
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