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Abstract
The ability to detect the absolute location of sensory stimuli can be quantified with either error-based metrics derived from 
single-trial localization errors or regression-based metrics derived from a linear regression of localization responses on the 
true stimulus locations. Here we tested the agreement between these two approaches in estimating accuracy and precision in 
a large sample of 188 subjects who localized auditory stimuli from different azimuthal locations. A subsample of 57 subjects 
was subsequently exposed to audiovisual stimuli with a consistent spatial disparity before performing the sound localiza-
tion test again, allowing us to additionally test which of the different metrics best assessed correlations between the amount 
of crossmodal spatial recalibration and baseline localization performance. First, our findings support a distinction between 
accuracy and precision. Localization accuracy was mainly reflected in the overall spatial bias and was moderately correlated 
with precision metrics. However, in our data, the variability of single-trial localization errors (variable error in error-based 
metrics) and the amount by which the eccentricity of target locations was overestimated (slope in regression-based metrics) 
were highly correlated, suggesting that intercorrelations between individual metrics need to be carefully considered in spatial 
perception studies. Secondly, exposure to spatially discrepant audiovisual stimuli resulted in a shift in bias toward the side 
of the visual stimuli (ventriloquism aftereffect) but did not affect localization precision. The size of the aftereffect shift in 
bias was at least partly explainable by unspecific test repetition effects, highlighting the need to account for inter-individual 
baseline differences in studies of spatial learning.
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Introduction

The ability to localize objects and events in space is criti-
cally involved in nearly every interaction with the environ-
ment and is, thus, vitally important for humans and many 
other species. Consequently, spatial localization abilities 
have been a subject of experimental investigations since the 
dawn of experimental psychology in the nineteenth century 
(e.g., Stratton, 1897), and numerous psychophysical stud-
ies have greatly contributed to identifying the mechanisms 
underlying spatial perception and learning in humans (for 
reviews, see Ahveninen et al., 2014; Blauert, 1997; Bruns 
& Röder, 2019a; Chen & Vroomen, 2013; King, 2009; Mid-
dlebrooks & Green, 1991; Recanzone, 2009). A common 

methodological issue in these studies is the proper quantifi-
cation of localization performance from continuous response 
data in sensorimotor tasks. Inauspiciously, different studies 
have utilized different metrics to quantify localization per-
formance, thereby hampering comparisons between stud-
ies. Moreover, the role of inter-individual differences in 
localization ability for predicting spatial learning outcomes 
has often been neglected. Therefore, the goal of the pre-
sent study was to derive recommendations for quantifying 
localization performance (e.g., in studies of auditory spatial 
perception and crossmodal recalibration) from a systematic 
comparison of commonly used metrics.

On a conceptual level, two aspects of localization per-
formance can be distinguished: accuracy (i.e., the close-
ness of the average localization response to the actual 
target location which is also known as spatial bias) and 
precision (i.e., the average closeness of localization 
responses to each other). Theoretically, accuracy and pre-
cision are independent (Chapanis, 1951; Schmidt et al., 
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2019): localization performance can be accurate, pre-
cise, both, or neither (see Fig. 1). Nevertheless, accuracy 
and precision could be correlated to varying degrees in 
actual localization response data because they partially 
depend on similar factors. For example, studies of auditory 
localization in the horizontal plane have shown that both 
accuracy and precision are best for central locations and 
decrease with increasing eccentricity (Carlile et al., 1997; 
Makous & Middlebrooks, 1990; Recanzone et al., 1998). 
In line with these findings, studies in cats (Moore et al., 
2008) and humans (Garcia et al., 2017) have suggested a 
relationship between sensory uncertainty (i.e., precision) 
and overestimation of peripheral target eccentricity (i.e., 
accuracy). However, others have observed such a relation-
ship between accuracy and precision only for vertical and 
not for horizontal sound localization (Ege et al., 2018). 
Moreover, these studies manipulated sensory uncertainty 
by changing the signal-to-noise ratio of the sound stimuli 
in a within-participant design (Ege et al., 2018; Garcia 
et al., 2017), thus leaving unclear whether the observed 
changes in accuracy were due to the induced changes in 
precision or due to changes in the physical properties of 
the sound stimuli. By contrast, surprisingly few studies 
have directly assessed the correlation between accuracy 
and precision metrics across participants.

In a typical psychophysical task measuring absolute 
localization abilities, subjects are presented with auditory 
or visual stimuli from different locations in external space, 
often restricted to the horizontal plane, and are asked to 
make pointing, head or eye movements toward the perceived 
locations of the sources (Bruns et al., 2020b; Ege et al., 
2018; Hairston et al., 2003; Lewald, 2002, 2007; Lewald & 
Ehrenstein, 1998; Ocklenburg et al., 2010; Odegaard et al., 
2015; Passamonti et al., 2009; Recanzone, 1998; Recanzone 
et al., 1998; Strelnikov et al., 2011; Zwiers et al., 2003). Typ-
ically, either error-based or regression-based measures of 
localization performance have been reported in these stud-
ies (see Table 1). Error-based measures (see Schmidt et al., 
2019) consider the deviation of the localization response 
from the true target location (i.e., the localization error) in 
each trial. The mean localization error across trials (usually 
referred to as constant error or bias) is then construed as 
an indicator of accuracy and the standard deviation (SD) 
of the single-trial localization errors (usually referred to 
as variable error) as an indicator of precision (e.g., Bruns 
et al., 2014; Makous & Middlebrooks, 1990; Recanzone 
et al., 1998; Odegaard et al., 2015; Perrott et al., 1987). 
In addition, or as an alternative, the absolute values of the 
single-trial localization errors are sometimes averaged (usu-
ally referred to as absolute error) to yield a composite score 
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Fig. 1   Accuracy and precision in a localization task. Note. Pan-
els show simulated data illustrating the theoretical independence of 
accuracy and precision. Solid lines indicate single-trial localization 

responses, and the dotted line indicates the actual location of the tar-
get stimulus. Localization can be accurate and precise, inaccurate but 
precise, accurate but imprecise, or neither

Table 1   Glossary of localization performance metrics

Metrics were derived either from the single-trial localization errors (Error) or from a linear regression of pointing responses on the actual target 
locations (Regression) for each participant

Metric Derivation Description

Bias Error, Regression Overall bias of localization responses to the left (negative values) or to the right (positive values), equivalent to 
constant error (CE) and intercept

aCE Error Absolute value of bias (or CE), indicates the amount of bias irrespective of direction
maCE Error Mean of the aCE per target location, reflects over- or underestimation of peripheral target locations
VE Error Mean of the standard deviations (SD) of the single-trial localization errors at each target location
pVE Error SD of the single-trial localization errors pooled across trials from all target locations
AE Error Mean of the absolute values of the single-trial localization errors, sensitive to both bias and variability of the locali-

zation responses
Slope Regression Slope of the regression model function, indicates an overestimation (values > 1) or underestimation (values < 1) of 

peripheral target locations
R2 Regression Coefficient of determination of the regression model, indicates the goodness of the fit of the pointing responses to 

the regression line
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of both accuracy and precision (e.g., Bruns et al., 2020b; 
Makous & Middlebrooks, 1990; Oldfield & Parker, 1984). 
By contrast, regression-based measures (see Fig. 2) are 
derived from a linear regression of localization responses 
on the true stimulus locations. The intercept of the resulting 
regression line is mathematically equivalent to the constant 
error or bias and, thus, is an indicator of accuracy. The slope 
of the regression line captures an over- or underestimation 
of peripheral locations, which may exist independently of 
the constant error or bias and which is usually considered a 
measure of accuracy as well (Ege et al., 2018; Garcia et al., 
2017; Lewald, 2007; Ocklenburg et al., 2010). Finally, the 
coefficient of determination (R2) has been suggested as a 
regression-based indicator of localization precision (Lewald, 
2007; Ocklenburg et al., 2010).

To clarify the relationship between error-based and 
regression-based measures of accuracy and precision, the 
present analysis utilized data from a sound localization task. 
Auditory localization has received considerable attention 
in psychophysical studies due to its unique role in spatial 
perception: sounds can convey spatial information even in 
complete darkness or for objects outside the visual field. Yet 
compared to the visual or somatosensory systems, the audi-
tory system is relatively poor in spatial tasks, likely related 
to the fact that spatial location is not represented directly in 
the cochlear but has to be inferred from spatial cues gener-
ated by the interaction of the sound waves with the head and 
the external ears (Blauert, 1997; Recanzone & Sutter, 2008). 

Sound localization in the horizontal plane relies mainly on 
interaural time differences (ITD) and interaural level dif-
ferences (ILD) that arise from different arrival times and 
amplitude levels (due to shadowing of the far ear from the 
sound source) at the two ears for sound locations deviating 
from the midline. It is well known that ITDs affect sound 
localization mainly at frequencies below 1500 Hz due to 
limitation of phase locking of neurons at high frequencies. 
By contrast, ILDs are mainly relevant at frequencies above 
1500 Hz because low-frequency sounds are bent effectively 
around the head. This division is known as the duplex theory 
(for reviews, see Blauert, 1997; King, 2009; Middlebrooks 
& Green, 1991; Recanzone & Sutter, 2008). Neither ITDs 
nor ILDs provide information regarding the elevation of a 
sound source. However, the pinna distorts the frequency 
spectrum of an incoming sound uniquely depending on its 
elevation (see also Wightman & Kistler, 1989). Thus, sound 
localization in the vertical plane relies primarily on these 
monaural spectral cues, which also allow for some residual 
capacity to localize sounds in azimuth using one ear alone 
(Perrott et al., 1987; Van Wanrooij & Van Opstal, 2004).

As a result of the extensive computations underlying 
auditory spatial perception, errors in sound localization can 
originate from physical, physiological, and cognitive fac-
tors, as well as from the response method used in a study. 
For example, the eccentricity of peripheral auditory targets 
is typically overestimated with hand pointing but underesti-
mated with head pointing methods, likely caused by differ-
ences in the relative position of the head with respect to the 
sound source and the trunk inherent in these tasks (Lewald 
et al., 2000). In addition, the amount of target eccentricity 
overestimation has been shown to depend on physical prop-
erties of the stimuli such as their sound frequency (Blauert, 
1997; Lewald & Ehrenstein, 1998), cortical processing of 
the spatial cues as evidenced in patients with brain lesions 
(Pinek & Brouchon, 1992), and memory-related processes in 
delayed-response tasks (Lewald & Ehrenstein, 2001). Thus, 
identical errors observed in different studies may reflect 
quite distinct underlying processes which might differently 
influence localization performance metrics.

Since auditory localization cues change continuously, for 
example, due to the acoustic properties of the environment, 
auditory localization additionally requires constant calibration 
well into adult life (King, 2009; Knudsen, 2002). Studies of 
crossmodal learning in spatial perception typically compare 
changes in one or several localization performance metrics 
before and after an experimental intervention such as expo-
sure to audiovisual stimuli (Bruns et al., 2020b; Strelnikov 
et al., 2011), light deprivation (Lewald, 2007), or prism adap-
tation (Zwiers et al., 2003). A particularly fruitful approach 
has been the study of crossmodal recalibration after expe-
riencing spatially discrepant audiovisual stimuli, commonly 
referred to as the ventriloquism aftereffect (Bruns, 2019b; 
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Fig. 2   Regression-based localization metrics. Note. Single-trial local-
ization responses (y-axis) of a randomly selected participant at each 
azimuthal loudspeaker location (x-axis) are indicated by the open cir-
cles. The solid line indicates the regression line. Intercept (i.e., bias), 
slope, and R2 were taken from the regression model as regression-
based localization metrics
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Chen & Vroomen, 2013; Recanzone, 2009). After brief 
exposure to audiovisual stimuli with a consistent spatial dis-
parity (e.g., with the visual stimulus always presented to the 
right of the auditory stimulus), a change in unimodal auditory 
constant error or bias is typically observed at the behavioral 
level (Lewald, 2002; Recanzone, 1998) as well as at the neural 
level, such that auditory spatial representations in the audi-
tory cortex are shifted toward the side of the visual stimuli 
(Bruns et al., 2011; Park & Kayser, 2021; Zierul et al., 2017). 
This visual recalibration of auditory spatial maps is thought 
to subserve the maintenance of a coherent and accurate mul-
tisensory representation of space (Bruns & Röder, 2019a; 
Recanzone, 2009).

Studies of crossmodal spatial recalibration have typically 
focused on changes in constant error or bias (i.e., accu-
racy). Thus, it is unclear whether crossmodal recalibration 
affects unimodal localization precision as well. Moreover, 
the amount of crossmodal recalibration (i.e., the size of the 
ventriloquism aftereffect) might depend on inter-individual 
differences in localization accuracy and/or precision at 
baseline. Conceivably, any pre-existing biases of auditory 
spatial perception in one direction might leave more or less 
“space” for recalibration depending on the direction of the 
audiovisual exposure stimuli. In addition, subjects with poor 
auditory localization precision at pretest might show larger 
visual recalibration effects than subjects with high baseline 
localization precision. Such a result would be in line with the 
well-known role of cue reliabilities in multisensory integra-
tion: when estimating the spatial location of an audiovisual 
stimulus, the visual and auditory cues are typically weighted 
according to their relative reliabilities (i.e., precision), 
thereby maximizing the precision with which the audiovis-
ual event can be localized (Alais & Burr, 2004). However, 
some studies have suggested that crossmodal recalibration 
might aim at maximizing accuracy rather than precision and, 
therefore, emerge independently from cue reliability (Rohlf 
et al., 2021; Zaidel et al., 2011).

To directly compare the different localization perfor-
mance measures and their ability to predict crossmodal 
recalibration outcomes at an individual level, we reanalyzed 
data from two previously published studies (Bruns et al., 
2020b; Bruns & Röder, 2019b), resulting in a large sam-
ple of 188 healthy adults who had naïvely localized sounds 
from different azimuthal locations with a pointing stick. In 
a first step, we calculated both error-based and regression-
based localization performance measures for each subject to 
directly assess the agreement between these two approaches. 
In a subsample of 57 subjects, data from a second sound 
localization test, performed after exposure to audiovisual 
stimuli in which the visual stimulus was consistently pre-
sented 13.5° to the right of the sound source, were avail-
able. In a second step, we tested in these subjects whether 
crossmodal recalibration following spatially discrepant 

audiovisual exposure, which is typically parametrized as a 
rightward shift in the localization bias (known as the ventril-
oquism aftereffect), additionally results in changes in any of 
the other (previously in this setting not tested) sound locali-
zation performance measures. This approach allowed us to 
directly assess the degree to which these measures reflect 
independent processes. Finally, we tested whether individual 
performance levels in these measures at baseline were corre-
lated with the observed size of the ventriloquism aftereffect 
following the audiovisual exposure phase. Based on these 
analyses, recommendations for quantifying localization per-
formance from continuous response data were derived.

Method

Participants

Datasets of 188 healthy adult volunteers (139 women and 
49 men; mean age: 24.8 years; age range: 18–46 years) from 
our previous studies (Bruns et al., 2020b; Bruns & Röder, 
2019b), publicly available in the research data repositories 
of the University of Hamburg (n = 120; Bruns et al., 2020a) 
and the Center for Open Science (n = 68; Bruns, 2019a), 
were reanalyzed for the present study. All participants had 
provided written informed consent and all experimental pro-
cedures had been approved by the ethics commission of the 
German Psychological Society (DGPs) and were performed 
in accordance with the ethical standards laid down in the 
Declaration of Helsinki.

For the present reanalysis, the initial sound localization 
pretest data for all participants were used (n = 188). In addi-
tion, data from a sound localization posttest following expo-
sure to audiovisual stimuli with a consistent spatial disparity 
of 13.5° were analyzed in a subsample of the participants 
in whom these data were available (n = 57). These were 
the participants in the “LTD fixed incongruent” group (n 
= 15) of Bruns et al. (2020b) as well as the participants in 
the “constant” group (n = 42) of Bruns and Röder (2019b). 
For the latter group, only the data from the first posttest (of 
several posttests measured in this study) were considered 
because these best matched the single posttest data obtained 
in Bruns et al. (2020b). A sensitivity analysis carried out in 
G*Power 3.1 (Faul et al., 2009) indicated that the sample 
size of n = 188 had 80% power (at a conventional α level 
of .05) to detect a correlation of localization performance 
measures with an effect size of |ρ| = .20. The sample size of 
n = 57 had 80% power (at α = .05) to detect a correlation 
of pretest sound localization performance and the size of 
the ventriloquism aftereffect with an effect size of |ρ| = .35.

To control for unspecific test repetition effects, additional 
control analyses were carried out in a subsample of partici-
pants (n = 30) who had performed the sound localization test 
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twice but did not receive audiovisual training between tests. 
These were the “LTD auditory control” and “LTP auditory 
control” groups of Bruns et al. (2020b).

Experimental procedure

The experimental procedure has been described in full detail 
elsewhere (Bruns et al., 2020b; Bruns & Röder, 2019b). 
Here, we summarize only the procedures and experimental 
conditions which are relevant for the present reanalysis of 
the data. In brief, all participants (n = 188) naïvely per-
formed a unimodal sound localization test in which they 
indicated the perceived locations of sounds presented from 
different azimuthal locations (pretest). A subsample of the 
participants (n = 57) was then exposed to audiovisual stimuli 
in which the visual component was consistently presented 
13.5° to the right of the sound source to induce the ventrilo-
quism aftereffect, and subsequently performed the unimodal 
sound localization test again (posttest). A separate subsam-
ple of the participants (n = 30) performed the unimodal 
sound localization twice but received unimodal auditory 
stimulation between tests instead.

The experiments were conducted in a 4.70 × 2.35 × 
2.25 m soundproof chamber which was treated with sound-
absorbing acoustic foam panels (Illbruck, Pinta Acoustic 
GmbH, Maisach, Germany) and which had an ambient 
background noise level of 31 dB(A). Auditory stimuli were 
either 750 Hz tones with a duration of 200 ms (Bruns & 
Röder, 2019b) or 1000 Hz tones with a duration of 30 ms 
(Bruns et al., 2020b), both including 5 ms linear rise/fall 
envelopes and presented at 65 dB(A). Sound intensity was 
randomly varied over a range of 4 dB for every stimulus 
presentation to reduce any detectable differences in the loud-
speaker transformation functions. Six or eight loudspeaker 
locations, spanning either ±22.5° (Bruns et al., 2020b) or 
±31.5° (Bruns & Röder, 2019b) in steps of 9°, were used. 
The loudspeakers (ConceptC Satellit, Teufel GmbH, Berlin, 
Germany) were mounted at ear level on a semicircular frame 
at a distance of 90 cm and were hidden from view behind 
an acoustically transparent curtain which extended to ±90° 
from the participants’ straight-ahead position. A movable 
red laser pointer was projected onto the curtain for visual 
stimulation. Participants indicated their responses with a 
rotatable hand pointer which was mounted in front of them 
on a crossbar with its pivot in the center of the semicircular 
frame. The pointer consisted of a metal rod with a length 
of 30 cm and a diameter of 2 cm. The azimuthal angle of 
the pointer was recorded from a potentiometer with a reso-
lution of 1° whenever the response button (located on the 
upper side of the rod approximately 8 cm from the tip) was 
pressed.

The unimodal sound localization test consisted of 90 
or 96 trials, including 15 trials at each of six loudspeaker 

locations (Bruns et al., 2020b) or 12 trials at each of eight 
loudspeaker locations (Bruns & Röder, 2019b), which were 
presented in a randomized order. The red laser point served 
as a central fixation point at the beginning of each trial. After 
participants had aligned the hand pointer within ±10° of 
fixation, the laser point was turned off and the auditory target 
stimulus was presented with a random delay between 500 
and 1500 ms. Participants were instructed to align the hand 
pointer (using both hands) as accurately as possible with the 
perceived azimuthal location of the sound source. The next 
trial started 350 ms after they had confirmed their response 
with a button press. Responses were not timed except that 
trials were aborted and counted as a miss if no response was 
recorded within 10 s from stimulus onset (this occurred in 
less than 0.1% of trials overall).

In some of the participants, the unimodal sound locali-
zation pretest was followed either by an audiovisual expo-
sure block of either 600 trials with a total duration of 300 
s (Bruns et al., 2020b) or 200 trials with a total duration of 
200 s (Bruns & Röder, 2019b), or by a unimodal auditory 
exposure block of 200 trials with a total duration of 200 s 
(Bruns et al., 2020b). In each trial, an auditory stimulus, 
identical to the stimuli used in the unimodal sound localiza-
tion test, was presented from one of the loudspeaker loca-
tions, either alone (unimodal auditory control condition) or 
together with a synchronous visual stimulus (red laser point) 
which was always displaced 13.5° to the right of the sound 
source (audiovisual recalibration condition). To ensure that 
participants attended the audiovisual stimulation, they had 
to detect rare deviant stimuli (i.e., interrupted auditory or 
visual stimuli or additional visual stimuli) which occurred in 
1–4% of the trials, but they did not engage in an active local-
ization task during the audiovisual exposure block. Note that 
this procedure, as well as the number of audiovisual trials (at 
least 200), was sufficient to induce maximal ventriloquism 
aftereffects in previous studies (Frissen et al., 2012). Imme-
diately following the audiovisual exposure block, partici-
pants performed the unimodal sound localization test again.

Data analysis

We calculated both error-based and regression-based locali-
zation performance measures (see Table 1) for each partici-
pant’s pretest data and, if available, for their posttest data in 
R version 3.6.2 (analysis code and a working example are 
available in the UHH Research Data Repository at  https://​
doi.​org/​10.​25592/​uhhfdm.​10183). To derive error-based 
performance measures (Schmidt et al., 2019), we subtracted 
the actual auditory target location from the perceived loca-
tion in each trial. The following metrics were calculated 
from these single-trial localization errors for each loud-
speaker location and then averaged across locations:

https://doi.org/10.25592/uhhfdm.10183
https://doi.org/10.25592/uhhfdm.10183
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•	 Bias or constant error (CE): the mean of the single-
trial localization errors. It is equivalent to the intercept 
in regression-based localization performance measures 
(see below). The resulting values indicate an overall bias 
of localization to the left (negative values) or to the right 
(positive values) of the actual target locations and are, 
thus, considered a measure of accuracy. It was calculated 
as

 where n is the number of trials at each of m locations, xi,j is 
the localization response in the ith trial at the jth location, 
and tj is the true value of the jth location.

•	 Absolute constant error (aCE): the absolute value of 
the bias or constant error (CE). It is sometimes used to 
compare the amount of bias (irrespective of direction) 
between individuals or conditions (e.g., Bruns et al., 
2014). It was calculated as   

•	 Mean absolute constant error (maCE): the mean of the 
aCE per target location. By averaging the aCE rather than 
the bias at each location, an over- or underestimation of 
peripheral target locations is not cancelled out between 
left and right target locations as in the calculation of bias 
or aCE. Consequently, the maCE is conceptually related 
to the slope in regression-based localization performance 
measures (see below). It was calculated as

•	 Variable error (VE): the mean of the standard devia-
tions (SD) of the single-trial localization errors at each 
target location. It is an indicator of the variability of the 
responses and, thus, considered a measure of precision. 
It was calculated as

where ei,j is the signed localization error in the ith trial at 
the jth location and ej is the mean localization error at the 
jth location.

•	 Pooled variable error (pVE): the SD of the single-
trial localization errors pooled across trials from all 
target locations. The calculation of the pVE yields non-
identical values to the typically reported VE in which 
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SD is calculated separately for each target location and 
then averaged (e.g., Bruns et al., 2014; Garcia et al., 
2017; Odegaard et al., 2015). We, therefore, considered 
both variants of the VE in our analysis. The pVE was 
calculated as 

where e is the mean localization error across trials from all 
m locations.

•	 Absolute error (AE): the mean of the absolute values 
of the single-trial localization errors. By disregarding 
the sign (i.e., direction) of the single-trial errors, the 
AE is sensitive to both the bias and the variability of 
the localization responses and, thus, represents a com-
posite measure of both accuracy and precision. It is, 
therefore, used as a general indicator of localization 
performance (e.g., Bruns et  al., 2020b; Passamonti 
et al., 2009). It was calculated as

To derive regression-based measures of localization 
performance, we calculated a simple linear regression 
of the pointing responses on the actual auditory target 
locations separately for each participant (see Fig. 2). The 
following metrics were taken from the linear regression 
models given by

where yi,j is the predicted response in the ith trial at the jth 
location and xj is the true value of the jth location.

•	 Bias or intercept: the y-intercept α of the model 
function. It indicates an overall bias of localization 
responses to the left (negative values) or to the right 
(positive values) of the actual target locations and is 
(assuming equal numbers of trials at each location) 
mathematically equivalent to the bias or CE in error-
based metrics (see above). Thus, in the following, CE 
and intercept are not reported separately but subsumed 
under the more general term bias.

•	 Slope: the slope β of the model function. It indicates an 
overestimation (values > 1) or underestimation (values 
< 1) of peripheral target locations that would cancel 
out in the calculation of the bias. Thus, bias and slope 
measure different aspects of localization performance, 
but are usually both considered measures of accuracy 
(e.g., Lewald, 2007; Ocklenburg et  al., 2010). The 
slope is related (but not equivalent) to the maCE (see 
above).
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•	 R2: the coefficient of determination of the regression 
model. It indicates the goodness of the fit of the point-
ing responses to the regression line and can, thus, be 
considered a measure of precision (e.g., Lewald, 2007; 
Ocklenburg et al., 2010). In order to capture the variabil-
ity of responses, it is crucial that the single-trial localiza-
tion responses (rather than the mean response per target 
location) are entered into the regression model.

To quantify the agreement between individual locali-
zation performance measures in the pretest data, Pearson 
correlation coefficients were calculated for each pair of 
measures. In addition, an exploratory factor analysis (with 
oblimin rotation) was conducted to identify the underlying 
factor structure of the data.

In addition, for each metric and each participant with 
available posttest data (n = 57), we calculated the difference 
between pre- and posttest by subtracting the pretest from the 
posttest value. Crossmodal recalibration of auditory localiza-
tion after exposure to spatially misaligned audiovisual stim-
uli (i.e., the ventriloquism aftereffect) is typically defined as 
a change in bias (i.e., CE or intercept) from pre- to posttest 
(Bruns et al., 2020b; Bruns & Röder, 2019b; Lewald, 2002; 
Recanzone, 1998). Here we tested whether crossmodal recal-
ibration is additionally associated with changes in any of the 
other sound localization performance measures by compar-
ing for each individual measure the differences between pre- 
and posttest against zero using one-sample t tests. Moreover, 
we tested whether the individual pretest performance level 

in any of the sound localization performance measures was 
correlated with the size of the ventriloquism aftereffect (i.e., 
the amount of change in bias from pre- to posttest) using 
Pearson correlation coefficients. As a control for unspecific 
test repetition effects, we additionally tested the correlation 
between the change in bias from pre- to posttest and pretest 
bias in a separate subsample of participants (n = 30) who 
had performed the unimodal sound localization twice but 
received unimodal auditory stimulation instead of audio-
visual stimulation between tests. All statistical tests were 
additionally performed as Bayesian hypothesis tests in JASP 
version 0.14 (Wagenmakers et al., 2018) using standard pri-
ors, and Bayes factors (BF10) are reported.

Results

Localization performance measures

The mean values of the localization performance measures 
(see Fig. 3) were in a similar range as reported in previous 
studies of unimodal auditory localization (Bruns et al., 2014; 
Garcia et al., 2017; Lewald, 2007; Ocklenburg et al., 2010; 
Odegaard et al., 2015; Oldfield & Parker, 1984). The distri-
bution of individual performances showed, again consistent 
with previous studies (Odegaard et al., 2015), a considerable 
amount of heterogeneity in each of the measures (see Fig. 3). 
On average, participants’ localization responses showed a 
bias of 1.57° toward the left of the actual auditory target 
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Fig. 3   Distributions of individual values in localization performance 
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locations, t(187) = 3.40, p < .001, d = 0.25, 95% CI [−2.48, 
−0.66], BF10 = 20.16, consistent with previous observations 
in predominantly right-handed samples (Ocklenburg et al., 
2010; Odegaard et al., 2015). The mean slope of the linear 
regression model (1.35) was larger than the ideal value of 1, 
t(187) = 8.76, p < .001, d = 0.64, 95% CI [1.27, 1.43], BF10 
> 100, indicating that on average participants overestimated 
the eccentricity of the auditory target locations, which is 
a well-known finding in hand-pointing tasks (Bruns et al., 
2014; Bruns & Röder, 2019b; Garcia et al., 2017; Lewald, 
2002; Ocklenburg et al., 2010; Odegaard et al., 2015). Bias 
and slope (as well as maCE and pVE) did not differ signifi-
cantly between the subsamples from Bruns et al. (2020b) and 
Bruns and Röder (2019b), all p ≥ .056 (Holm-corrected), 
all BF10 ≤ 1.49, although mean leftward bias (−2.15° vs. 
−0.55°) and slope (1.42 vs. 1.24) were numerically larger 
in the subsample from Bruns et al. (2020b) than the subsam-
ple from Bruns and Röder (2019b). Significant differences 
between the two subsamples were observed for the remain-
ing metrics, all p ≤ .030, all BF10 ≥ 3.49, with larger aCE 
(5.70° vs. 3.49°), VE (8.69° vs. 6.68°), and AE (12.45° vs. 
9.35°) as well as lower R2 (0.82 vs. 0.91) in the subsample 
from Bruns et al. (2020b) than in the study by Bruns and 
Röder (2019b).

To assess the amount of agreement between the differ-
ent localization metrics, Pearson correlation coefficients 
were calculated for each pair of metrics (see Fig. 4). Across 
the two studies most metrics were significantly correlated 
except for bias, which was significantly correlated only with 
aCE (p < .001) but with none of the other metrics (all p ≥ 
.157). Bias and aCE are directly related: whereas bias can 
take both negative and positive values and indicates both 
the direction and the amount of localization error, aCE (the 
absolute value of bias) indicates the amount of localization 
error irrespective of direction. Thus, the negative correlation 
of bias and aCE (r = −.30) simply reflects that the majority 
of participants showed a leftward bias in localization. The 
absence of other significant correlations with bias suggests 
that the direction of bias a subject exhibits is not systemati-
cally related to higher or lower levels of accuracy and preci-
sion. By contrast, the absolute amount of bias captured by 
aCE was strongly correlated with maCE (the mean of the 
aCE per loudspeaker location), r = .60, and AE (which is 
considered a composite score of accuracy and precision), 
r = .56, but less so with slope, r = .30, and the precision 
metrics VE and pVE, r ≤ .35, as well as R2, r = −.25. Nota-
bly, R2 was relatively distinct from all other metrics (all |r| 
≤ .33), whereas the remaining five metrics, VE, pVE, AE, 
maCE, and slope, showed very strong intercorrelations (all 
r ≥ .76). Thus, measures of over-/underestimation of periph-
eral locations (maCE, slope), which are typically considered 
measures of localization accuracy, and measures of localiza-
tion precision (VE, pVE) were strongly related in our data. 

Because differences in mean performance were observed 
with significantly larger errors in the subsample from Bruns 
et al. (2020b) than in the subsample from Bruns and Röder 
(2019b) in some of the metrics, we additionally calculated 
the intercorrelations between metrics separately within each 
subsample. The resulting pattern was similar in the two sub-
samples (see Appendix Table 3), suggesting that the inter-
correlations between metrics were robust to differences in 
stimulus duration, sound frequency, and number of locations 
between the two studies, and collapsing data across the two 
studies was justified for the purpose of the present analysis.

We used exploratory factor analysis with oblimin rota-
tion to identify the underlying factor structure of our data. 
According to the Kaiser–Meyer–Olkin measure of sampling 
adequacy, .70, and Bartlett’s test of sphericity, χ2(28) = 
2403.32, p < .001, factorability of the eight localization met-
rics could be assumed. Parallel analysis suggested that two 
factors should be retained, in line with theoretical considera-
tions assuming two latent factors (accuracy and precision). 
The factor loading matrix for this final solution is presented 
in Table 2. Overall, measures of over-/underestimation of 
peripheral locations (maCE, slope), which are typically con-
sidered measures of localization accuracy, and measures of 
localization precision (VE, pVE, AE) loaded on a single 
factor with high primary loadings above .84. Bias and aCE 
(which are considered measures of accuracy) as well as R2 
(which is considered a measure of precision) loaded on the 
second factor, although bias and R2 were relatively distinct 
from other metrics (uniqueness above .83), consistent with 
the correlational analysis reported above.

Crossmodal spatial recalibration

For participants with available posttest data after exposure to 
audiovisual stimuli with a constant spatial disparity of 13.5° 
(n = 57), changes in each localization performance met-
ric were calculated as post- minus pretest differences (see 
Fig. 5). As expected, there was a highly significant right-
ward shift in bias (M = 4.14°) from pre- to posttest, t(56) = 
9.68, p < .001, d = 1.28, 95% CI [3.29, 5.00], BF10 > 100, 
which corresponds to the well-known ventriloquism afteref-
fect (Lewald, 2002; Recanzone, 1998). However, no changes 
were observed in any of the other localization performance 
metrics, p ≥ .263, d ≤ 0.15, BF10 ≤ 0.27, suggesting a spe-
cific effect of audiovisual exposure on bias.

We next examined whether the amount of change in bias 
at posttest (i.e., the size of the ventriloquism aftereffect) was 
correlated with baseline sound localization performance in 
any of the metrics at pretest (see Fig. 6). There was a sig-
nificant negative correlation between the size of the ven-
triloquism aftereffect and the bias at pretest, r = −.39, p = 
.003, 95% CI [−.59, −.14], BF10 = 12.12, indicating that 
stronger leftward biases at baseline were associated with 
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larger ventriloquism aftereffects (i.e., rightward shifts in 
bias) at posttest. No significant correlations between the 
size of the ventriloquism aftereffect and any of the remain-
ing sound localization performance metrics at pretest were 
obtained, r ≤ .26, p ≥ .050, BF10 ≤ 1.07. The significant 
correlation between baseline bias and ventriloquism afteref-
fect was mainly accounted for by unspecific test repetition 
effects, as a similar-sized (but non-significant) correlation, 
r = −.36, p = .054, was also observed in a subsample (n = 
30) that had received unimodal auditory exposure instead of 
spatially disparate audiovisual exposure between auditory 
localization tests as a control condition.

Discussion

In studies of spatial perception including those in a mul-
tisensory context, a large variety of different localization 
performance measures have been used, which can be divided 
into error-based and regression-based metrics (see Table 1). 
Yet it has been unknown how these two approaches are inter-
related and, thus, no generally accepted guidelines for their 
usage exist, with different studies reporting different sub-
sets of the available metrics. Here we used a large dataset 
from 188 individuals who were tested in a sound localization 
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task to directly assess the agreement between error-based 
and regression-based approaches. Our findings support the 
theoretical distinction between accuracy and precision and 
validate the use of (absolute) bias, which can be derived 
from both error-based and regression-based approaches, as 
an indicator of localization accuracy. However, our findings 
additionally show that accuracy and precision metrics can 
become highly correlated in typical experimental datasets 
presumably due to common underlying sources of errors. 
For example, measures of over-/underestimation of periph-
eral locations (maCE, slope), which are typically considered 
measures of localization accuracy, and measures of localiza-
tion precision (VE, pVE) were highly correlated in our data, 
and we observed a moderate but significant empirical corre-
lation (r = .34) between spatial bias (as indexed by aCE) and 

precision (as indexed by VE) in sound localization. Second, 
the present results verify that exposure to audiovisual stimuli 
with a consistent spatial disparity results in a selective shift 
in bias toward the side of the visual stimuli (the well-known 
ventriloquism aftereffect), but does not affect localization 
precision or other aspects of sound localization performance. 
The size of the ventriloquism aftereffect was dependent on 
the direction and amount of pre-existing individual localiza-
tion biases at pretest, but unrelated to baseline performance 
levels in other metrics. In the following, we will discuss rec-
ommendations for quantifying localization performance and 
implications for crossmodal recalibration studies that arise 
from these findings. We hope that these recommendations, 
which are based on findings from a specific experimental 
setup (Bruns et al., 2020b; Bruns & Röder, 2019b), might 
serve as a starting point for the development of more gen-
erally accepted guidelines for quantifying localization per-
formance and will inspire more extensive studies or meta-
analyses involving different experimental designs and tasks.

Recommendations for quantifying localization 
performance

Consistent with the conceptual differentiation of locali-
zation accuracy and precision, our findings suggest that 
localization performance metrics can be reduced to two 
underlying factors. Bias (and its absolute value, aCE), 
which can be derived from both error-based and regres-
sion-based approaches, constitutes the most frequently 
used metric of localization accuracy (Bruns et al., 2014; 
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Fig. 5   Changes in sound localization performance metrics after audi-
ovisual exposure. Note. Performance changes in each metric were 
calculated by subtracting individual pretest from posttest values. 
Single-subject data points are superimposed on violin plots showing 
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were taken from the regression model

Table 2   Results from a factor analysis of localization performance 
metrics

The extraction method was principal axis factoring with an oblique 
(oblimin) rotation. Factor loadings above |0.30| are in bold

Metric Factor 1 Factor 2 Uniqueness

Bias 0.12 −0.43 0.83
aCE 0.23 0.64 0.45
maCE 0.85 0.27 0.06
VE 0.84 0.05 0.26
pVE 1.00 −0.03 0.02
AE 0.90 0.25 −0.01
Slope 1.03 −0.28 0.04
R2 −0.07 −0.36 0.85
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Bruns & Röder, 2019b; Lewald, 2002, 2007; Makous & 
Middlebrooks, 1990; Ocklenburg et al., 2010; Odegaard 
et al., 2015; Oldfield & Parker, 1984; Perrott et al., 1987; 
Recanzone et al., 1998) and mainly accounted for one of 
the two factors. Precision is usually conceptualized as the 
SD of the single-trial localization errors (VE, pVE) in 
error-based approaches (Bruns et al., 2014; Ocklenburg 
et al., 2010; Odegaard et al., 2015; Perrott et al., 1987; 
Recanzone et  al., 1998). Our results demonstrate that 
measures of over-/underestimation of peripheral locations 
(maCE, slope) can be highly correlated with localization 
precision (as measured with VE or pVE) and loaded on the 
same factor in our study, despite being typically consid-
ered to reflect localization accuracy rather than precision 
(Lewald, 2007; Ocklenburg et al., 2010; but see Garcia 
et al., 2017). Thus, although it may be desirable to directly 
quantify the amount of over- or underestimation of periph-
eral targets from a conceptual point of view, researchers 
need to be aware that common sources of localization 
errors might exist in their data that could result in largely 
equivalent values of (p)VE and slope/maCE. Thus, we rec-
ommend to explicitly test for this possibility.

Interestingly, R2 which has been interpreted as a meas-
ure of localization precision in regression-based approaches 
(Lewald, 2007; Ocklenburg et al., 2010), was relatively dis-
tinct from all other measures, suggesting that R2 might be 

more suitable for quantifying localization precision in situ-
ations in which (p)VE and target over-/underestimation are 
highly correlated due to common underlying error sources. 
For example, underestimation of target eccentricity has been 
linked to central tendency biases (Huttenlocher et al., 2000; 
Odegaard et al., 2015), in which participants would integrate 
the sensory information (reflecting the actual sensory preci-
sion) with the central stimulus location (Aston et al., 2022). 
Higher weighting of the central location value would result 
in both stronger underestimation of target eccentricity and 
lower variability of single-trial responses. It has recently 
been suggested to correct for central tendency biases by 
regressing continuous responses on target locations and 
dividing the variance of the residuals by the squared slope 
of the regression line (Aston et al., 2022), suggesting that 
regression-based approaches might be advantageous for 
estimating localization precision under certain conditions.

In our data, which were derived from a hand-pointing 
auditory localization task, subjects overestimated the 
eccentricity of peripheral target locations. The observed 
high correlation of (p)VE and slope indicates that a larger 
overestimation of peripheral targets, as reflected in a 
larger deviation of slope from the ideal value of 1, was 
tightly linked to larger variability in single-trial locali-
zation responses in our data. A similar dependence was 
reported in a study that manipulated the reliability of 

pVE (Corr: 0.235) AE (Corr: 0.245) Slope (Corr: 0.260) R2 (Corr: 0.030)

Bias (Corr: −0.386**) aCE (Corr: 0.102) maCE (Corr: 0.251) VE (Corr: 0.122)

20 40 60 10 20 30 40 50 1 2 3 0.5 0.6 0.7 0.8 0.9

−15 −10 −5 0 5 10 15 0 5 10 0 10 20 30 40 50 5 10 15 20

0

4

8

0

4

8

0

5

10

0

4

8

12

0

4

8

0

5

10

0

4

8

0

5

10

Pretest Value

Ve
nt

ril
oq

ui
sm

 A
fte

re
ffe

ct
 (d

eg
)

Fig. 6   Correlations between pretest performance and size of the ven-
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biases and positive values indicate rightward biases in localization. *p 
< .05. **p < .01. ***p < .001
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auditory stimuli (by varying the level of background noise) 
within participants (Garcia et al., 2017): in accord with 
our results, subjects in this study overestimated the eccen-
tricity of less reliable auditory stimuli to a larger extent 
compared to more reliable auditory stimuli. It remains to 
be determined whether this relationship similarly holds 
for the underestimation of peripheral targets, as typically 
observed in head-pointing tasks (Lewald, 2007; Ocklen-
burg et al., 2010; Recanzone, 1998), and whether condi-
tions exist in which (p)VE and slope decorrelate.

Although studies of spatial abilities typically report 
separate measures for accuracy and precision (Bruns et al., 
2014; Lewald, 2007; Ocklenburg et al., 2010; Odegaard 
et al., 2015), relatively few studies have examined the cor-
relation of accuracy and precision (Garcia et al., 2017; 
Moore et al., 2008). In a large sample of 188 subjects, the 
present results show a moderate but significant correlation 
(r =.34) between sound localization accuracy and preci-
sion metrics, suggesting that although higher accuracy 
is linked to higher precision empirically, the explained 
variance of around 12% is relatively small, highlighting 
the need to estimate both accuracy and precision indepen-
dently in each subject. In error-based approaches, AE has 
been used as a composite score of accuracy and precision 
(Bruns et al., 2014, 2020b; Passamonti et al., 2009). In 
our data, AE was indeed significantly correlated with both 
accuracy (aCE) and precision (VE), but this correlation 
was stronger for precision than for accuracy, suggesting 
that two dimensions are indeed necessary to fully describe 
localization performance.

In summary, we suggest the following recommendations 
for quantifying localization performance from continuous 
response data:

•	 All localization performance metrics used in a study 
should be defined precisely and unambiguously, for 
example, using the terminology introduced in the present 
paper (see Table 1).

•	 Separate metrics should be reported for localization accu-
racy and localization precision.

•	 Ideally, both error-based and regression-based metrics 
should be reported, including at least bias (as a standard 
accuracy metric), slope (as an indicator of target eccen-
tricity over-/underestimation), (p)VE (as a standard preci-
sion metric), and R2 (as an alternate precision metric).

•	 In addition, we recommend reporting intercorrelations 
between metrics, which helps disambiguating localiza-
tion precision versus target eccentricity over-/underesti-
mation as one aspect of localization accuracy.

In some cases (e.g., in studies comparing different 
groups or testing interventions in a pretest/posttest design), 
researchers might wish to focus the statistical analyses on 

the metric that is a priori considered as best suited to indi-
cate the effect of interest to avoid multiple testing issues. 
According to our findings, bias is relatively distinct from 
other metrics and might be particularly well suited in studies 
that focus primarily on localization accuracy. By contrast, 
in cases in which the primary metric of interest is slope (as 
an indicator of target eccentricity over-/underestimation) 
or (p)VE (as an indicator of precision), it seems advisable 
to at least exploratorily check the interdependence of the 
obtained results with other metrics to identify any common 
and potentially confounding underlying error sources as the 
ones observed in our study.

Implications for crossmodal recalibration studies

Crossmodal recalibration (i.e., exposure to spatially dis-
crepant audiovisual stimuli) had a highly selective effect on 
sound localization accuracy (i.e., bias) in the present sam-
ple. This finding confirms that the shift in bias, known as 
the ventriloquism aftereffect, is indeed due to a crossmodal 
adjustment of auditory spatial representation to correct for 
the spatial mismatch (Bruns et al., 2011; Lewald, 2002, 
Recanzone, 1998; Zierul et al., 2017), rather than due to 
a higher-order learning of the visual locations (Vroomen 
& Stekelenburg, 2021). If participants had simply learned 
the visual locations and used them for localizing the sounds 
in the posttest, an increase in localization precision (i.e., a 
reduced VE) would have been expected in addition to the 
shift in bias due to the usually much higher localization 
reliability of the visual as compared to the auditory system 
(Alais & Burr, 2004).

Moreover, our results suggest that the amount of cross-
modal recalibration (i.e., the size of the shift in bias) is not 
significantly affected by individual localization precision at 
baseline. This is in conflict with the assumption that the 
amount of crossmodal recalibration is determined by the 
relative reliabilities of the crossmodal cues presented during 
adaptation (Burge et al., 2010). It is well known that mul-
tisensory integration, as in the ventriloquist situation with 
spatially discrepant audiovisual stimuli, depends on rela-
tive reliability and results in an increase in the precision of 
the audiovisual estimate (Alais & Burr, 2004; Meijer et al., 
2019; Rohlf et al., 2020). It has been argued, however, that 
crossmodal recalibration aims at maximizing accuracy rather 
than precision and, thus, might be independent of cue reli-
ability (Zaidel et al., 2011). Accordingly, in a recent study 
which tested both multisensory integration (ventriloquism 
effect) and crossmodal recalibration (ventriloquism afteref-
fect) in the same participants, relative cue reliability (manip-
ulated by blurring the visual stimuli) affected only integra-
tion and not recalibration (Rohlf et al., 2021). The present 
findings add to this that not only short-term manipulations 
of cue reliability, but also more stable inter-individual 
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differences in localization precision are uninfluential in 
crossmodal recalibration. On a cautionary note, unimodal 
visual localization precision at baseline (and hence rela-
tive reliability) was not tested directly in the present data. 
However, in previous studies using the same experimental 
setup, we found that unimodal visual localization precision 
was higher and varied far less between participants than 
auditory localization precision (Bruns et al., 2014; Kramer 
et al., 2020; Tong et al., 2020). This suggests that unimodal 
auditory localization precision was a valid proxy for relative 
cue reliability at baseline, although our analysis might have 
slightly underestimated the influence of individual localiza-
tion precision on crossmodal recalibration.

Consistent with a primary aim of crossmodal recalibra-
tion to maximize accuracy, we found that the size of the 
ventriloquism aftereffect shift in bias was best predicted by 
individual baseline biases. Subjects with strong leftward 
biases at pretest showed stronger aftereffect shifts in bias 
toward the right (the side of the visual stimuli during adap-
tation) than subjects with no biases or rightward biases at 
pretest. In the audiovisual learning phase of the experiment, 
no feedback about the veridical location of the stimuli was 
available. In this situation, subjects seem to put a fixed high 
weight on the usually more accurate visual input which is 
not influenced by current visual cue reliability (Rohlf et al., 
2021; Zaidel et al., 2011) but may rather be acquired (Rohlf 
et al., 2020), possibly during a sensitive period in develop-
ment (Badde, Ley et al., 2020a; King, 2009). Thus, pre-
existing individual biases could in principle determine the 
amount of adjustment that is necessary to correct for the 
audiovisual spatial mismatch and account in part for the 
inter-individual variability in the size of the ventriloquism 
aftereffect.

The observed dependence of crossmodal spatial recalibra-
tion on pre-existing spatial biases is consistent with studies 
of audiovisual temporal processing (Grabot & Kayser, 2020; 
Stevenson et al., 2012). Whereas inter-individual differences 
in the size of the temporal binding window, which reflect the 
precision of audiovisual temporal perception, were linked 
to the amount of multisensory integration in the McGurk 
and sound-induced flash illusions (Stevenson et al., 2012), 
inter-individual differences in temporal biases (reflecting 
accuracy) were related to crossmodal temporal recalibra-
tion processes (Grabot & Kayser, 2020). Inter-individual 
differences in perceptual biases were found to be highly 
stable across time (Badde, Ley et al., 2020a; Grabot & van 
Wassenhove, 2017; Odegaard & Shams, 2016) and, thus, 
their interaction with short-term experimental manipula-
tions needs to be taken into account. However, results from 
our control analysis in participants who had performed the 
sound localization test twice but without interjacent spatially 
discrepant audiovisual exposure suggested that an appar-
ent influence of baseline biases on crossmodal recalibration 

might be exaggerated by measurement errors present at base-
line. Due to a simple regression toward the mean effect, an 
artificial correlation between baseline biases and the amount 
and direction of change in bias from pre- to posttest would 
necessarily be introduced which might superimpose any 
underlying correlation in perception.

Thus, in crossmodal recalibration studies in which the 
primary focus is on isolating the effect of an experimental 
manipulation in a pre-/posttest design, precautions should 
be taken to minimize influences of measurement errors on 
estimated learning outcomes:

•	 First, rigorous baseline measurements have to be 
introduced to counteract any measurement errors. 
This could, for example, be achieved by adding an 
extensive practice period before the actual measure-
ment (Carlile et al., 1997; Oldfield & Parker, 1984) 
or by taking repeated baseline measurements until 
performance converges before introducing the experi-
mental manipulation of interest (Dinse et al., 2006; 
Godde et al., 2000). Of course, the extent of the base-
line measurement needs to be balanced with poten-
tially adverse effects of elongating the duration of the 
experiment such as participant fatigue, which might 
be particularly relevant in studies involving children 
or patient groups.

•	 Second, for any remaining perceptual biases that are 
not due to measurement errors, one strategy might be to 
correct the experimental manipulation accordingly. For 
example, in a study of the ventriloquism aftereffect, the 
physical audiovisual spatial disparity could be individu-
ally adjusted to equalize the perceived audiovisual spatial 
disparity between participants: If, for instance, the tar-
geted audiovisual spatial disparity is 10°, a participant 
with a leftward perceptual bias of 2° at baseline would 
be presented with an actual audiovisual disparity of 8° 
whereas a participant with a rightward perceptual bias of 
2° would be presented with an actual audiovisual spatial 
disparity of 12°, so that the perceived spatial disparity 
would be 10° in both cases. Ideally, such an individual 
adjustment should take both auditory and visual baseline 
localization biases into account and would, thus, require 
an additional visual localization measurement at base-
line.

Generalizability and limitations of the present 
findings

Our assessment of error-based and regression-based locali-
zation performance metrics was based on hand-pointing 
data from a sound localization task that was restricted to 
the central region of space (±22.5° to ±31.5°) and that 
used relatively short stimuli (30 or 200 ms). Thus, the 
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precise intercorrelation values between different metrics 
that we observed in the present study may not necessarily 
be generalizable to other experimental designs or sensory 
modalities. It is a well-known finding that errors in sound 
localization tasks differ depending on the experimen-
tal conditions, stimuli, instructions, and psychophysical 
methods employed to measure localization performance 
(Blauert, 1997; Carlile et al., 1997; Lewald et al., 2000; 
Lewald & Ehrenstein, 2001; Perrott et al., 1987; Pinek & 
Brouchon, 1992; Recanzone et al., 1998; Wightman & Kis-
tler, 1989).

For example, auditory target eccentricity is typically 
overestimated with hand-pointing tasks but underesti-
mated with head-pointing tasks, likely due to inherent 
differences in head position involved in these two tasks 
(Lewald et al., 2000; Ocklenburg et al., 2010; Pinek & 
Brouchon, 1992). In addition, the amount of overesti-
mation errors may depend on technical causes such as a 
slight parallax between the pointer pivot and head position 
(Lewald et al., 2000), the sound frequency spectrum (and 
its filtering by the external ear) of the involved stimuli 
(Lewald & Ehrenstein, 1998), and memory-related pro-
cesses for short stimulus durations (as the ones used in the 
present study) that require a response to the remembered 
sound location rather than to an ongoing sound (Lewald & 
Ehrenstein, 2001). The presence or absence of these differ-
ent sources of error may contribute differently to localiza-
tion precision metrics such as p(VE), thereby modulating 
any correlation between localization accuracy and preci-
sion metrics.

Moreover, the processes involved in sound localization 
errors, including the physical processes involved in the inter-
action of sound waves with the pinna, may be a unique char-
acteristic of the auditory system. Thus, to which degree the 
present results and suggestions are transferable to the visual 
and somatosensory systems, in which stimulus location is 
more directly represented at the receptor level, needs further 
investigation. We speculate that interdependencies between 
different localization performance metrics likely exist in 
other sensory modalities and tasks as well. For example, 
the presence of any central tendency biases would introduce 
a correlation between localization precision, as measured 
with the p(VE), and an underestimation of target eccentricity 
reflected in maCE or slope (Aston et al., 2022). Therefore, 

we propose that our general recommendations for quanti-
fying localization performance from continuous response 
data apply to a wider range of tasks including spatial locali-
zation tasks in other sensory domains like vision (Lewald, 
2002; Odegaard et al., 2015) and touch (Badde, Navarro 
et al., 2020b; Samad & Shams, 2016) as well as temporal 
perception tasks (Polti et al., 2018), although the specific 
interdependencies between error-based and regression-based 
metrics in these scenarios might be different.

Conclusions

In summary, localization performance was well defined 
by the two dimensions of accuracy and precision. Our 
findings demonstrate that accuracy metrics, in particular 
those measuring target eccentricity over-/underestimation 
(maCE, slope), and precision metrics, in particular p(VE), 
can become highly correlated presumably due to shared 
underlying sources of error (see also Garcia et al., 2017). 
Hence, we consider it essential to report an exhaustive 
set of both error-based and regression-based metrics (ide-
ally including R2 as an alternative precision metric) and 
to consider intercorrelations between individual metrics 
in studies of spatial perception. Moreover, crossmodal 
recalibration as assessed with the ventriloquism afteref-
fect resulted in a selective shift in spatial bias which was 
not influenced by baseline localization precision in our 
data. Here we found that this shift in spatial bias might 
at least partly be explainable by unspecific test repetition 
effects. These results highlight the need to account for 
inter-individual baseline differences in localization met-
rics in studies of spatial learning (Grabot & Kayser, 2020). 
Although the present study focused on auditory spatial 
perception and crossmodal recalibration of sound localiza-
tion, similar interdependencies between error-based and 
regression-based metrics might emerge in other sensory 
domains (Aston et al., 2022) as well as temporal percep-
tion tasks (Polti et al., 2018), and we recommend explic-
itly testing for this possibility in future research. We hope 
that our recommendations will motivate the development 
of more generally accepted guidelines for the usage of 
localization performance metrics derived from continuous 
response data.
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