
Article https://doi.org/10.1038/s41467-024-48507-7

Multi-omics in nasal epithelium reveals three
axes of dysregulation for asthma risk in the
African Diaspora populations

A list of authors and their affiliations appears at the end of the paper

Asthma has striking disparities across ancestral groups, but the molecular
underpinning of these differences is poorly understood and minimally stu-
died. A goal of theConsortiumonAsthma amongAfrican-ancestry Populations
in the Americas (CAAPA) is to understand multi-omic signatures of asthma
focusing on populations of African ancestry. RNASeq and DNA methylation
data are generated from nasal epithelium including cases (current asthma,
N = 253) and controls (never-asthma, N = 283) from7different geographic sites
to identify differentially expressed genes (DEGs) and gene networks. We
identify 389 DEGs; the top DEG, FN1, was downregulated in cases
(q = 3.26 × 10−9) and encodes fibronectin which plays a role in wound healing.
The top three gene expressionmodules implicate networks related to immune
response (CEACAM5; p = 9.62 × 10−16 and CPA3; p = 2.39 × 10−14) and wound
healing (FN1; p = 7.63 × 10−9). Multi-omic analysis identifies FKBP5, a co-
chaperone of glucocorticoid receptor signaling known to be involved in drug
response in asthma, where the association between nasal epithelium gene
expression is likely regulated by methylation and is associated with increased
use of inhaled corticosteroids. This work reveals molecular dysregulation on
three axes – increased Th2 inflammation, decreased capacity for wound
healing, and impaired drug response – that may play a critical role in asthma
within the African Diaspora.

Asthma is the most common disease of childhood and its prevalence
continues to increase in many parts of the world1. Despite advances in
therapeutics and a better understanding of environmental risk factors,
disparities between populations are profound, and cannot be entirely
explained by non-genetic factors2–5. In the U.S., childhood asthma
prevalence is 20% higher among African Americans compared to non-
Hispanic children of European descent, and African American children
are three times more likely to die from asthma6. Individuals of African
ancestry have greater asthmamorbidity andmortality bothwithin2 and
outside the U.S.7–9, and asthma prevalence is high in African countries
and countries with populations of African ancestry9–11. There are
notable differences in therapeutic response12; patients of African
ancestry respond differently to inhaled corticosteroids (ICS)

compared to patients of European ancestry13,14, and long acting beta
agonizts (LABA) may have greater risk for adverse events in this
group15. Genetic variants in the receptors for pharmaceutical agents
used in asthmamanagement may partially explain these differences in
response12. To address gaps related to the genomic underpinnings of
disparities in asthma, we established the Consortium on Asthma
among African ancestry Populations in the Americas (CAAPA)16.

Genome-wide association studies (GWAS) have identified >170
loci for asthma17. CAAPA has contributed the single largest GWAS
focused solely on the African Diaspora18, but populations of African
ancestry remain woefully under-represented in large scale interna-
tional studies19,20. In the recent Global Biobank Meta-analysis Initiative
(GBMI), African ancestry individuals represented amere 5%of the total
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number of asthma cases19. Nonetheless, the ancestry diversity in the
GBMI facilitated identification of SNPs with different effects across
ancestries and increased power to identify loci missed in European-
only subsets. Importantly, the GBMI demonstrated that increased
diversity and sample size of the discoveryGWASswere primary drivers
of improved polygenic risk score (PRS) accuracy in non-European
populations.

While there is mounting evidence that asthma risk variants may
play a role in the regulationof immune systempathways20,21, molecular
mechanisms underlying asthma heterogeneity and their signals at
GWAS loci are poorly described. With a few exceptions like the Chr17q
locus, GWAS loci have offered limited insight into the biology of
asthma, and even less into the complex heterogeneity and disparities
in asthma. Transcriptomic approaches have demonstrated some suc-
cess in profiling asthma endotypes22 and epigenetics can provide
mechanistic understanding of the regulation of these transcriptomic
signatures23, especially in the context of environment24,25. There are
now multiple lines of evidence supporting the important role of the
airway epithelium in the pathogenesis of asthma26. A meta-analysis of
gene expression from airway epithelial cells has identified >400 dif-
ferentially expressed genes, consistency between signatures from
upper (nasal) and lower (bronchial) airway epithelial cells, and upre-
gulationof Th2 pathway genes26 –pathways related to allergen specific
T-helper 2 (Th2) cells that are centrally involved in allergic asthma.
Transcriptomic signatures can distinguish “type 2 high” from “type 2
low” endotypes of asthma, and importantly, such signatures are now
shown to be associated with response to ICS27, with the potential to
also distinguish viral and non-viral asthma exacerbations28. Mono-
clonal antibodies including anti-IgE, anti-IL5, anti-IL5 receptor, and
anti-IL4 receptor have advanced the management of severe asthma,
with the choice of therapy predicated on the ability to define the
endotype of asthma in the patient29.

We hypothesize that transcriptomic signatures from the nasal
airway epithelium in asthma cases and controls representing the
African Diaspora will allow us to validate previously identified gene
expression signatures of asthmaand, importantly, identify pathways of
dysregulation that are relevant to the disparities observedwith respect
to asthma.We rely on nasal epithelium as a proxy for the airways given
its ease of tissue collection on large numbers of individuals and the
established correlation between signatures of asthma between nasal
epithelium and bronchial tissue26,30. RNA sequencing and DNA
methylation data from the same nasal epithelium samples in cases
(individuals with current asthma) and controls (individuals never
having asthma) representing 7 locations across the African Diaspora
reveals dysregulation on three axes – increased Th2 inflammation,
decreased capacity for wound healing in airway epithelium, and
impaired drug response – that play a role in the development of
asthma in individuals of African ancestry.

Results
Clinical characteristics
Cases (N = 253) with current asthma status and controls with never-
asthma status (N = 283) were recruited from seven sites including 4 US-
based locations and 3 international locations (Supplementary Data 1).
The subjects were 70% adult and 38% male. Global genetic ancestry
deconvolution revealed a wide range in African ancestry (YRI
ancestry = 9–100%) representing diversity across the African Diaspora
(Supplementary Data 1, Supplementary Fig 1). The highest African
ancestry was observed in the subjects from Nigeria (average = 100%
YRI), and the lowest was observed in the subjects from Brazil (aver-
age = 51% YRI). Cases had higher total serum IgE (p = 1.66 × 10−23), higher
eosinophil counts (p = 3.42 × 10−05) and higher phadiotop
(p = 2.27 × 10−21), reflecting the greater burden of the allergic phenotype
in this group. Cases also had poorer lung function (FEV1;
p = 7.30 × 10−16). Similar patterns were observed within each site

comparing cases to controls, with differences also observed between
sites. Asthma cases from all the three non-US recruitment locations had
higher IgE compared to Chicago, but no difference in IgE levels was
noted for the controls (Supplementary Data 1). Notably, cases from
Salvador, Brazil had the most severe asthma (CASI score average = 8),
and the accompanying highest rate of medication use (97.2%).

Single gene analysis
We identified 389 differentially expression genes (DEGs) between
cases and controls (Supplementary Data 2); 41% of these DEGs had at
least 2 sites with site-specific p <0.05 (Fig. 1A). We evaluated replica-
tion of these signals in a publishedmeta-analysis of 8 studies including
nasal epithelium transcriptomics26. A total 16,269 genes were tested in
both analyses, including 353 of the 389 DEGs we identified; 87 of the
353 geneswere independently identified in themeta-analysis (q <0.05,
enrichment p-value = 9.97 × 10−27) and all but one showed the same
direction of effect (Supplementary Data 2). An additional 64 genes
were replicated at a nominal threshold (p <0.05) in the meta-analysis
with the same direction of effect (Supplementary Data 2). The 15 most
significant DEGs (Supplementary Data 3, Supplementary Fig. 2) inclu-
dedgenes known toplay a role inwoundhealing (FN1, CDH11), immune
response (VSIG4, HS3ST4), and asthma drug response (PTHHD4,
SPTBN1, FKBP5). Additionally, SNTG2 is the target of multiple miRNAs
related to asthma31, and PPP1R9A expression was previously deter-
mined to be influenced by IL-13 inmouse lung32. Effect sizes for the top
15 genes were generally consistent across the seven recruitment sites
and, with the exception of RHEX2, and effect sizes were similar with
overlapping confidence intervals between adult and pediatric subset
analyses (Supplementary Fig. 2).

The most significant DEG was FN1 (log2FC = −0.62, q = 3.26 × 10−9,
Supplementary Data 3). Despite variability in FN1 expression across
sites (Fig. 1B) there was consistently lower expression in cases (Fig. 1B),
similar effect sizes in the adult and pediatric subsets, and consistent
effects across all sites except Washington DC (Fig. 1C, D). FN1 was
independently identified by Tsai et al.26 with a similar lower expression
in asthma (z = −3.61, q = 1.25 × 10−2).

Pathway analysis on significant DEGs
Ingenuity Pathway Anlaysis (IPA) analysis on the N = 389 significant
DEGs identified 1188upstream regulatorswithp-valueof overlap<0.05;
the set of top 10 upstream regulators with notable roles in asthma are
indicated in Supplementary Fig 3 and Supplementary Data 4. These
include inflammatory cytokines IL4 (z =0.096, p = 7.25 × 10−10, Supple-
mentary Fig 3B) and TGFβ1 (z = −1.711, p = 5.47 × 10−8, Supplementary
Fig 3C), both of which are known to play key roles in asthma. Inter-
estingly, two asthma drugs – dexamethasone (z = 2.117, p = 4.31 × 10−10,
Supplementary Fig 3D) and fluticasone propionate (z = 1.44,
p = 9.42 × 10−08, Supplementary Fig 3E) – were also among the top 10
upstream regulators for the significant DEGs. The 188 genes identified
as direct or indirect targets of these two drugs were not themselves
related tomedication use inCAAPA (SupplementaryData 5). Beyond its
role in immune-related mechanisms for asthma, TGFβ1 has also been
found to be a potent stimulus for FN1 expression in vascular and airway
smoothmuscle (ASM) cells, lung fibroblasts, and the alveolar epithelial
cell lines33. In our study, it was identified as an upstream regulator for a
network that includes three genes that are known to play a role toge-
ther in airway remodeling andwound healing – FN1,COL3A1 andCOL41
(Supplementary Fig 3C)34. All three genes have lower nasal epithelial
expression among asthmatics (FN1 (log2FC = −0.62, q = 3.26 × 10−9);
COL3A1 (log2FC= −0.32, q = 3.54 × 10−2); COL4A1 (log2FC = −0.24,
q = 3.90 × 10−2), Supplementary Data 2).

Gene expression module analysis
There were 24 weighted gene correlated network analysis (WGCNA)
modules identified from analysis of N = 1326 genes (DEGs with FDR <
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0.15). Of these, 16 modules ranging in size from N = 21–88 genes were
significantly differentially expressed by asthma status (Table 1, Fig. 2);
gene-modulemembership is shown in Supplementary Data 2. We note
that none of these N = 1326 genes were differentially expressed based
onnasal steroid (NS) usage 5 days prior to nasal epithelium sampling in
cases (minimum q-value = 0.89 comparing 32 cases on NSs but not
withholding compared to 36 cases on NS that withheld NS; Supple-
mentary Data 6). Of the five modules upregulated in asthma cases, the
strongest was a network (M6) with CEACAM5 as the hub gene (Fig. 2,
Supplementary Fig 5A, log2FC =0.32, q = 9.62 × 10−16). Also strongly
upregulated in asthma cases, was the network (M2) with hub gene
CPA3 (Fig. 2, Supplementary Fig 5B, log2FC =0.54, q = 2.39 × 10−14). In
pathways downregulated in asthma cases, hub genes were identified
reflecting the importance of impaired wound healing: FN1 (Fig. 2B) as
noted above, and ERBB2 35,36. Additionally, networks related to drug
response are implicated with hub genes DNAH537(M9), NCALD38(M4),
and ST1339(M11) from downregulated modules for asthma.

The WGCNA modules reflected the same three axes of dysregu-
lation in asthma cases as indicated from the top 15 DEGs and IPA
upstream regulators on 389 DEGs; it should be noted that many of the
associated modules and therefore the axes of dysregulation are cor-
related to varying degrees (Fig. 2A). The cumulative effect of these
three axes is illustrated in a joint model examining dichotomized
module expression focusing on the most significant module for each
axis: Th2 inflammation (CEACAM5,M6), wound repair (FN1,M5), and
drug response (NCALD,M4) (Fig. 2C). These modules are significantly
correlated (M6-M4: R = −0.70, p <0.001/M5-M6: R = −0.58, p <0.001,
and M5-M4: R = 0.29, p <0.001). The ORs for asthma if an individual
was in the upper median for any one, two and all three modules were
1.70 (95% CI 1.49–1.99), 2.91 (2.12–3.98), and 4.95 (3.09–7.93),
respectively. This joint analysis provides evidence the greatest risk for
asthma was when there is dysregulation along all three axes (Fig. 2D).
The number of modules was significant in the additive logistic model
(p = 2.8 × 10−11) and no departures from additivity were detected
(p = 0.29 from a 2df likelihood ratio test).

Integration of gene expression with DNA methylation (DNAm)
There were 8,418 eQTM tests performed for gene-CpG pairs com-
prising significant DEGs and CpGs mapping within 5 kb of the gene
transcription start site or that were annotated by promoter-capture
HiC in bronchial epithelial cells lying in putative enhancer regions for
these genes. Of these, 918 gene-CpG pairs had uncorrected eQTM
p <0.05 (Supplementary Data 7); this included 288 unique genes and
915 unique CpGs. Testing for differential DNAm by asthma status, we
found only five of these CpGs to be DMCs (i.e. significant for asthma at
the Bonferroni level of p < 0.05/915, Supplementary Data 8): two CpGs
for FKBP5 (cg03546163, cg23416081), two for TREML2 (cg26928682,
cg18297196) and one for TMEM71 (cg27159719). We found cg03546163
to be the strongest predictor of FKBP5 expression and cg26928682 for
TREML2 expression independent of other eQTMs for each gene. For
FKBP5 (Fig. 3A,B), adjusting for methylation at cg03546163 strongly
attenuated the association between gene expression and asthma, with
a reduction in effect size (log2FC =0.231 and 0.106 pre- and post-
adjustment for methylation at cg03546163), and a loss in significance
(p = 0.0019 and 0.155 pre- and post-adjustment for methylation at
cg03546163). The samepatternwasnoted forTREML2 (Supplementary
Fig 6)where theDEG lost significanceafter adjusting formethylation at
cg26928682. However, the TMEM71 asthma DEG remained largely
unchanged when adjusting for methylation at cg27159719 (Supple-
mentary Fig 6). These results suggest an epigenetic mechanism of
regulation of gene expression in asthma risk for both FKBP5 and
TREML2.

The two CpGs recognized as eQTMs for FKBP5map to regulatory
features, and there is interaction between the two regulatory features
possibly accounting for the correlation observed between the two
CpGs and asthma risk (Fig. 3C). FKBP5 encodes FKBP prolyl isomerase
5, a cochaperone modulating glucocorticoid receptor (GR) activity
associated with the inflammatory response40. While site-specific
effects of gene expression at FKBP5 with asthma are consistent with
overlapping confidence intervals, a markedly stronger effect was
observed in the Brazil site (Supplementary Fig 2) which is also the site

Fig. 1 | Summary of the DEG analysis for active asthma in CAAPA. Panel A
Volcano plot of DEG analysis for asthma in the full combined group (N = 253 cases,
N = 283 controls) from all 7 sites. Color represents the number of sites where the
uncorrected significance for theDEGanalysis within the sitewas p-value < 0.05, and
genes that did not cross FDR of 0.05 in full combined analysis are retained as black.
Panel B Combined gene expression for top gene FN1 by site. Panel C Gene

expression for top gene FN1 stratified by adult vs. pediatrics. Panel D DEG effect
sizes (log2 fold change and the 95% confidence interval) for top gene FN1 looking at
the full combined analysis, analysis stratified by adults vs. pediatrics and the ana-
lysis within each site. CAAPA sites are ordered based on average African ancestry (%
YRI) fromhighest (Nigeria) to lowest (Brazil). The test used in theDEGanalysiswas a
moderated two-sided t-statistic. Source data are provided as a Source Data file.
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with the most severe asthmatics and highest inhaled corticosteroid
(ICS) use in asthma cases (97.2%, Supplementary Data 1). FKBP5 is not
differentially expressed by ICS use in the full CAAPA dataset (Supple-
mentary Data 5, p =0.615). However, given prior evidence that FKBP5
may be differentially expressed after dexamethasone treatment41, we
performed analyses to tease apart the relationship between ICS use,
methylation at cg03546163, asthma severity by CASI, and risk for

asthma in the four US sites where both DNAm and RNAseq were
available. Lower methylation at cg03546163 was strongly associated
with asthma (β = −0.295, p = 8.2 × 10−7) in the full subset of asthma
cases and controls (N = 331). When limited to those asthma cases not
on moderate-high ICS use (N = 283), the association with asthma
remained (β = −0.197, p = 1.04 × 10−3). In a subset case-only analysis of
all asthmatics (N = 149), we observed a more significant association

Table 1 | Significant WGCNA gene module differential expression analysis for asthma

Module
label

Hub gene log2 FC Adjusted
p-value

# genes in
module

# genes with
DEG q < 0.05

Most signifiicant

WGCNA STRING DEG in module

M6 CEACAM5 MET 0.32 9.62E−16 71 26 HS3ST4

M2 CPA3 POSTN 0.54 2.39E−14 81 45 PTCHD4

M5 DKK3 FN1 −0.28 7.63E−09 72 34 FN1

M20 C16orf89 RIMS1,PPP1R9A,NR2F1 −0.36 3.41E−08 33 14 PPP1R9A

M23 ACVR1B CCND1 −0.16 4.56E−08 23 5 SUSD4

M15 SF3A1 SMARCA2 −0.06 1.61E−05 44 18 SPTBN1

M1 PDCD10 EEF1E1 0.07 3.74E−05 88 21 ETAA1

M4 IFT172 GLRB,NCALD,TP53BP1,PTPRT −0.13 3.74E−05 77 17 SLC13A3

M3 ENSG00000279476 BCAN,PLAGL1,UGT1A1,PRRT2,GARNL3,CYP2A7 0.16 1.24E−04 78 15 ENSG00000273599

M21 POLD2 POLD2,UBB −0.09 2.17E−04 31 11 GNAS

M9 DNAH10 DNAH5 −0.13 2.46E−04 58 15 DNAH5

M24 RPL7A RPL23A −0.08 2.29E−03 21 5 MT3

M14 SARS1 VCP −0.05 2.58E−03 44 11 POFUT1

M11 ST13 HSP90AB1 −0.04 4.15E−03 48 9 FAM169A

M8 PRKCSH ERBB2 −0.05 6.25E−03 62 18 VPS18

M10 ASPM BIRC5,CCNA2 0.10 2.74E−02 48 11 PARPBP

Geneswithq < 0.15 in full groupDEGanalysis for asthma (seeSupplementary Table S1) were grouped into 24modules usingWGCNA. 24moduleswere tested for associationwith asthma, and the 16
identified with q <0.05 are shown in this table. Bold font indicates gene used to label the module in Fig. 2. Analysis was performed using a moderated t-statistic (two-sided).

Fig. 2 | Differential module expression based on the N = 1326 DEGs with
FDR <0.15 for active asthma. Panel A Module connectivity network for the 24
modules. Each node represents a module, and each edge represents a significant
positive Pearson pairwise correlation of module expression (correlation >0.5).
Node color intensity corresponds to log2FC in DEModule analysis for asthma (red
upregulated in cases, green downregulated in cases). Differentially expressed
modules are larger in size (q <0.05). Edge weight indicates correlation (wider
edges higher correlation of module expression). Panel B STRING network
retrieved for genes assigned to module M5 with hub gene FN1. Each node repre-
sents a gene and each edge represents a protein-protein interactionwith a stringdb
score >0.15. Node color intensity corresponds to log2FC in DE analysis of asthma

(red upregulated in cases, green downregulated in cases). Node size was made
proportional to the number of interactions of the node divided by maximum
number of interactions of a node in the gene module (dg/max dg of module).
Unconnected nodes were not included. Edge weight and transparency indicate
stringdb score (wider, darker edges indicate higher score). Panel C Fraction of
asthma cases and ORs for asthma if an individual was in the upper median for any
one, any two and all three modules (M4, M5, M6). Fitted probabilities (gray dots)
and 95% confidence intervals (black lines) were derived from a logistic model with
number ofmodules as an additive predictor. Source data are provided as a Source
Data file.
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between methylation and asthma severity measured by CASI score
(β = −0.393, p = 8.17 × 10−4), than between methylation and ICS usage
(β = −0.314, p =0.014).

Discussion
In this report, we focus on RNASeq data in nasal epithelium tissue from
536 subjects representing the African Diaspora to define tran-
scriptomic profiles related to asthma. We then integrate these tran-
script data with DNAmethylation also in the same tissue with the goal
of identifying mechanisms of dysregulation that underlie molecular
subtypes or endotypes of asthma. Limitations in our study include the
inability to differentiate gene expressionprofiles of atopy fromasthma
given the high prevalence of atopy in our cases and controls, the
restriction of methylation data to only the US-based recruitment sites,
and our inability to investigate environmental risk factors and social
determinants of health in asthma. Despite these limitations, we are
uniquely positioned to investigate asthma multi-omics in populations
that arehistorically under-represented in genomics researchbut bear a
disproportionate burden of the disease and disease severity. Overall,
we found N = 389 differentially expressed genes, and 16 differentially
expressed modules that are associated with current asthma adjusting
for differences by site and ancestry. We identify strong signatures
related to wound healing and drug response at single-gene and
network-based levels that may have identified additional endotypes
for asthma with potential implications for targeted therapy in the
future.

The most significantly differentially expressed gene in asthma
cases from CAAPA was FN1 encoding fibronectin. Despite some
between-site differences in overall expression of this gene, there was a
consistent lower expression of FN1 in nasal epithelium in asthma cases
compared to controls, and this differential expression of FN1 was

replicated in data fromTsai et al.26. Fibronectin is an adhesion protein.
Increased deposition of FN1, along with fibrillar collagen proteins
(COL3A and COL4A) in the extracellular matrix (ECM) and sub-
epithelial space of airways, results in airwaywall thickening and airflow
obstruction, thereby altering the structural properties of the airways
and the functional properties of airway cells in asthma34. In airway
epithelial cells (AEC) from children with asthma compared to healthy
atopic and nonatopic controls, FN1 was the only ECM component
whose expression was significantly lower in AECs from asthma cases42.
Furthermore, wound healing models using AECs showed that a
reduced capacity of AECs to secrete FN1 contributes to dysregulated
AEC repair and impaired wound healing42.

There are several additional lines of support related to down
regulation of genes resulting in impaired wound healing as a promi-
nent feature of asthma risk in CAAPA. First, pathway analysis of the full
set of significant DEGs identified TGFβ1 as an upstream regulator for a
network of genes including FN1, COL3A and COL4A. Transforming
growth factor, encoded by the TGFβ1 gene, increases the deposition of
ECM proteins, including FN1, and stimulates FN1 expression in airway
epithelial cells33. In our study, the expression of all three genes were
lower in asthma cases, consistent with impaired wound healing. Sec-
ond, using a systems biology approach, we identified threemodules of
co-expressed genes down-regulated in airway cells from the asthma
cases. The hub genes from these modules, FN1 (M5), ERBB2 (M8), and
ACVR1B (M23), are associated with wound healing or airway remodel-
ing. ERBB2 encodes a member of the epidermal growth factor (EGF)
receptor family of receptor tyrosine kinases that play a key role in
epithelial differentiation, proliferation, and repair36. Wound models
have shown lower ERBB2 activation in freshly brushed isolated human
AECs from patients with asthma and diminished wound closure and
cell proliferation compared to AECs from healthy controls36. ACVR1B

Fig. 3 | Epigenetic mechanism relating gene expression to asthma for FKBP5.
PanelA Scatter plot ofmethylation (beta) values at cg03546163 vs gene expression
(log2 CPM) values for FKBP5 and box plots showing median, lower and upper
quartiles, whiskers extending to the furthest data point no more than 1.5 times the
distance between the lower and upper quartiles, and outliers, by asthma case and
control status for N = 298 individuals. Panel B Effect sizes and unadjusted p-values
from two-sided multivariate linear regression models for DMC analysis
(cg03546163 and asthma, N = 331), eQTM analysis (cg03546163 and FKBP5
expression, N = 298) and DEG (FKBP5 expression and asthma,N = 298) analysis pre-
and post-adjustment for methylation at the CpG (labeled DEG, unadj and DEG, adj).

Panel C UCSC Genome Browser view of the FKBP5 locus, indicating locations of
cg03546163 (pcHiC) and cg23416081 (5 kb of TSS) showing interactionbetween the
GeneHancer regulatory elements at these two regions. Publicly available data from
tracks displayed includes location of exonic and intronic gene regions from the
UCSC gene annotation; regulatory elements, genes and their interactions from
GeneHancer, in detailed and clustered views; chromHMM tracks from Roadmap;
transcription factor CHIP-seq from ENCODE; and DNAse hypersensitivity density
signal from ENCODE for CD20+ B-cells, CD14+ monocytes, fibroblasts and naïve
B-cells. Source data are provided as a Source Data file.
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encodes an activin A type IB receptor for the cytokine activin Awhich is
closely related to TGFβ143. In the network of activin A and TGFβ1 reg-
ulation, activin A is a potential modulator of airway remodeling43.

The second axis of dysregulation in asthmacaseswas a networkof
upregulated genes that reflect the canonical Th2 pathway. The stron-
gest evidence is seen in the twomost differentially expressedmodules
M6 and M2, which have Th2-related hub genes (CEACAM5 and CPA3,
respectively); both are upregulated in the asthma cases.CEACAM5 is an
IL-13-regulated epithelial gene that is upregulated in severe asthmaand
associated with increased asthma exacerbations44–46. It has also been
previously identified as a hub gene in a limited microarray-based
analysis in 42 cases and 28 controls47. Carboxypeptidase A3 (CPA3) is a
mast cell (MC) protease and there is a well-known switching of MCs
expressing tryptase only (MCT) to MCs expressing tryptase, chymase
and CPA3 (MCTC) with a dominant expansion of the latter in airways of
asthma cases and more specifically in the context of severe asthma48.
MCs are key effector cells in asthma that are involved in both early and
late phase allergic responses49, and they are most notably involved in
the Th2-high endotype of asthma49. Additionally, VSIG4 is the third
strongest DEG in our study. It encodes V-set and Ig domain-containing
4 and is an inhibitory ligand on antigen presenting cells thereby reg-
ulating T cell responses: macrophages expressing VSIG4 play a role in
inhibiting T cell proliferation and cytokine production50.

The third axis implicates dysregulated genes that could reflect
drug responsiveness. The top 15 DEGs included PTCHD4, which was
associated with airway disease and identified in a GWAS for oral cor-
ticosteroid use51; SPTBN1, which was identified in a GWAS for leuko-
triene modifier response in asthma52; and FKBP5, which plays a role in
response to inhaled corticosteroid response as described below. The
most significant upstream regulator identified by IPA was the corti-
costeroid dexamethasone – an oral corticosteroid used in the treat-
ment of asthma, and the 6th strongest upstream regulator was
fluticasone propionate – a commonly used steroid treatment for
allergic rhinitis in nasal spray formulations. Importantly, we ruled out
that the 188 gene targets of these two drugs are directly related to ICS
medication use in the asthma cases; 89 genes were targets to
both drugs.

The FKBP5 gene encodes FKBP prolyl isomerase 5 (FKBP5), a
cochaperone modulating glucocorticoid receptor (GR) activity asso-
ciated with an inflammatory response40. It was previously shown to be
differentially expressed after dexamethasone treatment41. Further-
more, a prior study suggested tightly regulated epigenetic control of
the expression of genes that modulate GR responsiveness40. Here, we
identified FKBP5 in the 15 most differentially expressed genes for
asthma and also show epigenetic variation at two interacting reg-
ulatory regions possibly accounting for the differential expression.We
also observed the largest estimated effect size for this gene was within
the Brazil site, which has the most severe asthma cases with greatest
proportion of asthma cases on moderate to high ICS use. This obser-
vation may be reflective of high FKBP5 gene expression in these sub-
jects resulting in a decreased responsiveness to ICS, and a consequent
escalation of ICS dose. This hypothesis aligns with the requirement of
higher doses of ICS in this group of moderate to severe asthma cases
from Brazil. By the time the patients were enrolled in the cohort they
had difficult-to-treat asthma, but in many cases the disease has been
controlled onmedium-high doses of ICS combined with formoterol, a
long-acting beta 2 agonist bronchodilator (LABA). The severity of
asthma could also be related to a long journey to proper treatment, by
patients who have suffered from recurrent asthma attacks and symp-
toms before having access to proper management with free ICS-LABA.
Overall, the expression of FKBP5 was higher in the asthma cases in all
other sites, except for those recruited in Denver. In comparison with
other CAAPA sites, Denver site participants had the lowest asthma
severity indicated by having the lowest mean CASI score (2.81) and
highest mean FEV1 (99.5%) predicted in asthma cases (Supplementary

Table S1). The Denver site’s low mean CASI score is consistent with
mild asthma (CASI ≤ 3)53,54; in comparison, the Brazil site’s mean CASI
score of 8 was the highest for all sites, and has been associated with
severe asthma53. The Denver site was also distinguished by being 100%
pediatric enrollment, differing from the other CAAPA sites with
48.5–100% adult participant enrollment (Brazil site was 100% adult
participants). These observations support the relevance of FKBP5
expression in more severe and persistent disease in CAAPA.

Our integrative multi-omics analyses revealed an important set of
genes and co-expressed gene networkswith relevantmechanistic roles
in asthma that are differentially expressed in the nasal epithelium of
asthma cases of African ancestry in CAAPA. This work reveals dysre-
gulation of three axes – increased Th2 inflammation, decreased
capacity for wound healing, and impaired drug response. Each is
associated with risk for asthma and there is correlation between the
axes themselves, but the impact of dysregulation on multiple axes
bears a cumulative risk with an OR of 4.95 (95% CI = 3.09–7.93). Net-
works of genes implicating Th2 inflammation are now well docu-
mented, but our findings with respect to gene networks related to
wound healing and drug response are not documented, and our
findings may be implicating additional endotypes of asthma beyond
the well-known type 2 high vs. type 2 low29. To date, effective choice of
monoclonal antibodies in the management of severe asthma is
dependent on the clinical and inflammatory profile of the patient that
relates to known endotypes29. While future work will be needed to
validate these additional axes of dysregulation for drug response and
airway remodeling identified in CAAPA and determine if these tran-
scriptomic signatures may be related to ancestry, our findings from
this understudied ancestry group that bears significant health dis-
parities in asthma offer the potential to expand our understanding of
clinical heterogeneity in disease and treatment response.

Methods
Study subjects
Study subjects included African ancestry individuals with no history of
COPD, emphysema or chronic bronchitis. CAAPA included adult (aged
18–89) and pediatric (children aged 8–12 and adolescents aged 13–17)
individuals. Other exclusion criteria included: pregnancy, lung trans-
plant, kyphoscoliosis, sarcoidosis, bronchiopulmonary dysplasia, cys-
tic fibrosis, bronchiectasis, rheumatoid arthritis, Crohn’s disease,
psoriasis, lung carcinoma, ciliary dyskinesia, lupus and active tuber-
culosis. Recruitment occurred at 3 non-US sites (Nigeria, Barbados and
Salvador, Brazil) and four US sites (Denver, Baltimore, Washington DC
and Chicago). Study subjects were asked to self-identify as African,
African American, African Caribbean, African Brazilian or African-
Other. Cases were first defined as subjects with ‘ever’ asthma con-
firmed by a physician (response = yes to the two questions: (1) Have
you ever had asthma?; and (2)Was it confirmed by a doctor?). The final
set of cases was further restricted to the subset of individuals with’-
current’ asthma described below. Controls were defined as subjects
with no history of asthma (response = no to the question: (1) Have you
ever had asthma?). All samples used for this study were obtained fol-
lowing written informed consent from participants. The University of
Colorado (IRB#: 17-1807), Johns Hopkins University (IRB00179053),
University of Chicago (IRB18-0466-CR001), National Institutes of
Health (IRB#: P184385), University of West Indies (IRB#: 190604-A),
University of Bahia (IRB#: 3.302.487) and University of Ibadan Insti-
tutional Review Boards approved the conduct of this study
(IRB18-0840).

Sample collection
Nasal columnar epithelial cells from the posterior surface of the
inferior turbinate were collected using cytology brushes and standar-
dized protocols30,55. After collection, the brush was immediately sub-
merged in Buffer RLT Plus (Qiagen Inc., Valencia, CA, USA) to lyse the
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cells and stored until DNA/RNA were extracted. Prior to any proces-
sing, a small sample of cells was smeared on a glass slide followed by
fixation and H&E staining for quality control. Only samples with ≥80%
ciliated epithelial cells visualized from slides were retained. DNA and
RNA were extracted from the same nasal sample for multi-omics
analysis.

Questionnaires & phenotype data
Study data were collected and managed using REDCap® electronic
data capture tools hosted at Yale University56 to record health ques-
tionnaires from the subjects at all 7 sites. These included informed
consent, recruitment forms, respiratory health questionnaires, an
asthma severity questionnaire, pulmonary function tests data, com-
plete blood count (CBC) with differentials, vitals collected at the time
of visit, medications and physical examination information and date
and time nasal and blood samples were collected from the patient.
Whole blood collected in BD Vacutainer® EDTA tubes was sent to the
clinical laboratory at each site to perform a complete blood count
(CBC) with differentials. Serum samples were sent to the Johns Hop-
kins University School of Medicine Reference Laboratory for Derma-
tology, Allergy and Clinical Immunology (DACI) for total serum IgE
(tIgE) and multi-allergen (phadiatop) measurements. Spirometry was
conducted according to the ATS guidelines using a hand-held KoKo
DigDoser (Louisville, CO).

Measurement of atopy, asthma severity, medication use and
current asthma
Atopy was defined on the basis of the phadiotop and total serum IgE: if
phadiotopwas ≥0.36PAUor IgEwas >100KU/L the subjectwasdefined
to have atopy. The Composite Asthma Severity Index (CASI)
questionnaire57 was administered to all asthma cases at each of the
recruitment sites. CASI takes into consideration medication use and
the corresponding treatment level, in determining asthma severity57.
The scoring guidelines for a treatment component of the CASI test
were adapted from the Expert Panel Report 3 (EPR3) asthmaguidelines
for determining the treatment categories associated with the different
levels of medication and a list of medications used for systemic cor-
ticosteroid bursts during asthma exacerbations54,58. The CASI ques-
tionnaire was used to subset asthma cases to those with current
asthma given the importance of current disease status for dynamic
omics signatures captured in RNA and DNA methylation. Current
asthma status was defined as CASI ≥ 1 in asthma cases. Finally, the CASI
questionnaire was used to define two medication use groups: no
treatment or albuterol as needed (score 0-1 on question 4b) and low to
high dose inhaled corticosteroid use (score 2–5 on question 4b).
Additionally, at the time of nasal epithelium sample collection, indi-
vidualswere asked if therewere on nasal steroids, and if theywere able
to withhold usage for 5 days prior to sampling: there were 68 cases on
nasal steroids, of whom 32 did not withhold usage.

Clinical characteristics of study subjects
Clinical characteristics of study subjects used for generating multi-
omic data sets are summarized in SupplementaryData 1. Adults ranged
in age from 18 to 89, and pediatric subjects ranged in age from 8 to 17.
Additional information on sample distributions by phenotypes and
their associations is also shown in Supplementary Data 1. For each
quantitative phenotype (CASI, tIgE, eosinophil count, phadiotop, FEV1,
FEV1/FVC), we tested for differences between cases and controls in the
full group using a linear model adjusting for age, sex, the first two PCs
plus recruitment site site (Supplementary Data 1, Full Group). Addi-
tionally, because Chicago was the only site to recruit both adults and
children, we used this as the reference group to compare phenotypes
across sites. In those analyses, we used similar linear models for the
quantitative phenotypes and a logistic model for medication use,

stratifying by case and control status and adjusting for age, sex, and
the first two PCs.

Omics data generation
Genotyping was performed on DNA extracted from blood clots from
CPT tubes on samples from all 7 recruitment sites. Samples with DNA
Integrity Number (DIN) ≥6 were run on Illumina’s Infinium® Multi-
Ethnic Global BeadChip (MEGA). Following the Illumina Infinium pro-
tocol, idat files were generated and used to extract the genotype calls,
performdataQC and downstreamanalysis. Genotype data was used to
derive ancestry principal components (PCs). Genotyping was per-
formed on samples from all 7 recruitment sites.

RNA samples from nasal airway epithelial cells collected across all
7 recruitment sites and that passed all the laboratoryQC thresholds (at
least 80% columnar cells per nasal slide assessment, nanodrop and
Qubit concentration ≥30 ng/ul in 20 uL volume (a total amount of
600 ng), RIN≥ 6 and 260/280 between 1.7 and 2.2) were sent for RNA
sequencing to Psomagen. RNASeq batches were balancedwith respect
to site, asthma status, sex and age (adult vs. child) to minimize con-
founding. The Illumina TruSeq Stranded Total RNA with Ribo-Zero kit
was used to prepare libraries, depleting the ribosomal RNA. RNA
sequencing (RNAseq) was performed on the NovaSeq 6000 using
150 bppaired end reads and yielding at least a total of 80millionpaired
end reads per sample. RNASeq was performed on samples from all 7
recruitment sites.

DNA methylation (DNAm) quantification was performed using
Illumina’s Infinium MethylationEPIC array® using genomic DNA from
nasal airway epithelial cells collected across the 4 US recruitment sites
that passed all the laboratory QC thresholds (at least 80% columnar
cells per nasal slide assessment, nanodrop and Qubit concentration
≥15 ng/ul in 50 ul (a total amount of 750ng), DIN ≥ 6 and 260/280
between 1.4 and 2.15). Bisulfite conversionwas performed using the EZ
DNAMethylation™ kit (Zymo Research) and DNAm quantification was
performed using the Illumina Infinium protocol. Idat files generated
from the Infinium protocol were used to perform the data QC and
downstream analysis. Methylation chips were randomized with
respect to site, asthma status, sex and age (adult vs. child) to minimize
confounding.

Quality control (QC) and preprocessing
Quality control procedures were performed on genotype data to
exclude any samples or variants that had missingness >3%; standard
QC steps included: sex verification, heterozygosity checks and
identity-by-descent (IBD) to look for any unexpected relatedness. Two
individuals failed on call rate and four individualswere identified as sex
mismatches in one or more omics data sets (dropped from all data-
sets). Thirteen individuals showed cryptic relatedness, as being part of
a parent offspring pair, full sibs or half sibs pairs based on the IBD
estimates; one independent subject was selected prioritizing case
status from each relationship resulting in 7 individuals being dropped
from all datasets. One sample was identified as a sample swap, dupli-
cating another individual, andwas dropped. A total of 14 samples were
excluded and further ancestry analysis was limited to 673 individuals
from all seven sites.

To perform RNAseq QC pre-alignment, QC, adapter trimming,
and alignment of reads to GRCh38 were performed using FastQC
[http://www.bioinformatics.babraham.ac.uk/projects/fastqc/], Picard
tools [http://broadinstitute.github.io/picard], BBDUK [sourcefor-
ge.net/projects/bbmap/], and HISAT259, respectively. Raw counts were
generated by CoCo60. Four samples were excluded due to sex mis-
matches, 3 samples were excluded due to unexpected relatedness,
4 samples were excluded due to failure of library preparation, and
7 samples were excluded due a high percentage of ribosomal RNA.
After filtering asthma cases to include only current asthmatics, and
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available genotype data for ancestry PCs, analysis was limited to 536
individuals from all seven sites.

DNAm data QC was tested using the minfi R-package61. Samples
were excluded based on the following metrics: 12 with mean of
methylated and unmethylated signal <10.5; four with discordant sex.
CpG sites were filtered as follows: N = 953 probes that had fewer calls
detected (detection p >0.01) in more than 20% of the samples;
N = 30,247 probes thatwere in close proximity to SNPs (at the CpG site
or in the single-base extension site for the array probe), yielding a total
of 834,663 CpGs that were normalized using the quantile option for
downstream analysis. After filtering asthma cases to include only cur-
rent asthmatics, and available genotype data for ancestry PCs, analysis
was limited to 331 individuals from four US-based recruitment sites:
Baltimore, Chicago, Denver and Washington DC.

Quantification of principal components and global sample
ancestry
We used KING62 to estimate relatedness and build a kinship matrix
including all subjects fromall the sites. SNPswith >5%missingness, <1%
minor allele frequency and hardyWeinbergp < 1 × 10−6 werediscarded.
SNPs underwent linkage disequilibrium-pruning (removal of SNPswith
an R2-value > 0.1 within every 50 SNP window) and PCA analyses were
performed using a CAAPA-only dataset comprised of 673 samples and
512,925 SNPs. PCA was performed allowing for observed kinship using
PC-AiR as implemented in the GENESIS R package63. Additionally, PCA
was also performed including reference populations from the 1000
Genomes Project (85 Utah residents with Northern and Western Eur-
opean ancestry CEU (EUR), 88 Yoruba samples from Ibadan, Nigeria
YRI (AFR) and 43 Native Americans selected from Mao et al.64 (AMR))
on 219,832 autosomal SNPs obtained after the merge with reference
data. The elbow in the scree plot was used to identify the top two PCs
(PC1 and PC2) as covariates for ancestry adjustment, Supplemen-
tary Fig 1.

To estimate global ancestry proportions, we first implemented
cross-validation using ADMIXTURE65 to determine the number of
reference populations (K) with K = 1–5, to infer the optimal number of
ancestral reference groups needed. K = 3 accounted for the lowest
cross-validation error. CAAPA samples were merged with 3 reference
populations andwith the set of 219,832 autosomal SNPs obtained after
the merge, and using K = 3, we performed global ancestry estimation
using ADMIXTURE and plotted the admixture estimates using the
PONG visualization tool66 as shown in Supplementary Fig 1.

Differential gene expression analysis
Meannormalized countswere generated by DESeq267. Geneswerefirst
filtered across all sites combined to only include those with DESeq2
mean normalized count ≥ 20 and counts per million (CPM) > 0 in the
percentage of samples corresponding to the proportion of asthma
cases to never-asthma controls (e.g. in the full sample there were
47.20% cases, and we required CPM>0 in 47.20% of the total sample);
this was done to ensure expression variability was present in both
cases and controls. Following filtering, 21,831, 21,789 and 21,887 genes
were available for analysis in the full dataset, adult-only dataset and
pediatric-only dataset, respectively. Differential gene expression ana-
lyses for case-control comparisonswereperformedonall subjects, and
stratifying into adult and pediatric groups, plus stratifying subjects by
site. All site analyses were performed on the same set of filtered genes
generated for the analysis of all subjects above. Differential analysis in
limma68 and edgeR69 was performed. Counts were transformed to log2
(CPM) using voom68 and a linear model was fit adjusting for relevant
covariates: asthma status, age, sex, library preparation batch, site, RNA
integrity number (RIN), GC content, and ancestry PCs 1 and 2. Sites
were not included as a covariate in these site specific analyses. SVA70

was used to generate surrogate variables (SVs) for each stratified
analysis and significant SVswere added to themodel. Analysis was also

performed in the subset of N = 253 asthma cases for medication use
including the same covariates, and SVs derived on only these subjects.

Ingenuity pathway analysis
Differentially expressed genes with q < 0.05 in the analysis of all sub-
jects were selected as input for Ingenuity pathway analysis (IPA)71. IPA
upstream regulator analysis was utilized to identify molecules
upstream of the selected DEGs that could potentially explain the
observed expression differences between case and controls. Activa-
tion z-score (a measure of consistency between up/down gene reg-
ulation pattern and activation/inhibition pattern given by the IPA
knowledgebase network) and p-value of overlap (a measure of sig-
nificance of enrichment of regulated genes in the dataset, agnostic to
direction) were generated for each upstream regulator, and gene tar-
gets of each regulator were obtained from the upstream regulator
table. P-value of overlap measures of significance of enrichment of
regulated genes in the dataset given a regulator, agnostic to direction;
all upstream regulators have a generated p-value. IPA predicts the
activation state of the regulator by assessing the consistency of
direction of gene expression of gene targets in the dataset with acti-
vation/inhibition patterns given by the IPA knowledgebase relative to a
randompattern. Activation z-score was calculated for regulators given
that the direction of regulation is well defined based on literature
findings in the IPA Knowledgebase and the underlying null model is
appropriate; therefore, not all upstream regulators have an activation
z-score.

Gene expression module analysis
Differentially expressed genes with q < 0.15 in the analysis of all sub-
jects were selected for weighted gene coexpression network analysis
(WGCNA)72. This more liberal significance threshold was used to cast a
wide net for a systems biology analysis. WGCNA was performed on
1326 genes using mean normalized counts described above corrected
for library preparation, batch, sex, RIN, and GC content with the fol-
lowing parameters: power was selected for which the scale-free
topology fit index reached 0.9, network type = “signed”, TOM type =
“signed”, deepSplit = 3, min module size = 15, max block size = 8000.
Gene module differential expression analysis with average expression
across genes in a module as the outcome was performed using limma
according to the analysis pipeline described above for genedifferential
expression comparing current asthma cases to never-asthmatic con-
trols without the use of SVs, but otherwise adjusting for the covariates
age, sex, library preparation batch, site, RNA integrity number (RIN),
GC content, and ancestry PCs 1 and 2. Multiple testing correction was
performed using the Benjamini-Hochberg method and an FDR cutoff
<0.05 was considered significant.

Significantly differentially expressed gene modules were visua-
lized using cytoscape73 and STRINGdb74. Module expression was cal-
culated as the mean expression of genes, using voom transformed
counts corrected for sex, library preparation batch, RIN, and GC con-
tent using limma removeBatchEffect(), assigned to a module and
STRING protein-protein interaction networks were retrieved for dif-
ferentially expressed modules. Interactions with stringdb score >0.15
were considered significant and unconnected genes were omitted.
Gene hubs for each module were determined as the gene with the
highest connectivity in the module using the chooseTopHubI-
nEachModule() WGCNA function or the gene with the highest con-
nectivity in the module STRING network.

Multi-module analysis
To evaluate the cumulative risk for asthma across the three axes of
dysregulation, we selected the most significant module based on
q-value for Th2 inflammation (M6, CEACAM5), wound repair (M5, FN1),
and drug response (M4, NCALD). Covariate effects (age, sex, site, RIN,
GC content, library preparation batch, ancestry PC1 and PC2) were
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regressed out from module average expression. Each module was
dichotomized with values of 0 and 1 at the median considering
direction of effect of module association with asthma: for M6 where
higher module expression is associated with asthma risk, the upper
50th percentile was labeled as = 1, and lower 50th percentile labeled as
0; for M4 and M5 where lower module expression is associated with
asthma risk, lower 50th percentile was labeled as = 1 and upper 50th
percentile was labeled as = 0. We then calculated the sum of these
threebinary covariates (the “number ofmodules” a sample is in the risk
side of the median dichotomy) as a covariate of interest and used
logistic regression models to investigate the association between this
number and the fraction of asthma cases observed in our data. The
number of modules was fit as a numeric term, but we also tested
formally for departures from additivity by comparing this model in a
likelihood ratio test to a logistic model with number of modules as a
factor, allowing for an extra 2 degrees of freedom.

DNA Methylation and multi-omics analysis
For the set of N = 389 asthma DEGs, eQTM analysis was performed by
fitting a linear model for each gene-CpG pair to test the association
between gene expression and cis-CpG methylation using the Matrix
eQTL R package75, testing all CpGs within 1 megabase of the nearest
end of the gene. As we are modeling gene expression as the outcome,
all the covariates used for differential expression analysis were inclu-
ded: case-control status, age, sex, library prep batch, site, RIN score,
GC content, ancestry PC1 and PC2. As generation of SVs using SVA
would need to be performed for each CpG, we instead generated PEER
factors76 using the peer package in R with all covariates listed above
and default parameters (Alpha_Prior_A =0.001, Alpha_Prior_B = 0.01,
Eps_Prior_A = 0.1, Eps_Prior_B = 10, Max_Iteration = 1000, Tol = 0.001).
We included 60 PEER factors in our eQTMmodels. eQTM analysis was
runon a total of 298 subjectswherebothRNASeq andDNAmdatawere
available. CpGs were selected if they mapped within 5 kb of a gene
transcription start site (upstream or downstream) or if they were
annotated by promoter-capture HiC in bronchial epithelial cells77to lie
in putative enhancer regions for these 389 genes. There were 8418
eQTM tests performed for gene-CpG pairs and significance for the
eQTMs was defined as eQTM p <0.05.

For the subset of CpGs identified as significant eQTMs, we tested
for differential methylation (DMC analysis) using standard linear
modeling approaches implemented through the limma R package68,
including age, sex, site, plate, ancestry PC1 and PC2 and 12 latent fac-
tors estimated fromCBCV-CorrConf R package78 included to adjust for
additional unmeasured confounders such as cell composition differ-
ences. Differentialmethylation analysis was run between 149 cases and
182 controls for 915 CpGs. Significance was defined at the Bonferroni
threshold of p <0.05/915. For the subset of CpGs that were identified
to be eQTMs and DMCs, and where there were multiple eQTMs per
gene, a joint model was run to evaluate independence of the
multiple CpGs.

Finally, in the 298 subjects that had both DNAm and RNAseq,
conditional analysis was performed for the CpG’s identified as both
eQTMs and DMCs to understand the effect of DNAm on the rela-
tionship between gene expression and asthma, i.e. was there a gene
expression association with asthma after adjustment for the relevant
DMC. The following models were run: DEG,unadj testing for differ-
ential gene expression including all the original covariates (asthma
status, age, library preparation batch, site, RNA integrity number
(RIN), GC content, ancestry PCs 1 and 2, 23 SVs), and DEG,adj testing
for differential gene expression including all the original covariates
and also including methylation at the CpG of relevance for the gene
(i.e. peak eQTM for the gene). We examined the change in effect size
and significance of the DEG between the DEG,unadj and DEG,adj
models.

Replication
For the 21,831 genes tested in the DEG analysis of all subjects, we
performed an exhaustive search for replication in a meta-analysis
study of airway epithelium gene expression in asthma26. Briefly, Tsai
et al. performed ameta-analysis of eight independent gene expression
studies including both nasal and bronchial epithelium tissue. Full
results from the meta-analysis were obtained from these authors and
were compared to the CAAPA results by matching genes on Ensembl
ID. Ensembl IDs were retrieved for the meta-analysis gene symbols
from Ensembl Release 109 homo sapiens GRCh38 using pyensembl
[https://github.com/openvax/pyensembl]. Each gene symbol in an
observation was queried individually for matching Ensembl IDs and
matched to Ensembl IDs in CAAPA.Wheremultiple observations in the
meta-analysis matched an Ensembl ID in CAAPA, the observation with
the highest number of studies (k) in the meta-analysis was selected.
Enrichment of CAAPADEGs in themeta-analysisDEGswas tested using
a hypergeometric test. The total number of genes tested was deter-
mined as the number of unique Ensemble IDs retrieved in the meta-
analysis full results that matched to Ensembl IDs included in the 21,831
genes tested in CAAPA.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNASeq data generated in this study have been deposited in the
GEO database under accession code GSE240567 [https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSM7701971]. The Methylation
data generated in this study have been deposited in the GEO database
under accession code GSE250513. The genotype data generated in this
study have been deposited in dbGAP database under accession code
phs001123. Meta-analysis result from Tsai et al. are available in Sup-
plementary Data 2. Source data are provided with this paper for all
figures. Source data are provided with this paper.
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