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Machine vision‑based autonomous 
road hazard avoidance system 
for self‑driving vehicles
Chengqun Qiu 1,2, Hao Tang 1, Yuchen Yang 2, Xinshan Wan 2, Xixi Xu 1, Shengqiang Lin 1, 
Ziheng Lin 3, Mingyu Meng 4 & Changli Zha 5*

The resolution of traffic congestion and personal safety issues holds paramount importance for 
human’s life. The ability of an autonomous driving system to navigate complex road conditions is 
crucial. Deep learning has greatly facilitated machine vision perception in autonomous driving. Aiming 
at the problem of small target detection in traditional YOLOv5s, this paper proposes an optimized 
target detection algorithm. The C3 module on the algorithm’s backbone is upgraded to the CBAMC3 
module, introducing a novel GELU activation function and EfficiCIoU loss function, which accelerate 
convergence on position loss lbox, confidence loss lobj, and classification loss lcls, enhance image learning 
capabilities and address the issue of inaccurate detection of small targets by improving the algorithm. 
Testing with a vehicle-mounted camera on a predefined route effectively identifies road vehicles and 
analyzes depth position information. The avoidance model, combined with Pure Pursuit and MPC 
control algorithms, exhibits more stable variations in vehicle speed, front-wheel steering angle, lateral 
acceleration, etc., compared to the non-optimized version. The robustness of the driving system’s 
visual avoidance functionality is enhanced, further ameliorating congestion issues and ensuring 
personal safety.
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List of symbols
{fi} {gi}	� channel function
M̃	� Augmentation matrix of M
m̃	� Augmentation matrix of m
s	� Measurement factor
A	� Internal reference matrix
Ri	� Rotation matrix
Ti	� Pan vectors
r	� Matrix parameters
λ	� Matrix parameters
α	� Matrix parameters
β	� Matrix parameters
γ	� Matrix parameters
B	� Symmetry matrix
k	� Distortion coefficient
mij	� Figure i Point j coordinates
v	� Matrix parameters
(u0,v0)	� Camera point coordinates
D	� Matrix of coefficients
d	� The difference in pixel coordinates without distortion
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m̂	� The coordinates after calculating the distortion distortion
lbox	� Loss of location
lobj	� Confidence loss
lcls	� Classified losses
(xp, yp)	� Predict box coordinates
(xt, yt)	� Prediction box’s width
wp	� Prediction box’s width
hp	� Prediction box’s height
wt	� Target box’s width
ht	� Prediction box’s height

Abbreviations
YOLO	� You only look once
GELU	� Gaussian error linear unit
MPC	� Model predictive control
ADAS	� Advanced driver assistance systems
CNN	� Convolutional neural network
RELU	� Rectified linear unit
CBAM	� Convolutional block attention module
SSD	� Single shot multiBox detector
SLAM	� Simultaneous localization and mapping
LSTM	� Long short-term memory
CSP	� Cross-stage partial networks
LSTM-FCN	� Long short-term memory fully convolutional network
SPP	� Spatial pyramid pooling
mAP	� mean average precision

Deep learning has made remarkable strides in the field of autonomous driving and Advanced Driver Assistance 
Systems1,2. However, the driving safety of such systems has not gained widespread societal acceptance. As a result, 
research and validation of autonomous driving in complex road conditions continue unabated. It is worth noting 
that environmental perception in autonomous driving systems heavily relies on deep learning technology3. Prior 
to the application of deep learning in machine vision, visual perception technology was largely stagnant4,5. Images 
captured by onboard cameras are critical for intelligent perception in autonomous driving systems.

This paper aims to optimize the YOLOv5s object detection model and employ an optimized camera visual 
ranging strategy to address the challenges mentioned above. In conjunction with the optimized visual model, 
a local obstacle avoidance approach is adopted. Additionally, the paper combines the Pure Pursuit algorithm6,7 
and the Model Predictive Control (MPC) algorithm8,9 to evaluate the collision avoidance functionality of the 
experimental autonomous vehicle. The chosen flat terrain in Jiangsu, known for its well-developed manufacturing 
and commercial centers, is ideal for testing autonomous driving technology. These areas frequently face traffic 
congestion issues. The approach is designed to tackle complex road conditions, adverse weather scenarios, and 
improve the accuracy and robustness of visual algorithms for target identification and tracking in complex road 
environments. Three innovative optimizations ve been applied to enhance the visual model:

(1) EfficiCIoU Loss Function: A new EfficiCIoU loss function is introduced, addressing the limitations of 
the traditional CIoU function. The traditional CIoU function involves numerous tricks to handle the IoU of 
predicted and anchor boxes, which increases computational complexity and does not consider the IoU for 
small targets, leading to sample imbalance issues. The new EfficiCIoU loss function improves the IoU, incor-
porates a context mechanism to better understand environmental information, and enhances the detection 
of small or densely packed objects;
(2) Integration of CBAM Attention Mechanism and YOLOv5s C3 Module: The paper integrates the CBAM 
attention mechanism with the YOLOv5s C3 module. The new CBAMC3 module combines channel atten-
tion and spatial attention, enhancing the model’s focus on input features. It is embedded within the CNN 
framework, improving the inference speed of the visual model;
(3) Upgrade to GELU Activation Function: The traditional ReLU activation function is upgraded to the 
GELU activation function. Compared to the traditional linear activation function, GELU is more conducive 
to feature mapping in models because it does not exhibit saturation in input values, thus addressing the 
gradient vanishing problem.

Methods
Machine vision convolutional neural networks
Deep learning frameworks are well-suited for representation learning10–12, employing multi-layered nonlinear 
transformations13,14 in an efficient manner. Due to their cost-effectiveness, high precision, and robustness, they 
find extensive applications in the field of autonomous driving. In convolutional neural network (CNN)15–17, the 
convolutional kernels extract features while reducing the parameter count. Pooling layers shrink the size of fea-
ture maps while retaining essential information. Fully connected layers typically operate at the top of the network, 
mapping convolutional kernels and feature maps to output categories, connecting one or more hidden layers to 
the output layer. Activation functions work between the convolutional and fully connected layers, enabling the 
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model to handle more complex tasks. Different activation functions serve various purposes in processing the 
output layer’s tasks. The multi-layered architecture described above facilitates feature extraction by the model.

Figure 1 illustrates the architecture of a deep learning network for image processing. It starts with a Convolu-
tion (Conv) layer18, which extracts useful features from input images using 5 × 5 filters with a depth of 3 (cor-
responding to RGB color channels). This generates 20 different feature maps, highlighting specific features from 
the input. Next is the "Tied Conv Max Pooling" layer19,20, where “Tied Conv” means parameter sharing, reducing 
the model’s size and preventing overfitting. "Max Pooling" downsizes feature maps by selecting maximum values 
in different regions, preserving essential features. The "Cross-Input Neighborhood Differences" step enhances 
matching by computing local differences between input images, useful for stereo vision matching tasks. “Patch 
Summary Features” are compact features from small patches, often generated by aggregating local features. “In 
the Across Patch Features” step, features from multiple image blocks are compared and integrated to create a 
global feature representation, aiding understanding of the entire image scene. Fully connected layers flatten 
output feature maps into one-dimensional vectors, which enter a network for classification. Finally, the SoftMax 
layer21 transforms fully connected layer output into a probability distribution, crucial for classifying images in 
the vehicle vision system. Neural networks, with their multi-layered architecture and advanced feature extraction 
capabilities, enable thorough analysis of visual data from vehicles, providing essential environmental perception 
capabilities for autonomous driving systems.

YOLOv5s object detection modeling
Machine vision has become a crucial research area in the field of autonomous driving. In object detection algo-
rithms, the YOLOv5s algorithm utilizes convolutional neural networks to calculate the positions of objects to 
be recognized22–24, classifying and localizing them accurately. YOLOv5s is a high-accuracy neural network that 
surpasses the limitations of traditional image processing algorithms. It is a one-stage algorithm known for its 
fast inference speed, with frame rates suitable for autonomous driving systems. As decipted in Fig. 2, the net-
work’s input comprises 640 × 640 three-channel images, typically divided into grid regions of 80 × 80, 40 × 40, 
and 20 × 20. The network’s output includes predictions for all grid regions, including classification probabilities, 
confidence scores, and bounding box information for objects in those regions.

Key enhancements to the YOLOv5s algorithm include data augmentation using Mosaic25,26, adaptive anchor 
box calculations, and adaptive image scaling. The backbone employs operations such as convolution and pooling 
to reduce feature map dimensions, increase depth, and incorporate the CBAM C3 module for automatic attention 
to image features. Feature fusion (Neck) is achieved using a PAN + FPN27 structure, merging feature maps with 
different resolutions and rich semantic information, creating a feature pyramid.

The convolution layers in the backbone network and feature fusion section (Neck) use the GELU activation 
function to introduce non-linearity, facilitating the capture of complex image features. The final detection head 
(Head) is responsible for outputting object detection results, including bounding boxes, confidence scores, and 
class information. During model training, the EfficiCIoU LOSS function continuously calculates gradients and 
updates parameters to achieve convergence. The YOLOv5s model is iteratively trained to obtain a set of weight 
parameters that minimize the loss function28. The depth of grid regions in the network relates to their accuracy, 
with shallower grids providing higher accuracy, particularly for detecting small objects. Careful grid processing 
is also necessary to avoid semantic ambiguity.

The FPN + PAN structure combines feature maps of different scales in a hierarchical manner, similar to the 
SSD approach29, enabling layer-wise processing and strong feature fusion capabilities. This structure is a crucial 
module in hierarchical detection methods and facilitates further feature fusion. The vehicle is equipped with a 
camera that captures RGB images, which are fed into the YOLOv5s algorithm. In the Backbone phase, image 
preprocessing is performed, including normalization to match the input size of the network. The system employs 

Figure 1.   Structure diagram of a deep learning-based machine vision convolutional neural network nested 
layer by layer.
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adaptive anchor box calculations and image scaling, while Mosaic data augmentation is used during grid training 
to improve model accuracy and speed. In addition to the CBAMC3 module, the Backbone also uses the Focus 
architecture as a base for general feature extraction. The GELU activation function after each convolutional layer 
aids in capturing complex image features30. The Neck network sits between the base network and the detection 
head, enhancing feature diversity and robustness. The Head is responsible for outputting the results of object 
detection, and the number of branches depends on the specific detection method, often used for classification 
and data regression.

Camera adaptation processing
The system utilizes a stereo camera setup, and prior to conducting experiments, the camera system undergoes a 
series of processing steps31,32. Initially, the stereo cameras perform real-time image capture, capturing full stereo 
images. Subsequently, stereo matching algorithms are applied to these images to calculate disparities, thereby 
enabling depth estimation. Deep learning algorithms are then employed for object recognition within the images. 
Based on the identified object classes and their respective spatial extents, distance and orientation information 
for the objects is extracted from the disparity map. With this information in hand, a well-designed obstacle 
avoidance strategy is devised to control the vehicle’s actions. This strategy includes actions such as emergency 
braking or steering adjustments to facilitate automatic obstacle avoidance, ensuring safe vehicle operation. The 
overarching goal is to enable the vehicle to navigate safely in its environment by leveraging the stereo camera 
system for distance and object recognition.

Given the world coordinates of a real point M = [X,Y,Z]T and its corresponding camera pixel coordinates 
m = [u, v]T, as shown in Fig. 3, the transformation from M to m, combined with a scale factor s, the vertical 
coordinate of the calibration board in the real world ZW = 0, and simplification using the symmetric matrix B, 
is used to determine the camera’s internal parameters by capturing images of a chessboard pattern. Once the 
camera’s intrinsic parameter matrix is computed, the extrinsic parameter matrix can be obtained.

During the process of solving both intrinsic and extrinsic parameters, factors such as lens distortion, image 
resolution, and noise levels can affect the estimation of these parameters. Therefore, it is necessary to introduce 
the maximum likelihood estimation to optimize the parameters.

Now, combining with the camera parameters in Table 1, for each chessboard image containing m corner 
points, their corresponding image projection points can be represented as:

Subsequently, the probability density function and likelihood function for the chessboard corner points are 
derived. The Levenberg–Marquardt algorithm (L-M algorithm) is employed to maximize the likelihood func-
tion. The L-M algorithm33 introduces a control parameter λ, which is used to balance the gradient descent and 

(1)m
(
A,Ri,Ti,Mj

)
= A[R|T]Mj

Figure 2.   The basic framework of the improved YOLOv5s algorithm.
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Gauss–Newton steps. In each iteration, λ value is dynamically adjusted based on the current parameter estimate 
and information from the Hessian matrix to balance the two steps, thereby facilitating a faster convergence 
towards the optimal solution.

Combining the pixel coordinates under the ideal and actual models, camera optical point coordinates, con-
tinuous image coordinates under undistorted and radial distortion conditions, the radial distortion parameters 
are calculated using the least squares method. By incorporating the undistorted intrinsic and extrinsic parameters 
with the radial distortion parameter k, the estimation of all parameters is achieved, resulting in:

(2)
n∑

i=1

m∑

j=1

∥∥m̂
(
A,Ri,Ti,Mj

)
−mij

∥∥
2

Figure 3.   Algorithm flow of internal and external parameters and distortion coefficients of the camera.
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After completing camera calibration and obtaining the optimal intrinsic and extrinsic parameter matrices 
along with the distortion coefficients considering radial distortion, the notation m(A,k1,k2,Ri,Ti,Mj) represents 
the coordinates corresponding to the j point on the i image, accounting for radial distortion.

Experiments and analysis
Object detection algorithm optimization
In the calculation of the loss function in the head Section34, we introduce the theoretically superior Effici-
CIoU_Loss, which improves the components of position loss lbox, confidence loss lobj, and classification loss lcls.

Calculation of position loss lbox:

Calculation of confidence loss lobj:

Calculation of the confidence of classified losses lcls:

EfficiCIoU_Loss combines the concepts from EfficientDet and CIoU, assuming the presence of two bounding 
boxes: the predicted box and the target box. EfficiCIoU_Loss comprises the following components:

EfficiCIoU_Loss computes the final loss value as a combination of these error terms, and the specific form 
may vary depending on different implementations. The design objective of this loss function is to better handle 
the position and size of the target boxes, ultimately improving object detection performance. Different imple-
mentations of YOLOv5s may have varying parameter settings to adapt to different tasks and datasets, allowing 
for flexibility and customization to suit specific requirements.

Experimental setup
The training of the YOLOv5s algorithm model in this system was conducted on a Windows operating system 
using the Pytorch framework. The system ran on CUDA 11.0 and Python 3.9, and the hardware configuration 

(3)
n∑

i=1

m∑

j=1

∥∥mij − m̂
(
A, k1, k2,Ri ,T i ,Mj

)∥∥2

(4)lbox = 1−
IoU − enclose_area

IoU + ε

(5)

lobj =

s2∑

i=0

B∑

j=0

I
obj
ij

{
Ĉi log (Ci)+

(
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)
log

(
1− Ĉi

)}
−
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B∑
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I
noobj
ij
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(
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(
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log
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)}

(6)lcls =

s2∑

i=0

l
obj
ij

∑
c∈classes

{
P̂i(c) log

(
pi(c)

)
+ 1− P̂i(c) log

(
pi(c)

)}

(7)Localization_error =
(
xp − xt

)2
+

(
yp − yt

)2

(8)Size_error =
(
wp − wt

)2
+

(
hp − ht

)2

(9)CIoU_error = 1− IoU +
αv

1− IoU + v

Table 1.   Camera parameters.

Camera Specifications Parameters

Output resolution

2 × (2208 × 1242) @15fps

2 × (1920 × 1080) @30fps

2 × (1280 × 720) @60fps

2 × (672 × 376) @100fps

Sensor type 1/3·4MP CMOS

Stereo Camera

Baseline 120 mm

Focal Length 2.12 mm

Visual Angle Max.110°(H) × 70°(V) × 120°(D)

Pixel size 2 μm × 2 μm
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of the workstation included an Intel Xeon Gold 6248R CPU and a GeForce RTX 4090 GPU. The dataset used 
for the model is a self-made dataset of 5607 photos from Car recorder and KITTI, an Open Access dataset for 
autonomous driving training. The dataset is roughly divided into a training set of 70%, a validation set of 15%, 
and a test set of 15%. The model is trained with 70% of the images from the self-made dataset, as the self-made 
dataset is collected for specific driving environments or scenarios, and the model can be better adapted to these 
specific conditions by using the self-made dataset for training. training can make the model better adapted to 
these specific conditions. The remaining 30% are randomly selected from KITTI, the Open Access dataset that 
allows the model to be trained in more driving scenarios. For model validation and testing, more than 90% of 
the images are from KITTI, and the diversity of samples for validation and testing allows the model to be evalu-
ated under a wider range of driving conditions that have not been seen before, and helps to assess the model’s 
generalization ability. Cross-use of self-made datasets and Open Access datasets balances the performance and 
applicability of the model and enhances the reliability of the model.

The object detection system divided the collected images from vehicles on the road into multiple objects, 
annotated the dataset with labels, and then split it into training and validation sets. The model underwent mul-
tiple rounds of training where parameters were continually updated through gradient descent. During training, 
minor changes in model training parameters were amplified with the increase in the number of layers. Further-
more, changes in parameters at different layers altered the data distribution in those layers, posing significant 
challenges to model training.

Deep learning networks have achieved significant success in large-scale image and video recognition, thanks 
to the development of large public image databases like ImageNet and high-performance computing systems. 
Through deep learning, the decision-making process in autonomous driving is achieved in an end-to-end man-
ner, directly mapping sensor-collected image information to vehicle driving behavior without extensive manual 
feature engineering.

Prof. Karim and others35 introduced a transformation from existing univariate time series classification 
models to multivariate time series classification models by incorporating LSTM-FCN. They enhanced the fully 
convolutional block with squeeze and excitation blocks to further improve accuracy. This framework can be 
used to build an end-to-end CNN-based steering controller for vehicles, predicting the future distribution of 
vehicle motion based on current camera observations and vehicle states, and predicting the required steering 
wheel angle from continuous video images.

Scholars like Li36 proposed a novel Simultaneous Localization and Mapping (SLAM) method, namely Atten-
tion-SLAM, which combines a visual saliency model with traditional monocular visual SLAM. This approach 
mimics human navigation patterns, and the generated saliency map can focus more on the same salient object.

Drawing from the experiences of previous researchers, we further optimized visual perception under the 
deep learning framework. The pre-trained YOLOv5s model was deployed on the vehicle’s onboard camera for 
inference. In Fig. 4(a,b,c,d), even in scenarios with multiple objects within the camera’s field of view, distant or 
relatively small and blurry objects, the inference process exhibited strong accuracy. The confidence level of the 

Figure 4.   YOLOv5s targets detect road vehicles and pedestrians.
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algorithm’s object inference capability remained around 0.95. This makes it highly suitable for application in 
scenarios involving multiple lanes, multi-vehicle tracking, or traffic congestion.

Optimize results and analysis
We conducted a comprehensive optimization of the traditional YOLOv5s architecture to enhance the accuracy 
of small object detection and the overall performance of the system. Initially, within the backbone network, we 
replaced the original C3 module with the CBAMC3 module, which integrates the CBAM37,38 attention mech-
anism. This modification significantly bolstered the network’s ability to extract features in complex scenes, 
particularly enhancing sensitivity and recognition precision in detecting small objects. In the neck and head 
networks, we substituted the original activation method with the GELU39 activation function. Owing to its 
unique non-linear characteristics, the GELU function improved the feature transmission and transformation 
processes, rendering the model more effective and precise in handling targets of various sizes. We implemented 
the EfficiCIoU loss function in the head network, a novel loss function that optimizes the model’s convergence 
behavior during training, especially in the precise computation of localization loss lbox, confidence loss lobj, and 
classification loss lcls. EfficiCIoU significantly heightens localization accuracy by more accurately measuring 
the similarity between predicted and actual bounding boxes, thereby further enhancing the model’s ability to 
detect small objects. Through these targeted improvements, our model demonstrated superior performance in 
practical applications, particularly in the identification of road vehicles and the analysis of in-depth positional 
information within autonomous driving systems.

Since the model’s loss function tends to decrease with training iterations, we have selected data from the first 
100 training rounds. Please refer to Fig. 5 (a,b,c)for the convergence speed changes in the three loss types for 
training dataset samples and Fig. 6 for the comparative analysis of our model with other leading object detec-
tion models. In comparison to the original YOLOv5s model, our modified architecture exhibits enhancements 
of 1.9%, 2.1%, and 2.73% in mAP@0.5:0.95, mAP@0.5, and Precision, respectively. Against the state-of-the-art 
YOLOv8, our model demonstrates marginal improvements of 0.4%, 0.64%, and 1.33% across these metrics.

Ablation experiments
Ablation experiments are a common method used in deep learning research to evaluate the specific contribution 
of certain parts of the model to the final performance by removing or replacing them. In the YOLOv5s vehicle 
detection task, ablation experiments help us clarify which features are critical for improving detection accuracy, 
accelerating inference, and optimizing model size. In this way, we can gain a deeper understanding of how the 
model works and optimize it effectively in real-world applications. From Table 2, we can find that model opti-
mization improves the accuracy, recall and mAP of the model to a certain extent, and the model also achieves 
precise control over the computational resource requirements. Although Params and GFLOPs were increased, 

Figure 5.   (a) Position loss convergence change; (b) Convergence change of confidence loss; (c) Convergence 
change of classification loss.
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they did not put significant pressure on storage resources. In addition, the moderate increase in GFLOPs indicates 
that the increase in required computation is limited, suggesting that the model can maintain efficient operation 
even in systems with limited computational resources. The slight improvement in inference Time, which is still 
maintained in the millisecond range, ensures the model’s real-time responsiveness in fast dynamic environments. 
These improvements highlight the utility of our approach, making it a strong candidate for resource-constrained 
self-driving vehicle deployments.

Comparison of algorithm complexity
In order to measure the computational complexity of the algorithms, we evaluate the number of parameters, 
the amount of operations, and the inference time of each algorithm, which will provide us with a more accurate 
performance comparison of our model. These experiments not only validate the practicality of our model, but 
also provide reliable data support for future optimization and application. In the following table, it can be seen 
that our algorithm is only 0.32 M higher than YOLOv8s in terms of the parameters, but the Precision and mAP 
values have been almost similar to YOLOv8s performance, and the GFLOPs of our algorithm has been signifi-
cantly reduced by 24.91% from 28.90 to 21.69 in YOLOv8s. It signifies that our algorithm improves computational 
efficiency while maintaining efficient functionality. The inference time is 0.015 s, which is 8.59% faster compared 
to 0.0163 s in YOLOv8s. This speedup not only implies faster processing, but also reflects the fact that our model 
is able to provide more efficient performance in real-world applications, especially when it comes to real-time 
object detection in driving vehicles (Table 3).

Camera vision model testing and analysis
An optimization model equipped with a Stereo Camera is deployed to achieve real-time tracking and target 
detection functionality for autonomous vehicles. The optimization algorithm is utilized to obtain spatial position-
ing information of target vehicles. Testing is conducted on selected road segments within the Jiangsu Yancheng 
High-Tech Industrial Development Zone. This zone encompasses well-developed manufacturing and commercial 
centers, which often face traffic congestion issues and carry a certain risk of traffic accidents. Therefore, research-
ing an avoidance system for autonomous driving is particularly suitable in this context. The vehicle-mounted 

Figures 6.   A Comparative analysis of our model with other leading object detection models.
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camera detects target frames, providing coordinate information of the target vehicle and the distance from the 
detected vehicle to the center of the vehicle-mounted camera.

By combining deformable convolution modules with depth information selection modules, the YOLOv5s 
model integrated with the accompanying camera can perform tasks related to target identification, tracking, and 
provide feedback on the depth information of target positions. As shown in Fig. 7(a–d), the on-road performance 
of the detection model is depicted: (b) illustrates a scenario with a road target vehicle located at coordinates 
(X: − 2.537, Y: − 0.161) in the two-dimensional coordinate system of the vehicle’s field of view, at a distance of 

Table 2.   Results of the ablation study of the optimized model in our dataset.

CBAM GELU EfficiCIoU P R mAP@0.5 mAP@0.5:0.95 FPS Params GFLOPs Time

0.891 0.833 0.941 0.725 66 7.02 16.01 0.0091

√ 0.910 0.890 0.949 0.729 52 11.32 19.94 0.0107

√ 0.899 0.857 0.943 0.721 67 8.33 13.71 0.0100

√ 0.899 0.855 0.950 0.727 58 8.45 14.10 0.0123

√ √ 0.919 0.891 0.956 0.732 48 11.76 20.00 0.0128

√ √ 0.920 0.893 0.943 0.737 48 12.00 20.92 0.0147

√ √ 0.904 0.889 0.947 0.730 54 9.11 15.88 0.0111

√ √ √ 0.933 0.896 0.963 0.740 47 12.01 21.69 0.0150

Table 3.   Algorithm Complexity Comparison.

Algorithm P R mAP@0.5 mAP@0.5:0.95 Params GFLOPs Time

YOLOv5s 0.891 0.833 0.941 0.725 7.02 16.01 0.0091

YOLOv6s 0.910 0.854 0.949 0.733 16.32 37.94 0.0114

YOLOv7tiny 0.915 0.857 0.949 0.729 6.33 13.71 0.0115

YOLOv8s 0.928 0.885 0.960 0.741 11.69 28.90 0.0163

Ours 0.933 0.896 0.963 0.740 12.01 21.69 0.0150

Figures 7.   (a) The target’s depth information; (b) Location information of the vehicle while it is moving; (c) The 
target’s depth information; (d) Location information for parked vehicles.
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7.05 m from the host vehicle. (d) presents a scenario where the target vehicle is parked at coordinates (X: 0.016, 
Y: 0.451) in the two-dimensional coordinate system of the vehicle’s field of view, at a distance of 3.602 m from 
the host vehicle.

Modeling and analysis of hazard avoidance vehicles
To ensure the experimental feasibility rigorously, this simulation adopts a combined simulation approach, inte-
grating Matlab/Simulink, Carsim, and Prescan. Carsim is used to configure the vehicle’s dynamic model, Prescan 
provides the simulated environmental scenarios, and data processing is performed in Matlab/Simulink40,41. The 
algorithms employed include Pure Pursuit and MPC control for local planning and tracking control, respectively.

Obstacle vehicles are placed on the road, categorized as stationary vehicles and moving vehicles, simulating 
scenarios where the vehicle encounters both stationary obstacles and vehicles in motion while driving on the 
road. This comprehensive approach ensures a thorough evaluation of the autonomous driving system’s perfor-
mance in various real-world situations.

50 km/h experiment
A simulation scenario was established using Carsim to simulate obstacle avoidance for autonomous vehicles 
within a predefined environment. In this integrated simulation, the autonomous vehicle was configured to 
cruise at a speed of 50 km/h while navigating through a simulated scenario that included both static obstacles 
and moving vehicles on the road. The purpose of this joint simulation was to assess whether the vehicle could 
still operate effectively under the new system. This comprehensive simulation test aimed to evaluate whether 
the vehicle could continue to function efficiently and safely, including the ability to avoid obstacles, within this 
altered operational framework.

As depicted in Fig. 8, the data showcasing changes in velocity, lateral acceleration, front wheel steering angle, 
and yaw rate at a speed of 50 km/h demonstrate the performance of the autonomous avoidance model equipped 
with the new visual algorithm. The model vehicle’s velocity remains remarkably stable, staying within the vicin-
ity of the initially set target speed. Within the framework of deep learning, the driving system efficiently detects 
vehicles ahead, allowing for prompt decision-making in terms of following, decelerating, and lane-changing 
maneuvers. It is evident that the autonomous driving system, enhanced by the new visual algorithm, possesses 
a stable and effective obstacle avoidance capability. This reinforces the system’s ability to detect and respond to 
vehicles in its path, ensuring safe and reliable operation.

70 km/h experiment
The system was configured with a target vehicle speed of 70 km/h, and static obstacles as well as moving vehi-
cles were introduced into the road scenario. Additionally, the threshold for the speed of moving vehicles in the 
scenario was increased. This adjustment aimed to further evaluate the effectiveness of the obstacle avoidance 
algorithm under more challenging conditions and higher-speed scenarios. By conducting simulations with these 
modifications, the system’s ability to successfully navigate and avoid obstacles at the increased speed threshold 

Figure 8.   Speed, lateral acceleration, front wheel rotation angle, and yaw angular velocity vary with position.
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can be thoroughly assessed, providing valuable insights into the algorithm’s performance in a variety of driving 
scenarios.

As shown in Fig. 9a, after system optimization, the vehicle’s velocity curve exhibits reduced fluctuations both 
in amplitude and frequency. This reduction indicates that the vehicle experiences fewer instances of acceleration 
and deceleration, resulting in a more stable maintenance of the target vehicle speed. Moving on to Fig. 9), the 
lateral acceleration curve for the optimized system demonstrates fewer fluctuations, indicating reduced occur-
rences of lateral deviation, with significantly lower peak values compared to the pre-optimization curve. Figure 9c 
further supports these improvements, indicating that the system now requires less time for steering, and there 
are fewer instances of large steering maneuvers.

Results
This paper addresses the challenges faced by autonomous vehicle cameras in complex road conditions and the 
difficulties encountered in target identification and tracking. Leveraging the fusion of camera sensing technology 
and deep learning, the YOLOv5s algorithm was upgraded in three key aspects: the loss function, CBAMC3 mod-
ule, and GELU activation function. During the model training process, notable improvements were observed in 
the convergence speed of the loss function, and the resulting model consistently achieved outstanding metrics in 
terms of mAP, precision, and recall. Real-world road testing of the visual model revealed that the optimized target 
detection algorithm efficiently and reliably acquired target position and depth information. In model testing, the 
optimized visual algorithm enabled the driving system to make path selections that closely approached optimal 
solutions. This resulted in reduced unnecessary steering and deceleration operations. The system’s decision-
making precision and robustness were significantly enhanced. Leveraging this exceptional visual model, the 
system’s obstacle avoidance functionality also exhibited greater robustness. In summary, the upgrades made to 
the YOLOv5s algorithm, combined with rigorous real-world testing, have resulted in an optimized target detec-
tion algorithm. This algorithm enhances the system’s ability to efficiently and reliably obtain target position and 

Figures 9.   (a) The velocity of the vehicle before and after system optimization changes with time; (b) The lateral 
acceleration before and after system optimization changes over time; (c) The front wheel rotation angle before 
and after the system optimization changes over time.
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depth information, leading to improved decision-making precision and robustness, ultimately enhancing the 
system’s obstacle avoidance capabilities. It can further improve traffic congestion and ensure personal safety.

Discussion
Our research focuses solely on optical cameras. Camera vision systems detect and recognize objects by capturing 
and analyzing images, and are particularly adept at processing color and texture information, which is critical for 
understanding visual features such as traffic signs and road markings. In addition, camera devices are typically 
less expensive and smaller than radar systems and can be more easily integrated into existing in-vehicle systems. 
However, while cameras are uniquely suited to provide these important 2D image and color information, they 
also have limitations in self-driving vehicle applications. Camera systems are very sensitive to lighting conditions, 
such as nighttime or backlit environments that may greatly affect their detection capabilities.

LIDAR technology, which acquires the precise distance to an object by emitting laser pulses and measuring 
their reflection time, is capable of operating in light-free conditions, and its measurement accuracy is greater 
than that of optical cameras, although its performance may be affected by adverse weather conditions such as 
rain or fog42. This performance impact underscores the importance of employing 3D spatial data from LiDAR 
when modeling accurately in complex environments, especially in navigation and obstacle avoidance in self-
driving vehicles. So subsequently if accuracy is to be improved then additional sensing equipment including 
LiDAR and radar may still be required.

Despite these challenges, the unique advantages and future potential of camera vision systems in autonomous 
driving cannot be ignored. Through technological innovation and interdisciplinary collaboration, camera vision 
will play an increasingly important role on the road to autonomous driving. In response to the limitations of 
camera vision systems, future research is likely to focus on improving these limitations using advanced algo-
rithms, such as using deep learning to improve detection under unfavorable lighting conditions or enhancing 
depth perception through sensor fusion techniques. In addition, a combination of complementary e.g. LIDAR 
and radar sensing devices may still be required for optimal environmental sensing.

Data availability
The collision avoidance experiment datasets generated during the current study are available in the Mendeley 
Data repository, https://​data.​mende​ley.​com/​datas​ets/​f2kks​kc55s/1. The self-made datasets are available from the 
corresponding author on reasonable request.
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