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ABSTRACT: PandaOmics is a cloud-based software platform that
applies artificial intelligence and bioinformatics techniques to
multimodal omics and biomedical text data for therapeutic target
and biomarker discovery. PandaOmics generates novel and
repurposed therapeutic target and biomarker hypotheses with the
desired properties and is available through licensing or collaboration.
Targets and biomarkers generated by the platform were previously
validated in both in vitro and in vivo studies. PandaOmics is a core
component of Insilico Medicine’s Pharma.ai drug discovery suite,
which also includes Chemistry42 for the de novo generation of novel
small molecules, and inClinico�a data-driven multimodal platform
that forecasts a clinical trial’s probability of successful transition from
phase 2 to phase 3. In this paper, we demonstrate how the PandaOmics platform can efficiently identify novel molecular targets and
biomarkers for various diseases.

■ INTRODUCTION
Deep learning (DL), a subset of artificial intelligence (AI), has
proven to be very effective in speech and image recognition.
This is because DL-based architectures are uniquely suited for
automatically identifying patterns within complex nonlinear
datasets without the need for manual feature engineering. DL
methods have recently been adapted to successfully overcome
limitations inherent in the standard techniques used for omics
data analysis and predicting properties of drugs.1 These
adaptations offer exciting possibilities for the development of
new methods that efficiently predict novel targets and
biomarkers.
Insilico Medicine was one of the first groups to publish a

method that uses a deep learning approach to discover new
targets.2,3 Since then, the approaches combining classical
bioinformatics with AI-driven techniques have been developed
and applied in disease mechanism reconstruction and the
discovery of new targets.4 Especially encouraging is the recent
progress in exploring the targets previously not accessible for
small molecule development using AlphaFold and similar
approaches. The de novo design of active molecules for such
targets has recently been validated in both in vitro and in vivo
assays.5,6 Other fast-growing areas in computer-aided drug
discovery leveraged in the PandaOmics platform include
applying large language models and robotics.7,8 The
PandaOmics platform has been routinely and successfully
used at Insilico Medicine to drive the therapeutic target

discovery process in several therapeutic areas (https://insilico.
com/pipeline) and has evolved significantly. In the following
section, we describe key features of the PandaOmics platform.

■ OVERVIEW OF THE CAPABILITIES OF THE
PANDAOMICS PLATFORM

Dataset Selection and Sample Group Comparison
Creation. PandaOmics offers a comprehensive data process-
ing pipeline that facilitates the identification of potential
therapeutic targets and biomarkers (Figure 1). By leveraging
dynamic omics data, including gene expression, proteomics,
and methylation data, the platform conducts a systematic
search for relevant datasets. The list of databases used by
PandaOmics is provided as Supplementary Table 1. It then
assembles a comprehensive data inventory specifically tailored
to the disease, condition, or compound of interest. The
platform then provides a data exploration interface, allowing
researchers to visualize and analyze the compiled data. The
interface includes the ability to generate reduced-dimensional
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plots using popular algorithms such as PCA, tSNE, or UMAP.
These plots can be enriched by incorporating metadata, such
as disease stage or tissue of origin, assisting in sample group
selection. Then, PandaOmics enables the creation of mean-
ingful comparisons between the selected sample groups.
Typically, these comparisons involve disease case samples
versus paired normal control samples. To ensure a robust and
accurate analysis, the platform offers the option to perform
batch correction and quality control of the corrected results. In
case of all three data types (gene expression, methylation, and
proteomics), the analysis is conducted at the gene level, where
methylation patterns are mapped into genes, and protein
expression is averaged across gene products, providing a
comprehensive view of their potential impact on gene function.

Differentially Expressed Genes, Perturbed Pathways,
and Metadata Analysis. PandaOmics also provides gene-
and pathway-level data analysis. Biologically relevant pathways
are identified using the iPANDA algorithm, which performs
pathway activation analyses. Pathways are grouped according
to their biological processes such as autophagy or DNA
replication, which aid in the identification of key regulatory
mechanisms. Furthermore, PandaOmics allows users to
explore correlations among the expression of individual
genes, pathways, and metadata. This functionality empowers
researchers to uncover potential associations between molec-
ular features and clinical or biological characteristics, providing
valuable insights into disease mechanisms and potential
therapeutic targets and biomarkers.
PandaOmics offers the capability to aggregate multiple

disease-relevant comparisons into meta-analyses. Meta-analysis
enables the capture of consistent and robust insights across
various datasets and incorporates disease-relevant genetic data,
including GWAS and information about somatic mutations
that drive the pathology. Text data from publications, grant
applications, and clinical trials complement the omics data

within the meta-analysis. By integrating these diverse data
sources, PandaOmics strengthens the insights derived from the
omics datasets by placing them in the context of previously
published information. This combined knowledge is sub-
sequently employed for target and biomarker prediction.

Therapeutic Target Identification. The meta-analysis
page within the PandaOmics platform offers a comprehensive
target identification (ID) interface presented as a user-friendly
dashboard featuring a ranked list of genes. Each line in the
dashboard corresponds to a specific gene, while each column
represents a distinct approach or model used to rank the
potential targets and important genes. In total, there are 23
disease-specific models employed in the ranking process,
broadly categorized as omics-based and text-based approaches.
The omics-based models leverage various data types, including
gene expression, methylation, proteomics, and genetic
information extracted from the meta-analysis. These models
are further enhanced by incorporating biological graphs
derived from signaling pathway and protein−protein inter-
action (PPI) network databases and knowledge graphs
generated through the analysis of scientific publications. The
text-based models depend on extracted relations from
publications, clinical trials, and grant applications while
considering source credibility and trends.
The omics-based models can be divided into two main

groups: bioinformatic approaches and advanced machine
learning and graph-based techniques. An example of the first
group is the expression score, which relies on the differential
expression of disease samples compared to paired normal
control samples combined with the expression levels in disease-
relevant tissues. This approach provides a straightforward
assessment of the gene significance. In contrast, the second
group includes more complex methods, such as the
heterogeneous graph walk algorithm. This algorithm utilizes
a guided random walk-based approach on a heterogeneous

Figure 1. PandaOmics employs a robust data processing pipeline, starting with dataset selection (1) and sample group comparison (2). It offers
gene- and pathway-level analysis (3), including correlation exploration between molecular features and clinical data. The platform combines the
results of these steps into meta-analyses (4), enhancing target predictions with diverse data sources including prior knowledge extracted from text
data (5). For therapeutic target and biomarker identification (6), it provides a user-friendly interface with 23 disease-specific models. Identification
of disease-relevant compounds is also enabled (7). PandaOmics excels in indication prioritization and features a database of precalculated disease
meta-analyses (8). It also leverages biological knowledge graph (9) and large language model-based ChatPandaGPT (10) to explain gene-disease
associations. Robotic lab (11) for target validation and compound screening forms a feedback loop with the AI core of the platform, streamlining
the research process. The target hypotheses identified with PandaOmics serve as an input for Chemistry42 software (12) to perform small molecule
generation. The images pertaining to PandaOmics and Chemistry42 have been reproduced with permission from Insilico Medicine IP Limited.
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graph, where nodes represent genes and diseases and edges
represent their associations. The model learns representations
of nodes and subsequently identifies gene nodes closely related
to the reference disease node, enabling the discovery of
potential target genes.
The PandaOmics interface offers rich functionality to refine

the ranked list of genes according to various disease-agnostic
criteria. These criteria include factors such as druggability by
small molecules and therapeutic antibodies, safety consid-
erations, novelty of the target, tissue-specific expression
patterns, protein class, biological process involvement,
availability of crystal structures, and level of pharmaceutical
development. Additionally, users can create their lists of genes
for use as filters. Furthermore, all of the models and filters used
to rank genes can be toggled on or off based on user
preference. To facilitate the process, the interface provides five
predefined scenarios for ranking, including associated genes,
novel targets for small molecules, novel targets for biologics,
targets for repurposing, and trending genes. Users can create
and save their own scenarios such as identifying novel targets
with genetic evidence. This flexibility allows PandaOmics to
serve as a versatile framework for target and biomarker
discovery capable of addressing the diverse needs of the
pharmaceutical industry. For a more detailed understanding of
the models and filters in PandaOmics, descriptions can be
found in the PandaOmics user manual, available at https://
insilico.com/pandaomics/help. The descriptions of the scores
available as of December 2023 are provided in Supplementary
Table 2.

Indication Prioritization. The PandaOmics platform
offers an indication prioritization and expansion functions
that enhances its utility in target discovery and therapeutic
development. This feature enables researchers to expand their
focus beyond a single disease and explore the potential cross-
indication applicability of their target candidates. In terms of
the user interface, the indication prioritization function
provides a dashboard similar to the target ID feature, featuring
the same set of scores that are normalized for cross-disease
comparison. Diseases are conveniently grouped based on an
internal classification system designed to align with the
pipeline divisions of leading pharmaceutical enterprises. This
categorization can be structured along major therapeutic
domains or specific tissue/organ systems, enhancing user
convenience and accessibility.
Crucially, the entire indication prioritization/expansion

feature is further streamlined by PandaOmics’ repository of
precalculated disease meta-analyses, encompassing over 8000
diseases, with dedicated emphasis on more than 500 manually
curated meta-analyses. Manually curated disease meta-analyses
involve human-patient-derived data from disease-relevant
tissues, controlled for disease, tissue, age, and gender. Only
datasets with untreated disease samples and paired normal
control samples (minimum three samples) are considered. The
original data undergo distribution control, normalization, and
outlier detection. The analysis extends to genetic and text data
from the GWAS catalog, ClinVar, and Intogen databases, with
variant filtration based on confidence scores. This database is
pivotal for efficiently executing indication prioritization and
expansion, guiding researchers to strategically assess the
applications of the selected therapeutic targets.

Compound Identification. Just as with gene ranking, the
compound ID module leverages gene expression profiles of
compounds and integrates text data to assess their significance.

By analyzing the gene expression signatures of compounds and
comparing them to known therapeutic targets or disease-
associated genes, PandaOmics assigns scores to compounds,
enabling their prioritization. This integration of compound
analysis seamlessly complements the comprehensive target and
biomarker discovery offered by PandaOmics, providing
researchers with a powerful tool to identify potential
therapeutic compounds alongside gene targets.

Biological Knowledge Graph. PandaOmics goes beyond
assisting researchers with the target and biomarker selection
step. It also provides comprehensive evidence to support each
generated hypothesis. The platform integrates omics data, such
as gene−disease associations, with insights derived from the
scientific literature through a powerful biological knowledge
graph. This knowledge graph is constructed using advanced
algorithms for entity recognition and relation extraction,
incorporating information about genes, diseases, biological
processes, and compounds. In addition, the platform
incorporates valuable insights from clinical trial data, providing
a deeper understanding of the competitive landscape.

ChatPandaGPT. To further enhance data interpretation,
the platform utilizes ChatPandaGPT, a large language model
that enables text summarization of omics-driven findings and
their contextualization within the published data. This
functionality allows researchers to access not only summaries
of supporting data for the potential or actual use of specific
targets in the context of a given disease but also to obtain
answers to their queries within the context provided by the
meta-analysis and the knowledge graph. Therefore, ChatPan-
daGPT may help PandaOmics users to make informed
decisions on the target selection by providing textual
summaries of the data available within the platform.

Integration with Robotic Platforms. Robotic platforms
including cell culture, screening of the compounds and cell
knockout/knockdown models, next-generation sequencing,
and cell imaging form a powerful synergy with the PandaOmics
therapeutic target discovery platform, facilitating rapid and
precise discovery of novel targets and biomarkers. By
integrating robotic systems into the research process, tasks
such as target and compound validation can be executed in a
standardized manner, significantly reducing human error and
increasing throughput. The robust sequencing and phenotypic
data generated by robotic lab can be seamlessly incorporated
into PandaOmics, enriching the dataset and enhancing the
accuracy of target and biomarker prediction. In turn, the
insights and predictions generated by PandaOmics can guide
the experimental design and selection of targets for further
validation and testing in a robotic lab setting. This iterative
process forms a feedback loop, where the findings from the
robotic lab inform the PandaOmics analysis, which in turn
enables researchers to identify and validate potential
therapeutic targets and biomarkers in a highly standardized
manner.

Summary of the AI Capabilities of the PandaOmics
Platform. In conclusion, the PandaOmics platform presents a
comprehensive set of capabilities for therapeutic target
discovery and biomarker development. It leverages dynamic
omics data and advanced algorithms to facilitate data
exploration, pathway analysis, and meta-analysis, strengthening
the insights derived from the datasets. The platform offers a
user-friendly interface with customizable ranking approaches
and filters, allowing researchers to refine their gene lists
according to various criteria. Integration with a robotic lab
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enhances the efficiency and accuracy of target validation and
compound screening. By integrating diverse data sources and
leveraging advanced language models, PandaOmics empowers
researchers to make informed decisions and gain valuable
insights into the pursuit of therapeutic targets and biomarkers.
Validation. The PandaOmics target discovery engine

underwent thorough validation to ensure its effectiveness in
identifying novel targets. The validation metrics, log fold
change of enrichment (ELFC) and statistical significance of the
enrichment based on hypergeometric p-value (HGPV), were
used to measure the performance of the PandaOmics
predictive models, respectively.9 While ELFC refers to the
log-transformed fold change of enrichment showing how much
the top of the list was enriched by known targets, HGPV
stands for the statistical significance of the effect and shows
how likely the same level of enrichment could be achieved
from a random list of genes. Higher values of ELFC and
HGPV correspond to a higher predictive power of the ranking
approach. All PandaOmics models have been validated in
ELFC and HGPV coordinates, both in general and across
various therapeutic areas.
The average fold enrichment achieved by using all the scores

is approximately 15 (slightly below 4 on the logarithmic scale
as shown in Figure 2A), meaning that if the random ranking
contains only two relevant genes associated with the disease
among the top-100, the aggregated PandaOmics ranking
contains about 30 associated genes out of the top-100.

Similarly, the omics scores alone achieve a fold enrichment of
10 (slightly above 3 on the logarithmic scale). This validation
demonstrates that PandaOmics provides a set of hypotheses
with solid evidence, saving valuable time for researchers.
Nonetheless, the platform is not a magic pill that produces a
single ideal hypothesis but instead offers a diverse range of
hypotheses with strong underlying evidence, allowing
researchers to select the most promising targets for further
pursuit in drug development programs. The quality of results
obtained through PandaOmics is equally robust across major
therapeutic areas such as oncology, inflammation and
immunology, cardiometabolic diseases, fibrosis, and other
disease areas with well-defined internal molecular mechanisms
(Figure 2B). This versatility highlights the platform’s capability
to address a wide range of diseases and biological processes,
making it a valuable tool for target discovery in diverse medical
fields. However, the application of PandaOmics is limited
when it comes to diseases with external causes, such as viral
and fungal infections, where the underlying molecular
mechanisms may not be as well-defined. Overall, the platform’s
strong validation and wide applicability make it a valuable
resource for researchers seeking to identify potential
therapeutic targets in various diseases and biological processes.

Case Studies. As of September 2023, the PandaOmics
platform and its core signaling pathway analysis algorithm
iPANDA were referenced in over 20 scientific papers. The
original iPANDA paper describing the pathway analysis

Figure 2. Validation of the Target ID capability of the PandaOmics platform. (A) Evaluation of predefined target ID scenarios: The PandaOmics
platform’s predefined target ID scenarios were validated using log fold change of enrichment (ELFC) and statistical significance of the enrichment
based on hypergeometric p-value (HGPV) metrics to assess ranking performance. Three scenarios, namely, associated genes, novel targets (small
molecules), and novel targets (antibodies), were evaluated in two distinct settings: considering all scores and omics scores only. (B) Performance
across therapeutic areas: The figure illustrates the performance in terms of the average fold enrichment on the logarithmic scale (ELFC) of
PandaOmics scores across 12 major therapeutic areas. Each of the 23 models available in PandaOmics was separately evaluated for its ability to rank
known targets or genes associated with the disease within the top-100 of the list. Results were averaged for each therapeutic area, and the combined
performances of all scores and omics scores are also presented.
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algorithm used in PandaOmics platform demonstrates how this
algorithm can be applied to develop biomarkers of
susceptibility to neoadjuvant therapy in various types of breast
cancer.10 The bulk gene expression data deconvolution by the
same algorithm was used to estimate the relative abundance of
various T cell types in oral squamous cell carcinoma patients
from The Cancer Genome Atlas and Chicago Head and Neck
Genomics Cohort datasets.11,12 Similar clusters enriched for
either CD8+ T cells or Treg cells were later identified using
iPANDA to analyze other human solid cancer types that are
amenable to immune-based therapy.13

PandaOmics and iPANDA have proven to be valuable tools
for biomarker discovery across diverse diseases. These tools
were successfully applied to the identification of potential
biomarkers associated with androgenic alopecia, the mamma-
lian embryonic−fetal transition, gallbladder cancer, and smoke-
induced lung cancer.3,14−16 Application of the platform to
therapeutic area selection and the search for biomarkers
facilitated the development of bifunctional antibody-ligand
traps (Y-traps) for cancer immunotherapy. This study
showcases the diversity of therapeutic modalities that can be
tackled using the platform.17 Additionally, PandaOmics has
demonstrated its capability in novel target discovery, enabling
the identification of therapeutic candidates for various diseases
and conditions. The identification of potential therapeutic
targets for idiopathic pulmonary and kidney fibrosis, aging,
glioblastoma multiforme, and head and neck squamous cell
carcinoma emphasize the potential of PandaOmics in
identifying unique targets for different disease contexts.18−21

Among the recent 2023 case studies, PandaOmics identified
CAMMK2, MARCKS, and p62 that were successfully validated
in Alzheimer’s Disease cell models and KDM1A as a dual
aging/oncology target validated to extend the lifespan of C.
elegans.22,23

The case studies also highlight the diversity of diseases and
biological mechanisms that can be addressed by PandaOmics
and iPANDA. The platform has been applied to study DNA
repair disorders, kidney epithelial cell fate specialization, and
human muscle aging, among other conditions.24−26 The ability
to uncover molecular events and signaling pathways associated
with various diseases and biological processes demonstrates the
versatility of PandaOmics in providing valuable insights into
disease mechanisms and potential therapeutic targets. Below
we describe several PandaOmics case studies in more detail.

Targeting the Hallmarks of Aging: Identification of
Therapeutic Targets for Age-Related Diseases. In this
case study, the AI-powered PandaOmics platform was applied
to identify therapeutic targets associated with the aging
process. The well-established concept of the hallmarks of
aging was utilized to classify the mechanisms driving aging.
The hallmarks of aging are a set of interconnected cellular and
molecular processes that contribute to the aging phenotype
and include factors such as genomic instability, telomere
attrition, epigenetic alterations, loss of proteostasis, deregulated
nutrient sensing, mitochondrial dysfunction, cellular senes-
cence, and stem cell exhaustion.27 A comprehensive list of
targets with varying levels of novelty and evidence was
generated through meta-analysis and the application of specific
filters and settings. The relevance of inflammation and
extracellular matrix stiffness in aging and age-related diseases
was highlighted, with many top targets identified playing a role
in these processes. Among those one can find the targets
corresponding to the approved therapies like KDR, MMPs,

JAKs, and TLRs as well as novel targets like HCK or TNIK.
Especially of interest that the latter has recently entered phase
2 for idiopathic pulmonary fibrosis.28 Overall, the application
of PandaOmics in target discovery across multiple disease areas
was demonstrated, revealing high-confidence and novel targets
associated with the hallmarks of aging.29

For the analysis, age-associated diseases (AADs) and
nonage-associated diseases (NAADs) were selected based on
the impact of age on disease onset. Microarray and RNA-seq
datasets for these diseases were retrieved and processed by
PandaOmics, and meta-analysis was performed for each
dataset. Specific filter settings, including druggability, novelty,
safety, tissue specificity, target family, and development filters,
were applied for target identification. The resulting list of
targets was categorized based on their novelty and involvement
in the hallmarks of aging.
To identify targets implicated in multiple diseases and

associated with aging, the top-100 genes from AADs and
NAADs were extracted for each novelty setting. The selected
genes from both AADs and NAADs were overlapped, leading
to the categorization of these genes into two groups: AAD
targets and common targets. A thorough literature review was
conducted to assess the association of the obtained genes with
the hallmarks of aging, considering their biological functions,
pathways, and roles in regulating key aging-related processes.
Many of the identified targets were found to be linked to
inflammation and extracellular matrix stiffness as well as other
hallmarks of aging.
Validation of the AI-derived targets involved comparing

them with well-known aging-associated genes and examining
their roles in aging-related pathways. The presence of known
aging-associated genes within the identified targets served as a
further validation. Additionally, the high-confidence targets
were compared with aging-related gene databases and clinical
trials, demonstrating significant enrichment and potential
clinical relevance. Pathway enrichment analysis revealed that
the AI-derived targets intersected with key aging-associated
pathways including the PI3K-AKT, MAPK, and FOXO
signaling pathways. These targets played an important role in
regulating various cellular processes involved in aging such as
apoptosis, autophagy, cell proliferation, DNA repair, inflam-
mation, and mitochondrial maintenance.
In summary, the application of PandaOmics in identifying

aging-associated therapeutic targets was previously showcased.
Leveraging the platform’s capabilities, a list of targets
associated with the hallmarks of aging and their potential
relevance in multiple diseases was successfully generated.
PandaOmics proved to be a valuable tool for target discovery
across diverse disease areas, offering a comprehensive and
systematic approach to uncovering therapeutic targets with
implications for aging and age-related diseases.

Target Identification and Validation in ALS. Amyo-
trophic lateral sclerosis (ALS) is a severe neurodegenerative
disease characterized by the progressive degeneration of motor
neurons in the brain and spinal cord. Currently, there is a lack
of effective therapeutic regimens for ALS, necessitating the
need for novel treatment approaches. In this study, the
PandaOmics platform was employed to analyze the expression
profiles of central nervous system (CNS) samples from public
datasets and direct induced pluripotent stem cell (iPSC)-
derived motor neurons (diMNs) from Answer ALS. The CNS
samples included 237 ALS cases and 91 controls, while the
diMN samples consisted of 135 ALS cases and 31 controls.9
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Using over 20 AI and bioinformatics models, potential
therapeutic targets were ranked by PandaOmics based on their
target-disease associations, druggability, developmental state,
and tissue specificity. Various scores and filters were utilized by
the platform to select high-confidence and novel targets. By
customizing the filter settings, 17 high-confidence targets and
11 novel targets, totaling 28 potential therapeutic candidates
for ALS, were identified by PandaOmics. These targets were
ranked based on their metascores and were selected for further
investigation. To validate the relevance of these targets,
experiments were conducted using a Drosophila model that
mimicked C9orf72-mediated ALS (c9ALS), which is the most
common familial ALS subtype. With this model, the efficacy of
eight unreported genes (KCNB2, KCNS3, ADRA2B, NR3C1,
P2RY14, PPP3CB, PTPRC, and RARA) in rescuing eye
neurodegeneration caused by (G4C2)30 repeat expansion was
verified.
Furthermore, pathway analysis using PandaOmics’ propri-

etary iPANDA algorithm revealed dysregulated pathways
associated with different stages of ALS development. Multiple
dysregulated pathways were identified in CNS and diMN data,
providing insights into the underlying pathophysiology of ALS.
Pathway clusters associated with the activated innate immune
system, programmed cell death, unfolded protein response,
and ERBB4 signaling were observed in the CNS fALS healthy
cohort. Moreover, several pathways related to RNA metabo-
lism, mitochondrial protein import, and cell cycle regulation
were found to be dysregulated in CNS-based disease cohorts.
Overall, the application of PandaOmics in generating and

validating a therapeutic target hypothesis for ALS was
demonstrated in our study. The AI-driven platform facilitated
the identification of potential targets based on comprehensive
analyses of expression profiles and pathway dysregulation. The
combination of AI-based target discovery and validation using
a Drosophila model significantly accelerated the target
discovery process, providing new insights into ALS patho-
physiology and potential opportunities for therapeutic
interventions. The identified targets are available on the
ALS.AI platform for further evaluation and validation.

Combining PandaOmics, AlphaFold, and Chemis-
try42 for Efficient Target Identification and Validation
in Hepatocellular Carcinoma. In this case study, the
AlphaFold program’s predicted protein structures were utilized
to identify and validate a therapeutic target using the
PandaOmics and Chemistry42 platforms. The target of interest
was selected for the treatment of hepatocellular carcinoma
(HCC), a prevalent and challenging cancer type with limited
effective treatments. Data analysis and filtering based on text
and omics data from multiple datasets were performed by
PandaOmics to generate a ranked list of potential targets for
HCC. Cyclin-dependent kinase 20 (CDK20) was selected as
the initial target due to its strong disease association and
limited experimental structure information.5

To identify CDK20 as a therapeutic target for hepatocellular
carcinoma (HCC), a systematic search for relevant datasets
was conducted by the PandaOmics platform, and a tailored
data inventory specific to HCC was assembled. Comparisons
were made between disease case samples and paired normal
control samples and aggregated in a meta-analysis. The target
ID settings of the first-in-class scenario were followed by the
PandaOmics platform, which considered the druggability of
the protein by small molecules, novelty of the target, exclusion
of targets in phase 1 or later stage clinical trials in the past three

years or targeted by approved drugs, and exclusion of targets
with resolved crystal structures.
Using the predicted structure of CDK20 generated by

AlphaFold, structure-based compound generation was em-
ployed by Chemistry42 to produce a library of molecules.
From this library, seven compounds were synthesized and
tested in biological assays. One of the compounds, ISM042-2-
001, demonstrated a binding constant (Kd) value of 9.2 ± 0.5
μM (n = 3) in the CDK20 kinase binding assay. This hit
compound provided initial evidence of target engagement
within just 30 days of target selection and the synthesis of only
seven compounds.
Building upon the findings from the initial hit compound, a

second round of compound generation was conducted by
using AI-powered approaches. Six additional compounds were
synthesized and tested, leading to the discovery of a more
potent hit molecule, ISM042-2-048. This molecule exhibited
an average Kd value of 566.7 ± 256.2 nM (n = 3) and an
average IC50 value of 33.4 ± 22.6 nM (n = 3) in binding and
inhibitory assays against CDK20. Notably, ISM042-2-048 also
demonstrated selective antiproliferation activity in an HCC cell
line with CDK20 overexpression, further supporting its
potential as a therapeutic candidate.
The successful identification and validation of a hit

compound for CDK20 in HCC using AlphaFold-predicted
protein structures highlight the power of combining the AI
capabilities of PandaOmics and Chemistry42 platforms in the
early stages of drug discovery. By leveraging the comprehensive
data analysis and molecular generation capabilities of these
platforms, a potential therapeutic target was rapidly identified,
novel molecules generated, and their binding and inhibitory
activities validated. This case study demonstrates the potential
of AI applications and the integration of diverse data sources
and AI tools for efficient and effective target discovery in drug
development.

Combining PandaOmics and FuzDrop for the
Identification of Therapeutic Targets Associated with
Protein Phase Separation. In pursuit of therapeutic targets
for diseases associated with protein phase separation (PPS),
the PandaOmics platform was employed in this case study.22

PandaOmics was integrated with FuzDrop, a method
predicting the likelihood of proteins undergoing liquid−liquid
phase separation to analyze 64 diseases. These diseases were
segmented into four quadrants based on their potential for
PPS-based therapeutic targeting. Alzheimer’s Disease (AD) fell
within the “Promising Priority” quadrant, indicating the
potential for PPS-based therapeutic strategies due to the
enrichment of PPS-prone disease-associated proteins and
pathways. A total of 12 targets were proposed for AD based
on PandaOmics analysis, with eight being high-confidence
targets and four being low-confidence targets. The target
landscape provided a matrix of disease-associated genes
encoding PPS-prone proteins, offering detailed profiles for
each target, including evidence of PPS, protein localization, the
propensity of a protein to undergo spontaneous PPS score,
PandaOmics rank score, disease specificity score, and text-
based confidence score. Notably, three high-confidence AD
targets�SYN1, APC, and YAP1�were found to have
corresponding drug candidates in the FDA Clinical Trials
database, underscoring their clinical relevance.
To validate the predicted targets, the phase behavior of three

high-confidence targets (MARCKS, CAMKK2, and p62/
SQSTM1) was investigated in two AD cell models. The
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study involved SH-SY5Y cells treated with Aβ42 and hiPSC-
derived neurons with the APPSwe mutation. The results
demonstrated the altered phase behavior of these targets under
AD conditions, supporting the validity of the predictions.
Specifically, cytoplasmic condensates were observed in
MARCKS in response to Aβ42, while CAMKK2 exhibited
axonal localization in APPSwe neurons. P62/SQSTM1
condensates increased in both models, indicating a potential
therapeutic relevance. This study contributes to the emerging
field of PPS-related disease research, demonstrating the
application of PandaOmics in prioritizing and validating
therapeutic targets. The proposed targets for AD present
opportunities for further investigation and development of
PPS-based interventions, offering a promising avenue for future
therapeutic strategies.
PandaOmics: Integration within the Pharma.AI Ecosys-

tem. PandaOmics plays a crucial role in the Pharma.AI
ecosystem by Insilico Medicine, working in tandem with other
tools, such as Chemistry42 and inClinico. Chemistry42 is a
generative chemistry platform that leverages artificial intelli-
gence to facilitate the automated generation of small molecule
compounds for drug discovery. By integration with Chem-
istry42, PandaOmics utilizes the predicted protein structures
generated by AlphaFold to guide the compound generation
process, enabling the rapid identification of potential hit
molecules for novel targets. inClinico, and on the other hand,
is a powerful platform for in silico prediction of clinical trial
outcomes, providing a virtual testing environment for potential
drug candidates. PandaOmics complements inClinico by
providing essential insights into potential therapeutic targets
and biomarkers. By leveraging the comprehensive data
processing capabilities of PandaOmics, researchers can identify
and prioritize targets that show promise for further evaluation
in clinical trials using inClinico. This integration enables a
seamless transition from target identification to compound
generation and virtual testing, streamlining the drug discovery
and development process.
Overall, PandaOmics, Chemistry42, and inClinico collec-

tively form the Pharma.AI ecosystem, offering an end-to-end
solution for accelerating and optimizing key steps in drug
discovery. From target identification and hit molecule
generation using PandaOmics and Chemistry42, to virtual
testing and simulation using inClinico, these tools work
synergistically to enhance the efficiency and effectiveness of
drug discovery efforts, ultimately leading to the development of
novel therapeutics with improved success rates and reduced
costs.
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