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ABSTRACT: There is long-standing interest in nonaqueous
uranium chemistry because of fundamental questions about
uranium’s variable chemical bonding and the similarities of this
pseudo-Group 6 element to its congener d-block elements
molybdenum and tungsten. To provide historical context, with
reference to a conference presentation slide presented around 1988
that advanced a defining collection of top targets, and the
challenge, for synthetic actinide chemistry to realize in isolable
complexes under normal experimental conditions, this Viewpoint
surveys progress against those targets, including (i) CO and related
π-acid ligand complexes, (ii) alkylidenes, carbynes, and carbidos,
(iii) imidos and terminal nitrides, (iv) homoleptic polyalkyls,
-alkoxides, and -aryloxides, (v) uranium−uranium bonds, and (vi)
examples of topics that can be regarded as branching out in parallel from the leading targets. Having summarized advances from the
past four decades, opportunities to build on that progress, and hence possible future directions for the field, are highlighted. The
wealth and diversity of uranium chemistry that is described emphasizes the importance of ligand−metal complementarity in
developing exciting new chemistry that builds our knowledge and understanding of elements in a relativistic regime.

■ INTRODUCTION
Being subject to a rich interplay of relativistic, interelectronic
repulsion, spin−orbit coupling, and crystal field effects, the
chemistry of actinides is complex and fascinating, and there
remains much to learn about these still somewhat enigmatic
elements at a basic level.1 From a molecular perspective,
uranium, in depleted or natural forms, is one of the more
intensively investigated actinides. This is not only because of its
prominent role in nuclear technologies�with associated
extraction, recycling, and cleanup legacy challenges�and
relative ease to work with as a weak α-emitter but also because
of fundamental questions over the nature of its chemical
bonding. With variable oxidation states and a large range of
valence orbitals available for hydridization with ligand frontier
orbitals, uranium can behave like a covalent transition metal
through to being rather ionic like trivalent lanthanides.2 Indeed,
the fact that uranium was originally classified as a Group 6
transition metal until its rightful place in the 5f actinide series
was recognized underlines just how variable the chemical
bonding of uranium can be.1 Given the need for new knowledge
and understanding in nuclear research, for many years the
molecular chemistry of uranium was dominated by aqueous
studies of the uranyl dication (UO2)2+.

1,2 However, seeking to
answer the question of how transition-metal-like uranium can be
and the role of 5f, 6p, 6d, 7s, and 7p orbitals in its chemical
bonding, a debate sparked by the revolutionary molecule

uranocene [U(η8-C8H8)2] (1; Figure 1) from Streitwieser and
Raymond,3,4 nonaqueous uranium chemistry has flourished over

the past four decades.1,2 Underpinning all of the advances that
have been made in nonaqueous uranium chemistry, and indeed
more widely in aqueous studies, is the concept of ligand−metal
complementarity because variation of the steric and electronic
properties of ancillary ligands is key to enabling and developing
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Figure 1. Revolutionary molecule uranocene 1.3,4
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new uranium structural motifs, reactivity, and physicochemical
properties.
Reflecting the aforementioned motivation to understand how

transition-metal-like uranium is and given an appreciation of
uranium’s similarities tomolybdenum and tungsten�and hence
the likely ability of the former to engage in equivalent bonding
motifs to the latter pair�around 1988 there was “that slide” on
Molecules Organoactinide Chemists Dream About5 presented by
Sattelberger at the Third Chemical Congress of North America
(including the 195th American Chemical Society National
Meeting) in Toronto that year, an adapted version of which is
illustrated in Figure 2.6 The slide has since assumed a somewhat

legendary status in actinide “folk lore” because it was presented
in a conference talk rather than becoming fixed in a journal
publication. However, it was an important call-to-arms to the
synthetic actinide community to advance the nonaqueous
chemistry of uranium in terms of structural linkages that could
be isolated under normal experimental conditions. It is intended
that, by providing some historical context, viz., Figure 2, and its
role in inspiring the progress that followed, the journey and
status of the field can be more fully appreciated than by simply
presenting advances in isolation.
It is a widely held view that the chemistry of the early actinides

lags behind that of the transition metals. However, the
astonishing aspect of Figure 2 is just how much was still waiting
to be realized ca. 1988 compared to the d block that had
undergone major advances in the 1960−1980s. Much has been
accomplished in the intervening decades, and so this Viewpoint
aims to provide an overview of how the principal themes of
Figure 2 developed, and indeed expanded, but will make the
occasional detour into motifs or notable analogues with other f
elements that assist in contextualizing the area. Hence, the

discussion will focus principally on advances directly related to
Figure 2 and will then summarize other advances that developed
in parallel. The interested reader is referred to several excellent
recent reviews and books on the subject, and the cited references
herein, for further detailed insight.1,2,7−21

■ CO AND RELATED π−ACID LIGAND COMPLEXES
There are numerous transition-metal carbonyls; indeed, this is a
fundamental class of organometallic complex, so the absence of
uranium analogues for many years stood in stark contrast. When
Figure 2 was presented, a structurally authenticated uranium
carbonyl remained elusive. However, uranium carbonyl had
been identified in matrix isolation experiments in 1975 by
Sheline and Slater,22 and in 1986 spectroscopic evidence by
Andersen showed that placing [U(η5-C5H4SiMe3)3] under an
atmosphere of CO produced [U(η5-C5H4SiMe3)3(CO)] (2;
Figure 3), but the CO coordination was reversible.23 Never-

theless, 1995marked the first structurally authenticated uranium
carbonyl, [U(η5-C5Me4H)3(CO)] (3; Figure 3),24 reported by
Parry, Carmona, and Hursthouse. Since then, only a few
uranium carbonyl complexes have been reported (Figure 3):
[U(η5-C5Me5)3(CO)] (4) by Evans in 2003;25 [{U(tacn-
[CH2C6H2-2-O-3,5-tBu2]3)}2(μ-CO)] (5) by Meyer in
2005;26 [U{η8-C8H6-1,4-(SiiPr3)2}(η5-C5Me5)(CO)] (6) by
Cloke in 2008;27 [U(η5-C5Me5)(As2Mes2)(CO)] (7; Mes =
2,4,6-trimethylphenyl) by Walensky in 2021;28 [U(η5-
C5Me5)2(O-2,6-tBu2-4-Me-C6H2)(CO)] (8) by Walensky in
2023.29 Evidently, U−CO bonds are not as strong as d-block
metal−CO bonds and are hence more difficult to stabilize and
isolate.
Interestingly, the IR spectra of 2−6 reveal that while the CO

stretching frequencies are in the range 1880−1976 cm−1,
indicating back-bonding into the CO π* orbitals, individual CO
stretching frequencies do not correlate with their corresponding
Cp−U distances but instead vary with the Cp substituents. In
2009, Eisenstein rationalized this on the basis of U−CO back-
bonding from Cp−U bonding molecular orbitals of mainly Cp-
ligand character.30 Thus, in contrast to the conventional metal-
to-ligand back-bonding model for transition-metal π-acid

Figure 2. Adapted version of “that slide” on Molecules Organoactinide
Chemists Dream About from the Los Alamos National Laboratory
archive.5,6

Figure 3. Molecular uranium carbonyl complexes 2−8.23−29
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complexes, the back-bonding in tris(cyclopentadienyl)uranium
complexes has been classed as ligand-to-ligand back-bonding.
Weak ligand-to-ligand back-bonding was also found by Evans
and Furche for the cationic thorium complex [Th(η5-
C5Me5)3(CO)][BPh4] reported in 2017,31 which, formally, as
a 5f06d0 metal has no metal-based electrons with which to back-
bond. Complex 7 was found to engage in Th−As σ to CO π*
back-bonding, and hence that system also engages in ligand-to-
ligand back-bonding to stabilize the U−CO linkage.28 However,
quantum-chemical calculations on 8 suggested that the U−CO
back-bonding is from a U 5f/6d hybrid orbital29 and hence of
metal-to-ligand back-bonding character. The exciting implica-
tion is that uranium can switch between ligand-to-ligand and
metal-to-ligand back-bonding modes as a function of the
ancillary ligands because the only difference between 4 and 8
is the replacement of one pentamethylcyclopentadienyl ligand
with an aryloxide. This touches on the variable, responsive
bonding nature of uranium, vide supra, exemplified by the
parallel notion that uranium tends to π-bond to small ligands
with mainly 5f character but often bonds to more expansive
ligands through δ-bonding with increasing 6d character.32

Complexes 1−8 set the scene for reductive homologation of
CO at uranium (Figure 4), which contrasts to the more

traditional 1,1-migratory insertion chemistry of CO at
transition-metal centers. In 2006, Cloke reported the remarkable
cyclotrimerization of CO using [U{η8-C8H6-1,4-(SiiPr3)2}(η5-
C5Me5)],

33 a structurally more sterically demanding analogue of
[U(η8-C8H8)(η5-C5Me5)] reported in 1993 by Burns,34 to
produce the deltate complex [U{η8-C8H6-1,4-(SiiPr3)2}(η5-
C5Me5)]2(μ-η1:η2-C3O3) (9) and then through variation of
the Cp substituents or reaction conditions could isolate the

cyclotetramerized squarate and dimerized ethynediolate forms
of CO in [U{η8-C8H6-1,4-(SiiPr3)2}(η5-C5Me4H)]2(μ-η2:η2-
C4O4) (10)35 and [U{η8-C8H6-1,4-(SiiPr3)2}(η5-C5Me5)]2(μ-
η1:η1-C2O2) (11),27 in 2006 and 2008, respectively. The
formation of ethynediolate at uranium was also accomplished
by P. Arnold in 2011 and Liddle in 2012 in [U{N-
(SiMe3)2}3]2(μ-η1:η1-C2O2) (12)36 and [U(TrenDMBS)]2(μ-
η1:η1-C2O2) (13; TrenDMBS = {N(CH2CH2NSiMe2tBu)3}3−),37

respectively. A synthetic cycle could be closed for the latter
where a substituted furanone was liberated,37 hinting at a
possible catalytic process where uranium meditates the
conversion of CO and silyl iodides into a functionalized
furnanone. More recently, in 2023 Walensky demonstrated
that [U(η5-C5Me5)2(O-2,4,6-Me3-4-Me-C6H2)] also reacts with
CO to make the ethynediolate complex [U(η5-C5Me5)2(O-
2,4,6-Me3-4-Me-C6H2)]2(μ-η1:η1-C2O2) (14),29 from which a
range of complexes featuring further C−C bond-functionalized
products could be accessed. A particularly notable result in this
arena was the finding by Cloke in 2011 that the complex [U{η8-
C8H6-1,4-(SiiPr3)2}(η5-C5Me5)] reacts with CO and H2 to form
the methoxide complex [U{η8-C8H6-1,4-(SiiPr3)2}(η5-C5Me5)-
(OCH3)] (15).

38 The methoxide in 15 could be released as a
methanol equivalent in Me3SiOMe to, in principle, close a
synthetic cycle, and this essentially corresponds to a selective
molecular version of Fischer−Tropsch chemistry. Overall,
complexes 9−15 demonstrate the highly reducing power of
low-valent uranium, but thus far this has not gone beyond closed
synthetic cycles to true catalysis. This likely reflects unbalanced
cycles when factoring in returning uranium to the initial reactive
trivalent state.
In parallel to uranium−CO chemistry has been the develop-

ment of uranium−CO2 chemistry. In contrast to the classical
1,2-migratory insertion chemistry of CO2, uranium−CO2
chemistry took a different turn when Meyer reported the
synthesis of the terminal uranium−CO2 radical-anion adduct
[U{tacn(CH2C6H2-2-O-3-Ad-5-tBu)3}(η1-OCO)] (16; Figure
5) in 2004.39 No further reactivity has been reported for that

complex, likely because the very steric profile required to
stabilize the U−CO2 linkage inhibits subsequent reactivity.
However, it presented a basis for subsequent studies by Meyer
and Mazzanti reporting reductive CO2-to-carbonate reactivities
including closed synthetic cycles and heteroleptic heavy
carbonate analogues.40−42

Closely related to CO is isoelectronic (NO)+, which has an
extensive array of coordination chemistry with transition metals.
In 1989, Bursten predicted that a [U(η5-C5H5)3(NO)] complex
would curiously feature a linear U−N−O linkage that could be
rationalized as a combination of uranium(IV) Cp3U+ and not
(NO)+ but (NO)− fragments, with a further notable prediction
of that complex being diamagnetic.43 However, experimental
validation of those predictions would take 23 years to emerge. In

Figure 4. Reductively homologized CO complexes of uranium 9−
15.29,33,35−38

Figure 5. End-on bound uranium−CO2 complex 16.39
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2012, Evans, Furche, and Long reported the synthesis of [U(η5-
C5Me4H)3(NO)] (17),44 Figure 6, and it was found to have an

essentially linear U−N−O bond angle. Furthermore, quantum-
chemical calculations44 revealed that the ground state is a
diamagnetic singlet, which can be represented as
(C5Me4H)3U�N+�O−, with a low-lying triplet state corre-
sponding to the UIV/(NO)− structure (C5Me4H)3U�N�O,
which nicely accounted for the experimentally determined
temperature-independent paramagnetism of 17. Complex 17
remains the sole example of a uranium nitrosyl complex to date.
With U−CO and U−NO complexes structurally verified and

predicted, respectively, by the mid-1990s, attention focused on
the essential isoelectronic diatomic N2. In 1998, 3 years after 3,
Scott reported the first actinide−N2 complex [U-
(TrenDMBS)]2(μ-η2:η2-N2) (18; Figure 7).45 The side-on
bridging coordination of N2 in that complex was reversible,
which led to the initial belief that the uranium ions were
trivalent, but it now recognized that N2 is reduced to its
dianionic form by back-bonding into a π* orbital of N2 but
reversibly so.
Building on 1845 and recognizing the relevance of uranium−

N2 complexes to Haber−Bosch fixation of N2,
46 in the

intervening years to the present day, a range of uranium−N2
complexes have been isolated, with most adopting side-on (μ-
η2:η2-N2) binding modes that are not reversible.47 However, a
few of the more unusual end-on or labile side-on-bound
derivatives have been reported (Figure 7), including the end-on
bridging heterobimetallic complex [{R(R′)N}3Mo(μ-η1:η1-
N2)U{N(tBu)Xy}3] (19, R = tBu, R′ = Ph; 20, R = adamantyl,
R′ = Xy, where Xy = 3,5-Me2C6H3) reported by Cummins in
1998,48 [{U(η8-C8H4[SiiPr3-1,4]2)(η5-C5Me5)}2(μ-η2:η2-N2)]

(21) by Cloke in 2002,49 the terminal end-on N2 complex
[U(η5-C5Me5)3(η1-N2)] (22) reported by Evans in 2003,50 and
the end-on bridging complex [(BIPMTMS)U(NAd)2(μ-η1:η1-
N2)Li(2.2.2-crypt)] (23; BIPMTMS = {C(PPh2NSiMe3)2}2−)
reported by Liddle in 2019.51 Complexes 21 and 22 are notable
for the facile reversibility of N2 coordination, whereas 23
features a high-oxidation-state complex that goes against
traditional the donor−acceptor requirements of low-oxidation-
state, electron-rich metals.
Other notable achievements in this area (Figure 7) include

the splitting of N2 into a bis(nitride) in the complex
[K(DME)4][{K(DME)(Et8-calix[4]tetrapyrrole)U}2(μ-NK)2]
(24) by Gambarotta in 2002,52 hydrogenation to afford
ammonia by [{U(OSi[OtBu]3)}2(μ-N)(μ-η2:η2-N2)K3] (25)
by Mazzanti in 2017,53 and recently the formation of N2

3− at
uranium in [K(L)n][{U(OC6H2-2,4,6-tBu3)3}2(μ-η2:η2-N2)]
(26, L = 2.2.2-cryptand, n = 1; 27, L = THF, n = 6) and
subsequent N−N cleavage to afford polynitrides by Mazzanti in
2023.54 Collectively, these advances highlight the ability of
uranium to activate N2, confirming the observation that uranium
is a highly effective promoter for the formation of NH3 from N2
and H2, as stated in the original Haber−Bosch patent from over
a century ago.46

■ ALKYLIDENES, CARBYNES, AND CARBIDOS
Because the M = CR2 (R = H, alkyl, silyl) motif is a fundamental
structural class in transition-metal chemistry, there has long
been an interest in realizing uranium alkylidenes. However,
outside of matrix isolation�where species such as H2C�
U(X)(Y) (X, Y = F, Cl, Br, I), H2C�U(H)X (X = F, Cl, Br), and
H2C�UH2 have been reported by Andrews and Li in the period
2006−200855−58�it is a target that has remained elusive in
“pure” M = CR2 (R = H, alkyl, silyl) form outside of matrix
isolation experiments and so is one of the targets in Figure 2 that
remains unmet to this day in isolable molecules made under
normal conditions.
In 1981, 7 years before Figure 2, Gilje reported the first U�C

double bond in [U(η5-C5H5)3(CHPMe2Ph)] (28) by utilizing a
phosphonioalkylidene ligand (Figure 8).59 The complex

Figure 6. Uranium−NO complex 17.44

Figure 7. Uranium−N2 complexes 18−26.45,48−54
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undoubtedly contains a U�C multiple bond, albeit polarized,
but two competing resonance forms can be drawn [U−C(H)�
PMe3Ph and U−�C(H)-P+Me2Ph] due to phosphonium-
substituent stabilization, which renders the double bond not
as clear-cut as that in a “pure” alkylidene. However, a range of
reactivity studies were all consistent with UC double-bond
character.12

The area then became dormant for the best part of three
decades before Ephritikhine, Meźailles, and Le Floch revived it
in 2009 with the synthesis of U�C double bonds using the
diphosphoniomethanediide {C(PPh2S)2}2− (Figure 8), as
exemplified by the uranium(IV) complex [U{C(PPh2S)2}-
(BH4)2(THF)2] (29),

60 and then in 2011 the uranyl complex
[U(O)2{C(PPh2S)2}(py)2] (30),

61 a rare example of a uranyl
organometallic. In parallel, with the related diphosphoniome-
thanediide BIPMTMS (Figure 8), in 2011 and 2012 Liddle
reported the uranium(IV), -(V), and -(VI) complexes [U-
(BIPMTMS)(Cl)3Li(THF)2] (31),62,63 [U(BIPMTMS)(Cl)2(I)]
(32),63 and [U(BIPMTMS)(O)(Cl)2] (33),64 respectively,
allowing comparisons of the U�C bond over three oxidation
states of uranium, with themajority of the ligand field conserved.
This series was then completed by Liddle and Vlaisavljevich in
2018 with the synthesis of [{U(BIPMTMS)}6(μ-I)3(μ-η6:η6-
C7H8)3] (34), which formally contains uranium(III) U�C
double bonds65 (Figure 8). In 2014, Liddle reported the
uranium(VI) derivatives [U(BIPMTMS)(O)(NMes)(dmap)2]
[35; dmap = 4-(dimethylamino)pyridine]66 and [U(BIPMTMS)-
(O)2(dmap)2] (36),66 providing complexes with up to three
different multiply bonded ligands at uranium and another rare
example of an organouranyl complex (Figure 8). Further
prominent examples from the period 2013−2020 of uranium
phosphonioalkylidenes (Figure 8) include [U(CHPPh3){N-
(SiMe3)2}3] (37) by Hayton andWalensky,67 [U(CHPPh3)(η5-
C5Me5)2(X)] (38−40; X = Cl, Br, I) by Walensky andMaron,68

and [U(CHPPh3)(TrenTIPS)] (41; TrenTIPS = {N-
(CH2CH2NSiiPr3)3}3−) by Liddle.69 The latter provided
impetus to prepare the arsonioalkylidene analogue [U-
(CHAsPh3)(TrenTIPS)] (42),

69 which was the first arsonioalky-
lidene complex of any metal and which displays a more well-
developed U�C double bond compared to the phosphonioal-
kylidene analogue, consistent with diminished As versus P
stabilization of the alkylidene center. The assertion of the
presence of U�C double bonds in these complexes has proven
controversial at times, but the weight of reactivity and
computational analysis combined with a 13C NMR chemical
shift anisotropy study in 2024 supporting the Ce�C double-
bond formulations in related Ce(IV) complexes70 all point to
these complexes possessing polarized U�C double bonds.
The years 2018 and then 2021 marked two milestones in U�

C double-bond chemistry (Figure 8) with reports of the
phosphinosilylalkylidene complexes exemplified by [U{C-
(PPh2)SiMe3}(BIPMTMS)(dmap)2] (43) by Liddle71 and the
allenylidene complex [Li(2.2.2-cryptand)][U(CCCPh2){N-
(SiMe3)2}3] (44) by Hayton and Autschbach,72 respectively.
Both complexes are notable for exhibiting U�C double-bond
interactions that depart from the use of pentavalent pnictonium
alkylidene stabilization.
Compared to alkylidenes, the corresponding chemistry of

uranium carbyne and carbido complexes is sparsely developed.
Matrix isolation studies have led the way, with reports of
fundamental, elegant species such as CUO, CUO−, UC, CUC,
UCH, U(CC)2, X3U�CH (X = F, Cl, Br), F2ClU�CH, and
F3U�CF first being reported around the years 1999−2012 by
Andrews, Bursten, and Li.73−78 More recently, in recent years
(2019−2023), work led by Chen has exploited the unique
confinement effects of endohedral fullerenes to isolate a range of
carbide compounds, including U(μ-η1:η1-C)U@C80,

79 U(μ-
η2:η2-C2)U@C78,

80 U(μ-η2:η2-C2)U@C80,
80 U(μ3-η1:η1-

Figure 8. U−C multiple bonds in complexes 28−44.59−69,71,72
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C)Sc2@C80,
81 U(μ-η1:η1-C)Ce@C72,

82 and U(μ-η1:η1-C)Ce@
C80.

82 Akin to the eventually successful quest for terminal
nitrides in isolable molecular species (see below), the prevalence
of these species in confined trapping scenarios suggests that,
with suitable ancillary ligands, isolable terminal molecular
uranium alkylidenes, carbynes, and carbidos under normal
experimental conditions should eventually be secured.

■ IMIDOS AND TERMINAL NITRIDE COMPLEXES
By the time the contents of Figure 2 emerged as a presentation
slide, uranium mono(imido) complexes had already been
realized, and some subsequent key complexes are illustrated in
Figure 9.15 Initially, in 1984 Gilje isolated the uranium(IV)

imido complex [U(η5-C5H5)3{NC(Me)C(H)PMePh2}] (45)
from the insertion of CH3CN into the U�C bond of the
PMePh2 analogue of 28, although this complex is not a “pure”
imido linkage.83 Soon after, in 1985 Andersen reported two-
electron oxidation of [U(η5-C5H4Me)3(THF)] by azides to
produce the first clear-cut uranium(V) imidos [U(η5-
C5H4Me)3(NPh)] (46) and [U(η5-C5H4Me)3(NSiMe3)]
(47),84 and the same approach with [U{N(SiMe3)2}3] yielded
[U{N(SiMe3)2}3(NPh)] (48) and [U{N(SiMe3)2}3(NSiMe3)]
(49) in 1988.85 Apart from accessing imido functionalities, these
were important reactions because they developed two-electron-
oxidation chemistry, in contrast to the reputation that the f block
has for one-electron-redox couples. In 1990 Sattelberger
reported that 48 and 49 could be oxidized to produce the
uranium(VI) imido complexes [U{N(SiMe3)2}3(NPh)(F)]
(50) and [U{N(SiMe3)2}3(NSiMe3)(F)] (51),86 which were
the first uranium(VI) complexes to have multiple bonds to
nitrogen.
With mono(imido) uranium complexes established, attention

turned to polyimidos, and relatively quickly in 1992 Burns
showed that the treatment of [U(η5-C5Me5)2(Cl)(Me)] with
LiN(H)Ph and Me2NCH2CH2NMe2(tmeda) (tmeda = tetra-
methylethylenediamine) afforded [U(η5-C5Me5)2(μ-NPh)(μ-
Cl)Li(tmeda)], which was oxidized by N3Ph to afford the first
uranium bis(imido) complex [U(η5-C5Me5)2(NPh)2] (52),87

which was also the first organouranium(VI) complex. Notably,
due to the presence of the two Cp* rings, the N−U−N linkage is
bent [98.7(4)°], raising interesting questions about its relation-
ship to uranyl and, in particular, the still yet to be routinely
isolated cis-uranyl. As an aside, noting that 52 was prepared by a
two-electron oxidation, in 1993 Burns also found that the

oxidation of [U(η5-C5Me5)2(ODipp)] (Dipp = 2,6-diisopro-
pylphenyl) and [U(η5-C5Me5)2(NDipp)] with pyridineN-oxide
afforded the first uranium(V) and -(VI) complexes to contain
mono(oxo) linkages, namely, [U(η5-C5Me5)2(O)(ODipp)] and
[U(η5-C5Me5)2(O)(NDipp)].88 Again, this demonstrated that
the uranium(III/V) two-electron-redox couple is a powerful
vehicle for installing multiply bonded ligands at uranium.
Complex 52 remained the only class of uranium bis(imido)

complexes for 13 years (the N-adamantyl version of 52 was
reported in 1998)89 until in 2005−2006 Boncella reported the
synthesis of linear uranium bis(imido)uranyl analogues.90,91

Oxidation of uranium metal or [U(I)3(THF)4] with I2 in the
presence of amines produced alkyl and arylbis(imido)
complexes of the form [U(NR)2(I)2(THF)2] (53, R = tBu;
54, R = Dipp) with the elimination of ammonium iodide salts.
The linear formulation of these bis(imido) complexes suggests
that an inverse trans influence operates as it does in isoelectronic
uranyl. A tris(imido)uranium complex, isoelectronic to UO3,
was introduced by Bart in 2014.92 The complexmer-[U{C5H3N-
2,6-(C[Me]NMes)2}(NMes)3] (55) was obtained by the
reaction of a highly reduced, i.e., noninnocent, pyridylbis-
(imino)uranium complex with MesN3, where the U(NMe)3
component is T-shaped. This was followed soon after in 2015 by
another tris(imido) by Bart in a reaction that is elegant by virtue
of its simplicity, where the reduction of [U(I)3(THF)4] by KC8
in the presence of DippN3 produced fac-[U(NDipp)3(THF)3]
(56).93

Remarkably, in 2017 Bart reported that the polyimido motif
could be extended to a range of tetrakis(imido)uranate(VI)
complexes exemplified by [K(2.2.2-crypt)]2[U(NDipp)4]
(57).94 Quantum-chemical calculations showed that the
significant amount of charge loading resulted in more activated
U�NR bonds than in tris(imido) and bis(imido) analogues. It
will be interesting to see if a pentakis(imido)uranium complex
can be realized, given the range and number of vacant valence
orbitals that uranium possesses.
There are nowmany uranium imido complexes, but twomerit

specific mention. The first is the parent imido complex [K(15-
crown-5)2][U(NH)(TrenTIPS)] (58) reported by Liddle in
2014.95 Complex 58 is stable despite lacking any sterically
demanding substituent protection at the imido, although the
anion formulation of the imido component of 58 evidently plays
a role because oxidation of 58 results in disproportionation. The
imido complex [U{N(CH2C6H2-2-O-3-Ad-5-Me)3}NMes]
(59) was reported by Meyer in 2012.96 Notably, the imido
resides trans to one of the aryloxides, where it would be more
intuitive to predict the imido residing in the axial site trans to the
tertiary amine. This implies the presence of an inverse trans
influence in 59.
The search for terminal uranium nitrides can trace its origins

back to 1976, when Green and Reedy identified UN in a frozen
argon matrix.97 Then, in the period 1993−2016, fundamental
species such as NUN, NUO, NUO+, F3UN, NUN-H, and U2N2
were variously reported or studied in matrix isolation or as
spectroscopic transients by Andrews, Bursten, Gagliardi,
Pyykkö, Roos, Schwarz, and Vlaisavljevich,98−102 and UN was
reported in the C82 endohedral fullerene by Chen and
Autschbach in 2022.103 Nevertheless, when Figure 2 was
making its debut in 1988, placing an emphasis on a molecular
terminal uranium nitride as a key synthetic target and bonding
benchmark, there were no molecular uranium nitrides at all.
Several polymetallic nitrides of uranium were reported in the

2000s21,104 before (Figure 10) Cummins reported the borane-

Figure 9. Uranium imido complexes 45−59.83−96
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capped nitride complexes [NBun4][U{NB(C6F5)3}{N(tBu)-
C6H3-3,5-Me2}3] (60) and [U{NB(C6F5)3}{N(tBu)C6H3-3,5-
Me2}3] (61) in 2009.105 Complexes 60 and 61 can alternatively
be formulated as imidoborates, but computational analysis
reveals significant U�N triple bonds. In 2010 Kiplinger
provided evidence of a transient terminal uranium nitride
through isolation of the C−H activated complex [U(η5-
C5Me4CH2NH)(η5-C5Me5){N(SiMe3)2}] (62) resulting from
photolysis of the azide precursor [U(η5-C5Me5)2(N3){N-
(SiMe3)2}].

106

The terminal uranium nitride was finally reported in 2012 by
Liddle in the uranium(V) nitride complex [Na(12-crown-
4)2][U(N)(TrenTIPS)] (63),107 Figure 10, prepared by [U-
(TrenTIPS)]-mediated two-electron azide reduction and sub-
sequent sodium sequestration with 12-crown-4 ether. Success
hinged on TrenTIPS providing exactly the right size and shape
pocket for the nitride, combined with azide activation but
stabilization by the sodium cation and then its gentle subsequent
removal. In 2013, the uranium(VI) nitride [U(N)(TrenTIPS)]
(64) was prepared by oxidation of 63108 (Figure 10), concluding
the search for terminal uranium(VI) nitrides previously
restricted to spectroscopic experiments as well as confirming
the presence of intermediate nitrides in C−H activation such as
62−64. A range of derivatives of 63 proved to be fertile ground
for detailed electronic structure investigations.109 Complex 64
was computationally predicted108 and experimentally confirmed
by 15NNMR spectroscopy110 to contain a highly covalent U�N
triple bond, andmore so thanGroup 6 terminal nitrides, which is
an astonishing result that goes to the heart of one of the original
motivations behind Figure 2 to elucidate the bonding relation-
ship of uranium to Group 6 elements like molybdenum and
tungsten. Only one other class of terminal uranium nitride has
since been reported, where photolysis of [NBun4][U(N3){OSi-
(OtBu)3}4] was reported to produce [NBun4][U(N){OSi-
(OtBu)3}4] (65) by Mazzanti in 2020 (Figure 10).111

This area has now expanded to include many examples of
astonishing small-molecule activations and structural mo-
tifs,21,104 with notable examples including hydrogenation of 25
to produce ammonia by Mazzanti in 201753,112 and elegant
preparations from UX5 (X = Cl, Br) and NH3 of bis(nitride)
complexes containing the cations [(H3N)8UNUN(NH3)5U-
(NH3)8]8+, [(H3N)8UNUN(NH3)4(Br)U(NH3)8]7+, and
[(H3N)8UNUN(NH3)3(Cl)2U(NH3)8]6+ reported by Kraus
in 2020.113

■ HOMOLEPTIC POLYALKYL, -ALKOXIDES, AND
-ARYLOXIDES

As a fundamental ligand type in organometallic chemistry, there
has always been interest since the 1940s in uranium alkyl
complexes particularly because at one stage volatile uranium
alkyls were candidates for isotope enrichment work in the
Manhattan Project.114 In the 1980s, Marks pioneered the study
of heteroleptic uranium bis(cyclopentadienyl)alkyls, having
reported in 1974 that attempts to prepare tetrakis(alkyl)
compounds resulted in decomposition.115 Likewise, in 1982
Evans concluded that hydride species formed,116 although in
1984 Andersen subsequently found that tetrakis(alkyl) com-
plexes could be stabilized as heteroleptic derivatives by the
addition of chelating diphosphine ligands to saturate the
coordination sphere of uranium, for example, in [U-
(CH2Ph)3(Me)(Me2PCH2CH2PMe2)] (66).117 Thus, Figure
2 focused attention on homoleptic polyalkyl complexes of
uranium.
As it turned out, a homoleptic polyalkyl was delivered rapidly

(Figure 11), and in 1988 Sattelberger reported the first example

of a neutral homoleptic uranium alkyl with the synthesis of the
tris(alkyl) complex [U{CH(SiMe3)2}3] (67).118 Like lantha-
nide analogues, 67 had to be prepared by the reaction of
LiCH(SiMe3)2 with a uranium tris(aryloxide) because the more
conventional route of reacting UCl3(THF)n resulted in
formation of the “ate” complex [U{CH(SiMe3)2}3(Cl)Li-
(THF)3].

118 Complex 67 is isolable because of the sterically
demanding alkyls, but it is not coordinatively saturated, so it
decomposes in solution, underscoring the inherent reactivity of
uranium alkyls.
The year 2009 marked a fresh impetus in the area (Figure 11)

when Hayton reported the synthesis of several homoleptic
uranium(IV) complexes, specifically separated ion-pair “ate”
complexes of the anions [U(CH2But)5]− (68) and [U-
(CH2SiMe3)5]− (69) and contact ion triple assemblies of
[U(Me)2(μ-Me)4{μ-Li(tmeda)}2] (70) and {[K(THF)][K-
(THF)2][U(CH2Ph)6]}∞ (71).119 Shortly after, in 2011
Hayton went on to report [Li(THF)4][U(CH2SiMe3)6] (72)
and its oxidation to the remarkable hexakis(alkyl) [U-
(CH2SiMe3)6] (73),120 although the latter was found to be
thermally unstable and decompose above −25 °C. Soon after 72
and 73, in 2012 Bart reported the synthesis and isolation of
[U(η2-CH2Ph)4] (74),121 where the η2-coordination mode of

Figure 10. Notable uranium nitride complexes 60−65.105−108,111

Figure 11. Homoleptic uranium alkyl complexes 66−77. Only the
anionic components of 68, 69, and 75−77 are shown for clarity.117−123
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the four benzyls evidently contributes to the stability of this
tetrakis(alkyl) complex, and this led to a wide range of [U(η2-
CH2R)4] (R = substituted aryls) complexes being reported by
Bart in 2015.122

As mentioned above, homoleptic polyalkyl complexes of
uranium often undergo facile decomposition and can be
thermally unstable. This prompted Neidig to undertake low-
temperature studies (Figure 11), where compounds were
prepared and crystallized at −70 to −80 °C. The resulting
range of compounds reported in 2020 underscored the
complexity of uranium polyalkyl chemistry because [Li-
(THF)4][U(Me)4(μ-Me)2{μ-Li(THF)2}], [U(Me)(μ-
Me)6{μ-Li(THF)2}{μ3-Li(THF)}(μ3-Li)] (75), [Li(18-
crown-6(THF)2][U(Me)6] (76), and [Li(THF)4]2[Me4U(μ-
Me)3UMe3] (77), built around hexakis- or septakis(methyl)
motifs, could all be isolated under those conditions.123

The above activity in homoleptic polyalkyluranium chemistry
has spurred renewed interest in related homoleptic polyar-
yluranium chemistry (Figure 12), with notable examples

including the uranium(III) tris(terphenyl) complex [U{C6H3-
2,6-(C6H4-4-tBu)2}3] (78) by J. Arnold in 2016124 and
uranium(IV) hexakis(aryls) exemplified by [Li(THF)4][U-
(C6H5)6Li(THF)] and [Li(THF)4]2[U(C6H4-4-Cl)6] (79) by
Neidig in 2019;125 like Neidig’s alkyl work, the latter pair of aryls
were synthesized and crystallized at low (−80 °C) temperature.
Last, Hayton isolated exceedingly rare examples of uranium
benzyne complexes, namely, [U(η2-C6H3-2-CH2NMe2)(C6H4-
2-CH2NMe2)3Li] (80) in 2013126 and [U(η2-C6H3-2-
CH2NMe2)2(C6H4-2-CH2NMe2)2Li2] (81) and the THF-
solvate congener [U(η2-C6H3-2-CH2NMe2)2(C6H4-2-
CH2NMe2)2[Li(THF)2}(Li)] in 2016.127

Although uranium alkoxides had been known since the 1950s,
rather than being straightforward homoleptic formulations, they
were often polymetallic aggregates with “ate” character, mixed
uranium oxidation states, or were constructed around oxide
dianions (Figure 13). Prominent examples include [U2(μ-
OtBu)3(μ3-OtBu)2(OtBu)4K] (82), [U2(μ-OtBu)3(OtBu)6]
(83), and [U3(μ3-O)(μ3-OtBu)(μ-OtBu)3(OtBu)6] (84) re-
ported in 1984 by Cotton,128−130 and even the “pure”
homoleptic [U2(μ-OtBu)2(OtBu)8] (85) reported by Eller in
1983 is dimeric.131 Furthermore, aryloxides were relatively
scarce, and so Figure 2 sought to prompt an expansion of
mononuclear homoleptic polyalkoxides and -aryloxides.
Some of the basic uranium alkoxide chemistry was

reinvestigated in 2008 by Hayton,132 who found that the
tendency of alkoxides to form “ate” complexes could be

synthetically exploited. Hence, the preparation of [U-
(OtBu)2(μ-OtBu)4{(μ3-Li(THF)}2] (86) was performed, and
then stepwise oxidations with iodine first secured [U(OtBu)4(μ-
OtBu)2{μ-Li(OEt2)}] (87) and then [U(OtBu)6] (86); it is
notable that this chemistry works when utilizing lithium to
stabilize the aggregates rather than potassium, which tends to
produce clusters such as 82.128 Electrochemical studies
suggested significant stabilization of the uranium(VI) ion in
88 compared to the uranium(VI) hexakis(halide) series, which
are generally considered to be quite oxidizing.
Where aryloxides are concerned, there are still relatively few

homoleptic variants (Figure 14), with reports by Sattelberger in
1988 of dimeric [{U(μ-η1:η6-ODipp)(ODipp)2}2] (89)

133 and
the monomers [U(O-C6H3-2,6-tBu2)3] (90, suggested to be
monomeric from IR data in the initial report133 but only
structurally confirmed as such in 2011 by P. Arnold134) and
[U(O-C6H3-2,6-tBu2)4] (91).135,136 The more sterically de-
manding [U{OC6H2[2,6-CHPh2]2-4-Me}3] (92) reported by

Figure 12. Uranium aryl and benzyne complexes 78−81.124−127

Figure 13. Uranium alkoxide complexes 82−88.128−132

Figure 14. Uranium aryloxide complexes 89−93.133−136
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Meyer and Mindiola137 and [U(OC6H2-2,6-Ad2-4-Me)3] (93)
disclosed by Meyer appeared in 2013 and 2016, respectively.138

It is worth noting that some homoleptic uranium aryloxides exist
but have not been structurally authenticated; however, they have
been used to make N2

2−, N2
3−, and CO-coupled ethynediolate

derivatives.54,134

■ U−U BONDS
Given the prevalence of Mo−Mo and W−W bonding in
transition-metal chemistry, the absence of U−Ubonds led to the
latter being a natural target in Figure 2 in 1988. This was not for a
lack of attempts to prepare U−U bonds by 1988, where one
study by Cotton in 1984130 investigating the possibility of
accessing U−U bonding supported by alkoxides, given the
tendency of alkoxides to support Mo−Mo and W−W bonding,
stated that, “While we are not suggesting that on the basis of
these two structural results all hope of observing U−U bonds is
futile, we do feel that such hopes are rather dim.” Indeed, in 2006
energy decomposition analysis calculations carried out on
hypothetical U−U bonds in classical [U2X8]2− (X = Cl, Br)
dianions by Kaltsoyannis139 consistently found weak metal−
metal bonds. Hence, this suggested that U−U bonds, at least in
the [U2X8]2− formulation, would be unlikely to be formed or be
isolable experimentally, in contrast to the large range of
heterobimetallic uranium−metal bonds that have been
reported.20 However, like terminal uranium nitrides, the quest
for isolable U−U bonds under normal experimental conditions
has been stoked by advances in spectroscopic and trapped-
species scenarios.
The U2 and OUUO dimers were observed as spectroscopic

transients as long ago as 1974 by Khodeev,140 and in a
theoretical study of actinide dimers by Roos in 2006, there is
mention of U2 and U2

+ as spectroscopic transients from a private
communication from Heaven,141 but the nature of the bonding
in U2 has proven to be a challenge to definitively model due to
the relativistic regime.142,143 In 1996 and 1997, Andrews showed
that HUUH and H2UUH2 form in cryogenic matrix isolation
experiments.144,145 It took until 2018 in a report by Chen, Feng,
Echegoyen, and Poblet for U2 to be formed and isolated in U2@
C80,

146 although extensive disorder of the U2 unit has made
analysis of the U2 unit challenging. Computational studies
suggest a complicated bonding picture that is highly dependent
on the U−U distance,146−148 but the consensus appears to be
that two uranium(III) ions are present with an overall septet spin
state but with two ferromagnetic two-center one-electron bonds
that correspond to a single bond. Unfortunately, it has not been
possible to verify this experimentally due to the lack of magnetic
data, which likely reflects the extremely challenging nature of the
synthesis and which in itself underscores the achievement of
preparing U2 at all. The U−U bond in U2@C80 was described in
2015 by Straka and Foroutan-Nejad as attractive but “unwill-
ing”,147 which was debated by Rodriǵuez-Fortea, Graaf, and
Poblet,148 but if correct would be in line with prior work
suggesting the weak nature of 5f−5f bonding.130,139

Interestingly, more recently, in 2021 Th2@Ih(7)-C80 was
reported by Chen and Poblet149 and the trimer [{Th(η8-
C8H8)(μ3-Cl)2}3{K(THF)2}2]∞,

150 accessible under normal
experimental conditions and on multigram scale, containing
three-center two-electron σ-aromatic bonding,151 was reported
by Liddle and Kaltsoyannis, also in 2021. These advances in
thorium chemistry, together with the matrix isolation and
endohedral fullerene advances with uranium, suggest that U−U

bonding in a complex made under normal experimental
conditions may eventually be realizable.

■ TOPICS THAT DEVELOPED IN PARALLEL TO “THAT
SLIDE”

Figure 2 aimed to capture the spirit of high-value targets to
primarily focus efforts on securing. However, of course, it could
not envisage every subarea to target or predict what new lines of
enquiry those primary endeavors might eventually branch out
into, and indeed in many ways, that was also a motivation of
Figure 2. This section will briefly summarize other key advances
that have branched out in parallel.
One necessary spin-off has been the development of uranium

halide starting materials, the importance of which can easily be
overlooked when targeting high-value structural motifs, but, of
course, the successful isolation of new compounds depends on
having suitable starting materials to begin with. There are now
many uranium halide starting materials, with UCl4 playing a
prominent role,2,15 but perhaps the one that has had the most
obvious sustained impact in terms of uplifting research outputs is
that of [U(I)3(THF)4], reported in publications in 1989 and
1994 by Clark, Sattelberger, and Zwick,152,153 for example,
already being mentioned above as a key starting point to
accessing 53−57.90,93

Many of the linkages in Figure 2 are organometallic, and, of
course, organouranium chemistry has a rich heritage spanning
back to the 1940s, but definitive compounds began emerging
around 1956 and onward, with examples (Figure 15) including

[U(η5-C5H5)3Cl] (94) byWilkinson in 1956,154 [U(η5-C5H5)4]
(95) by Fischer in 1962155 [K(18-crown-6)][U(η7-C7H7)2]
(96) in 1995 and [U(BH4)2(THF)5][{U(BH4)3}2(μ-η7:η7-
C7H7)] (97) in 1994 by Ephritikhine,156,157 and the
aforementioned 1 in 1968/1969.3,4 Arene complexes, for
example, [U(η6-C6H6)(AlCl4)3] (98) reported by Marconi,158

started appearing in the literature around 1971 and onward,
although against the backdrop of Figure 2, a notable advance was
the report of the inverse-sandwich complexes [{U(N[Xy]-
R)2}2(μ-η6:η6-C6H5Me)] (R = Ad; 99, R = tBu, 100) in 2000 by
Cummins.159 There are now numerous inverse-sandwich
complexes of uranium, most of which are best regarded as
diuranium(III) with arene dianions,160 although there are a few
notable exceptions of diuranium(V) arene tetraanions, such as

Figure 15.Uranium complexes 94−105with Cn-type ligands (n = 2, 4−
8).154−159,161−163
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[{U(TsR}2(μ-η6:η6C6H5Me)] [TsR = {HC(SiMe2NR)3}3−; R =
C6H3-3-5-Me2 (Xy), 101; R = C6H4-4-Me (Tol), 102;161 Figure
15], as unequivocally confirmed by spectroscopic and magnetic
studies. The synthetic credentials of 101 and 102 were
confirmed by their use as precursors to the first f-element
diuranium cyclobutadienyl and diphosphacyclobutadienyl com-
plexes [{U(TsXy)}2(μ-η5:η5-C4Ph4)] (103) and [{U-
(TsTol)}2(μ-η4:η4-C2P2

tBu2)] (104) (Figure 15) reported by
Liddle in 2013.162 Continuing the small-ring theme, Walter,
Ding, and Zi reported uranium metallacyclopropene complexes
such as [U(η5-C5Me5)2(η2-Me3SiCCSiMe3)] (105).163 A
recurring theme of 94−105 is significant 5f-orbital contributions
to the bonding, including π- and δ-bonding motifs, again
emphasizing once again how uranium, like transition metals, can
engage in different bonding depending on the nature of the
coordinated ligands.
Although not directly a result of inverse sandwich arene

complexes, the oxidation state ambiguity of inverse sandwich
arene complexes certainly prompted thoughts of uranium
complexes with oxidation states below 3+. Thus, related to
inverse sandwich uranium arene complexes, the chemistry of
uranium in 2+ and 1+ oxidation states was developed (Figure
16). The first isolable uranium(II) complex was [K(2.2.2-

cryptand)][U(η5-C5H4SiMe3)3] (106) reported by Evans in
2013,164 and then in 2014, Meyer reported [K(2.2.2-crypt)]-
[U{η6-C6Me3(CH2C6H2-2-O-3-Ad-5-Me)3}] (107).165 These
compounds were both important in terms of formally containing
uranium(II) but also because the former was found to be 5f36d1
and the latter 5f46d0. That is a clear demonstration of how the
ligand field at uranium can determine the electronic ground-
state structure, which is very transition-metal-like behavior. This
subarea has expanded significantly, with several ligand classes
supporting uranium(II), including the terphenylamide [U{N-
(H)C6H3-2,6-[C6H2-2,4,6-iPr3]2}2] (108) by Odom Boncella,
and Shores in 2018,166 the parallel metallocene [U(η5-C5

iPr5)2]
(109) by Layfield in 2020,167 the amidate [K(2.2.2-cryptand)]-
[U{OC(tBu)N-η6-Dipp}2] (110) by J. Arnold in 2021,168 and
the arene-tris(siloxide) [K(2.2.2-cryptand)][U{C6H3-1,3,5-
(C6H4Si[OtBu]2O)3}(THF)] (111) by Mazzanti in 2023.169

Several uranium(I) synthons have now been isolated, including
110 by J. Arnold in 2021,168 the arene-tris(siloxide) [K(2.2.2-

cryptand)]2[U{C6H3-1,3,5-(C6H4Si[OtBu]2O)3}] (112) by
Mazzanti in 2023,169 and [K(THF)2(18-crown-6)]2[K-
{(Ph3SiO)U}(μ-O)(μ-κ2:η6-Ph,O-PhSiPh2O)(μ-κ2:η4-Ph,O-
PhSiPh2O){U-(Ph3SiO)3}] (113) also by Mazzanti in 2023.170

Uranium(I) has been identified in disordered [K(2.2.2-
cryptand)][U(η5-C5

iPr5)2] (114) by Layfield.171 These results
have paralleled advances isolating thorium(III) and, remarkably,
thorium(II) in molecular tris(cyclopentadienyl) com-
plexes.172−174 This has even been extended to include
neptunium(II)175 and plutonium(II),176 showing the impact
that studying uranium can have on neighboring actinide
elements.
As indicated above, there are now many amides,15 imidos,16

nitrides,21,104 and oxos,9−12,15 so attention naturally turned to
developing to accessing multiply bonded heavier group 15 and
16 derivatives of uranium by way of phosphinidene, phosphido,
diphosphorus, arsinidene, arsenido, sulfido, selenido, tellurido,
and Zintl cluster complexes.177−183 The result is that there is
now a significant range of U�PR (R = H, aryl), U�P(R)K,
U�P�U, U−P(H)−U, U(P2)U, U(P3)U, U�AsR, U�
As(R)K, U�As�U, U�AsK2, U(As2)U, U(As2H2)U, U�S,
U�Se, and U�Te bonds reported with a range of supporting
ligands. A selection of representative complexes reported by
Burns, Liddle, Ephritikhine, Hayton, Mazzanti, Meyer,
Kiplinger, and Walter can be found in Figure 17 (115−134),
and the reader is directed to recent reviews177,178 and
subsequent publications.179−184 Overall, the range of heavier
Group 15 and 16 derivatives emphasizes how multiple bond
linkages more often associated with the d block can be stabilized
and isolated at uranium through appropriate synthetic
approaches coupled to ligand−metal complementarity.
In addition to all of the above fascinating chemistry, the long-

known uranyl dication has continued to produce new chemistry
time and time again. Although the uranyl dication is often
referred to as inert, Clark showed in 1999 that, under highly
alkaline conditions, oxo−ligand exchange can occur in uranyl
hydroxides.185 In the years that followed, uranyl activation
developed into two distinct but interrelated areas, that of
pentavalent uranyl and its disproportionation chemistry, and
functionalization of uranyl producingO-element bonds from the
“yl” oxos, which often involved reduction and hence pentavalent
uranyl-type intermediates.186−193 Through a range of silylation
and borane-silylation chemistry, activation of uranyl and
reduction to uranium(IV) species is now well-established,
which when taken together with the facile oxo exchange by Clark
renders the classical textbook description of the inert nature of
the uranyl dication, except for in acidic media, somewhat in need
of revision. Another textbook description of uranyl is that it is
rigorously linear, but several studies have now reported uranyl
O−U−O angles of ∼162−168°.66,194,195 Furthermore, cis-
uranyl was proposed by Meyer in 2023 as a credible reaction
intermediate,196 suggesting that with suitable trapping a cis-
uranyl may be within reach, which would also contribute to a
need to rewrite textbook descriptions of uranyl. Last, there is
continued interest in the extraction of uranyl, with a recent
highlight being redox-switchable carboranes for uranium
capture and release reported by Meńard and Hayton in
2020.197,198 Again, all of these advances rely on ligand−metal
complementarity to be successful.
Earlier, this Viewpoint touched on small-molecule activation

and catalysis by uranium, mainly with CO, CO2, and N2, but
uranium has a rich chemistry in this area with a range of small
molecules and substrates,8,12,19 even, in nonaqueous media,

Figure 16. Reduced uranium(II) and (I) complexes 106−114.164−171
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remarkably including water splitting reported by Meyer.199,200

This is just one subarea of several novel physicochemical
properties that uranium exhibits by virtue of its position in the
Periodic Table, with others including studies encompassing
single-molecule magnetism,201 the inverse trans influence,202

6p-orbital pushing from below,203 sterically induced reduction
chemistry,204 and even noble gas adducts under matrix isolation
conditions.205

With such a rich range of new molecular complexes to study
and with characterization techniques and methods becoming
ever more capable and widely available, there has been growing
interest in probing the covalency of uranium complexes; after all,
this goes to the very heart of one of the prime motivations for
pursuing molecular nonaqueous uranium chemistry, and
methodological advances mean that studies that would have
been unimaginable in 1988 are now verging on becoming
relatively routine. From 2009 and onward, ligand K-edge X-ray
absorption spectroscopy (XAS) has enabled uranium-ligand
covalency to be probed from the perspective of the
ligand,206−212 and increasingly resonant inelastic X-ray spec-
troscopy (RIXS)213−215 is providing a complementary perspec-
tive from the metal side. However, given that covalency can be
understood and defined216,217 as the spatial overlap of parent
atomic orbitals or near-energy matching of parent atomic
orbitals, or simply the net amalgamated result of both, precisely
what XAS and RIXS data are reporting is an interesting
debate.218 Pulsed electron paramagnetic resonance spectrosco-
py has now been used to probe unpaired spin density,219

although again how that relates exactly to describing covalency is
an interesting question. Optical spectroscopy has been used to
quantify 5f-orbital covalency and can be the basis of a quite
detailed dissection of uranium bonding, but so far this has been
limited to probing only the 5f-orbital contributions.110,220−222

Last, NMR spectroscopy has emerged as a powerful way to
probe the covalency of molecular actinide−ligand linkages,
where a detailed interrogation of the shielding parameters can
quantify the bonding. However, this approach is currently
restricted to diamagnetic complexes and so has focused on
uranium(VI) and thorium(IV) complexes.111,223−231

■ CONCLUSIONS AND OUTLOOK
Some 36 years after the vision of Figure 2 first emerged, this
Viewpoint has sought to highlight the broad range of resulting
advances that have directly, or in parallel, been delivered. An
updated version of Figure 2 is presented in Figure 18, showing
that most of the major targets have been secured or have close
approximations. Many advances have resulted, and in particular
an ever better understanding of chemical bonding in a relativistic

Figure 17. Selected examples of heavier Group 15 and 16 multiple bonds to uranium including 115−134.177−184 Mes* = 2,4,6-tBu3C6H2. Dipp =
2,6-iPr2C6H2. Cation components of 121−130 are omitted for clarity.

Figure 18. Updated version of Figure 2, the result of ∼36 years of
progress.
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regime has been developed, and the redox chemistry of uranium
has proven to be exploitable in numerous scenarios to secure
new bonding motifs, reactivity, and physical properties. Perhaps
one of the most important advances is the knowledge that even
targets likely initially thought to be more aspirational than
actually achievable were eventually secured�persistence is the
victor.
What started as a presentation slide now requires this

Viewpoint to barely scratch the surface of all of the advances that
have occurred. That underscores just how much has been
achieved in the intervening four decades, and those advances
have undoubtedly prompted the community to reevaluate the
nature of actinides. This naturally leads to the question, “Where
to next?” While not claiming to be a definitive and exclusive list,
the following emerge as obvious areas of focus:

• A “pure” alkylidene linkage of the form M�CR2 (R = H,
alkyl, silyl) is yet to be secured in an isolable molecular
actinide complex under normal experimental conditions.

• Actinide carbyne and carbido complexes, in particular
terminal variants, are yet to be secured in an isolable
molecular actinide complex under normal experimental
conditions.

• Heavier Group 14 and 15 element bonding to uranium
requires further development.

• U−U bonding in an isolable molecular complex under
normal experimental conditions is yet to be secured.

• A clear-cut cis-uranyl in an isolable molecular complex
under normal experimental conditions is yet to be
secured.

• The above all emphasize a need to develop the molecular
chemistry of transuranium elements. Noting recent
reports on a neptunium(V) bis(imido) in 2015,232 a
neptunium(V) mono(oxo) in 2022,233 and neptunium-
(III) and plutonium(III) diphosphonioalkylidenes in
2022 and 2024,234,235 respectively, and early reports of
alkyls and alkoxides that lack definitive structural
authentication, many of the bonding motifs from Figure
2 that have been delivered with uranium demand
realization in transuranium chemistry. This applies to
thorium as well, although to a lesser extent given recent
advances in its chemistry. It is also worth noting that
protactinium chemistry is arguably the “sleeping beauty”
of the actinides whose development is long overdue.

• All of the areas listed under parallel topics above would
also certainly benefit from being translated to trans-
uranium analogues in order to truly build a rigorous
picture of actinide periodic trends.

The prior discussion above is not exhaustive by any means but
aims to provide context, highlight what has been done and why,
and perhaps provide inspiration to focus attention onto the
possible opportunities and directions of future travel that
researchers in the area might pursue. Finally, the above also
serves as a powerful example of the importance of ligand−metal
complementarity in developing exciting new chemistry to build
our knowledge and understanding of the f elements, especially in
a relativistic regime.
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