Table 3.
Machine learning models used for each target protein within four screening methods, PIC50, pharmacophore, docking, and shape similarity with models’ performance metrics
| Target protein | Scoring method | ML model | Model metrics | ||||||
|---|---|---|---|---|---|---|---|---|---|
| R2-train | R2-val | MAE | RMSE | MSE | w_new | R2-ext | |||
| AA2AR | PIC50 | SVR RBF | 0.910 | 0.838 | 0.270 | 0.339 | 0.115 | 0.673 | 0.891 |
| pharm | KNN | 0.999 | 0.880 | 0.037 | 0.048 | 0.002 | 0.944 | 0.905 | |
| Docking | Elastic net Reg | 0.887 | 0.855 | 0.281 | 0.339 | 0.115 | 0.689 | 0.864 | |
| Similarity | Nu-SVR linear | 0.943 | 0.789 | 0.073 | 0.089 | 0.008 | 0.882 | 0.818 | |
| TDP1 | PIC50 | Dec. Tree | 0.999 | 0.465 | 0.125 | 0.200 | 0.040 | 0.549 | 0.631 |
| pharm | Dec. Tree | 0.914 | 0.889 | 0.030 | 0.049 | 0.002 | 0.955 | 0.726 | |
| Docking | Dec. Tree | 0.939 | 0.586 | 0.241 | 0.342 | 0.117 | 0.510 | 0.621 | |
| Similarity | Elastic net Reg | 0.755 | 0.614 | 0.058 | 0.077 | 0.006 | 0.880 | 0.667 | |
| EGFR | PIC50 | Random forest | 0.790 | 0.820 | 0.406 | 0.434 | 0.188 | 0.596 | 0.797 |
| pharm | Adaboost | 0.925 | 0.786 | 0.009 | 0.014 | 0 | 0.983 | 0.791 | |
| Docking | Adaboost | 0.992 | 0.883 | 0.340 | 0.403 | 0.106 | 0.625 | 0.721 | |
| Similarity | Adaboost | 0.999 | 0.863 | 0.067 | 0.086 | 0.007 | 0.899 | 0.603 | |
| Akt1 | PIC50 | SVR RBF | 0.682 | 0.743 | 0.185 | 0.216 | 0.047 | 0.738 | 0.642 |
| pharm | KNN | 0.999 | 0.940 | 0.022 | 0.031 | 0.001 | 0.969 | 0.782 | |
| Docking | SVR RBF | 0.812 | 0.806 | 0.176 | 0.242 | 0.059 | 0.770 | 0.700 | |
| Similarity | Adaboost | 0.974 | 0.805 | 0.076 | 0.076 | 0.011 | 0.886 | 0.761 | |
| DPP4 | PIC50 |
Nu-SVR RBF |
0.883 | 0.847 | 0.088 | 0.104 | 0.011 | 0.888 | 0.728 |
| pharm |
Nu-SVR RBF |
0.994 | 0.632 | 0.027 | 0.034 | 0.001 | 0.925 | 0.776 | |
| Docking | Adaboost | 0.942 | 0.760 | 0.166 | 0.187 | 0.035 | 0.752 | 0.716 | |
| Similarity | Adaboost | 0.979 | 0.901 | 0.022 | 0.028 | 0.001 | 0.969 | 0.842 | |
| CDK2 | PIC50 | Random Forest | 0.758 | 0.604 | 0.319 | 0.359 | 0.129 | 0.553 | 0.674 |
| pharm | Dec. Tree | 0.786 | 0.809 | 0.012 | 0.016 | 0 | 0.982 | 0.678 | |
| Docking | SVR RBF | 0.708 | 0.644 | 0.074 | 0.092 | 0.008 | 0.872 | 0.766 | |
| Similarity | Dec. Tree | 0.708 | 0.828 | 0.064 | 0.099 | 0.010 | 0.874 | 0.737 | |
| PPARG | PIC50 | Adaboost | 0.939 | 0.780 | 0.358 | 0.412 | 0.170 | 0.570 | 0.711 |
| pharm | Gradient boosting | 0.999 | 0.978 | 0.022 | 0.027 | 0.001 | 0.974 | 0.810 | |
| Docking | Nu-SVR RBF | 0.903 | 0.690 | 0.285 | 0.324 | 0.105 | 0.591 | 0.739 | |
| Similarity | KNN | 0.999 | 0.814 | 0.038 | 0.047 | 0.002 | 0.935 | 0.605 | |
| P53 | PIC50 | Dec. Tree | 0.714 | 0.676 | 0.144 | 0.159 | 0.025 | 0.797 | 0.624 |
| pharm | Adaboost | 0.985 | 0.959 | 0.012 | 0.015 | 0 | 0.986 | 0.607 | |
| Docking | Elastic net Reg | 0.993 | 0.906 | 0.351 | 0.401 | 0.161 | 0.636 | 0.651 | |
| Similarity | Adaboost | 0.969 | 0.691 | 0.086 | 0.092 | 0.009 | 0.834 | 0.586 | |