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In Brief
We present phuEGO, a new tool
that combines network
propagation with ego network
decomposition to provide
interpretable active network
signatures from
phosphoproteomics datasets.
We demonstrate that phuEGO
boosts the signal-to-noise ratio
from phosphoproteomics
datasets allowing better
identification of active signaling
processes and improved
comparisons and integration
across studies. We applied
phuEGO on the comparison of
phosphoproteomics datasets
acquired upon SARS-CoV2
infection after 24 h led to the
identification of a network
signature that is enriched in
known targets for COVID-19.
Highlights
• phuEGO extracts active signaling modules from phosphoproteomics datasets.• phuEGO improves the signal-to-noise ratio and comparison of such data.• Open-source package for integration in phosphoproteomics data analyses workflows.• Active network signature of SARS-CoV-2 infection is enriched in known targets.
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phuEGO: A Network-Based Method to
Reconstruct Active Signaling Pathways From
Phosphoproteomics Datasets
Girolamo Giudice , Haoqi Chen, Thodoris Koutsandreas , and Evangelia Petsalaki*
Signaling networks are critical for virtually all cell func-
tions. Our current knowledge of cell signaling has been
summarized in signaling pathway databases, which, while
useful, are highly biased toward well-studied processes,
and do not capture context specific network wiring or
pathway cross-talk. Mass spectrometry-based phospho-
proteomics data can provide a more unbiased view of
active cell signaling processes in a given context, how-
ever, it suffers from low signal-to-noise ratio and poor
reproducibility across experiments. While progress in
methods to extract active signaling signatures from such
data has been made, there are still limitations with respect
to balancing bias and interpretability. Here we present
phuEGO, which combines up-to-three-layer network
propagation with ego network decomposition to provide
small networks comprising active functional signaling
modules. PhuEGO boosts the signal-to-noise ratio from
global phosphoproteomics datasets, enriches the result-
ing networks for functional phosphosites and allows the
improved comparison and integration across datasets. We
applied phuEGO to five phosphoproteomics data sets
from cell lines collected upon infection with SARS CoV2.
PhuEGO was better able to identify common active func-
tions across datasets and to point to a subnetwork
enriched for known COVID-19 targets. Overall, phuEGO
provides a flexible tool to the community for the improved
functional interpretation of global phosphoproteomics
datasets.

Signaling pathways regulate the cell’s response to external
perturbations and modulate some of the most important bio-
logical processes such as cell growth, differentiation, and
migration (1–3). They function through complex networks with
multiple cross-talks with other pathways (4–7) and are highly
context-specific; that is, signaling through the same pathway
may result in completely different outputs depending on
conditions, perturbations, or cell types (8–10). Current
pathway annotations as they exist in publicly available data-
bases do not capture this complexity and in addition are highly
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biased towards well-studied parts of the human signaling
network (11, 12).
Mass spectrometry-based technologies allow us to capture

in a relatively unbiased way the phosphorylation-based
signaling state of a cell, through global phosphoproteomics
experiments. This opens the door to data-driven extraction of
condition-specific signaling networks that more accurately
represent the cell’s response than existing annotated
pathways.
A limitation associated with using phosphoproteomics ex-

periments is that they are intrinsically noisy, sparse, and lack
reproducibility at the peptide level (13–18). The noise can be
due to technical reasons (e.g. several steps needed for
enrichment) but also due to biological reasons, as it is known
that not all phosphosites are functional (19). The low abun-
dance of phosphorylated peptides compared to total peptides
in the cell is also another source of technical noise and also
leads to sparse datasets, and reduced reproducibility at the
peptide level compared to other omics modalities. Thus, there
is a need for computational approaches that can effectively
extract the active network signatures from these datasets.
One class of such methods employs network inference-

based techniques, to extract a subnetwork able to explain
how the phosphorylation signals propagate (20–23). Bayesian
and logic models (24–27), ordinary differential equations (28,
29), linear and nonlinear regression (30) and methods
considering pairwise scores based on correlation (31, 32),
information theory (33) and others (34, 35), have been devel-
oped for inferring causal relationships. The HPN-DREAM
network inference challenge (22) found that the best
methods typically took advantage of prior knowledge
signaling pathways. This means, however, that the results
from such methods often suffer from literature bias. This was
evident in the inference of cell line-specific edges part of the
challenge, where methods tended to perform better in cell
lines that better agreed with prior knowledge networks. This
bias is mitigated by approaches that combine in-depth
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Active Signaling Networks From phosphoproteomics Data
large-scale phosphoproteomics data collection across multi-
ple perturbations and time points with signaling network
inference, at the cost, however of requiring extensive context-
specific datasets (36, 37).
Another class of algorithms, such as KSTAR (38), KSEA (39),

IKAP (40), KinasePA (41), and KEA (42), identify active kinases
based on the phosphorylation levels of their substrates.
However, these methods typically require a knowledge of site-
specific kinase-substrate interactions, which is available only
for a small number of well-studied sites. The exception is
KSTAR which also accepts predicted kinase-substrate re-
lationships. RoKAI is another interesting method that utilizes
functional associations of putative kinase substrates to
improve kinase activity prediction (43). PHOTON (44) circum-
vents these limitations, by integrating a set of significantly
functional proteins into a protein–protein interaction (PPI)
network and inferring a functionality score that is independent
of the fold change of protein phosphorylation. It then uses
these to derive active signaling networks from the data.
However, PHOTON relies on linking ‘terminal’ nodes, i.e., the
phosphorylated proteins, to a ‘source’, i.e., the receptor that
was stimulated in the experiment through the ANAT method
(45). As such the results represent signaling downstream of
the ‘source’ and neglect potential cross talk with other path-
ways or processes that might also be affected by the stimulus,
but not directly linked to the ‘source’.
Recently, PPI network-based methods accounting for the

global structure of the network have emerged. Distance-
based methods such as shortest path and network flow ap-
proaches are widely used (46–48). Although most of these
methods are applied to transcriptomics data, they can be
adapted for use on phosphorylation data. For example,
PATHLINKER (49) employs a weighted PPI network and uses
a heuristic to maximize the score of the shortest paths be-
tween a set of source and target nodes. Other types of
distance-based methods such as the prize-collecting Steiner
tree (PCST) algorithm (50–52) and the forest variant (PCSF)
(53–55) are also used. For example, Tuncbag et al (55)
employed the PCSF to predict multiple altered pathways in
yeast from transcriptomic and proteomic data. As protein
interaction networks are starting to be more systematic (56,
57), these approaches start to mitigate the literature bias issue
of cell signaling studies. However, the major limitation of the
distance-based methods is the assumption that the shortest
paths are the most informative or most likely used paths,
which may not always be the case (58).
Network propagation-based methods have been developed

that boost the signal-to-noise ratio in omics datasets and
predict active pathways (59). They have been employed to
predict protein functions (60, 61), prioritize candidate disease
genes (62–64), detect active modules (65–67), and stratify
patients (68, 69). TieDIE (70) performs two propagation com-
putations, from sources and targets, and combines the result
rankings to retrieve an active subnetwork. Using this approach
2 Mol Cell Proteomics (2024) 23(6) 100771
Drake et al (71) extracted patient-specific network modules
and potential drug targets in prostate cancer. Propagation
algorithms are a perfect fit for phosphoproteomics data, which
tends to be sparse since they can fill the gap between missing
values and at the same time reduce the intrinsic noise of such
datasets. However, these methods do not explicitly model
feedback loops, predict interaction directions, or prioritize the
most likely phosphorylation regulators. Additionally, to our
knowledge, they tackle the problem of signaling network
reconstruction from a global perspective, but they do not
consider the effect that a phosphorylated protein has on its
direct functional neighbors leading to large and hard-to-
interpret network signatures.
To tackle these issues, we present phuEGO, an algorithm

for extracting active signaling network signatures from phos-
phoproteomics data. phuEGO combines a global propagation
method with a local approach to extract interpretable signals
from phosphoproteomics datasets and allows improved
comparison and integration of datasets acquired by different
groups albeit in similar conditions.
EXPERIMENTAL PROCEDURES

Datasets

We extracted the log-2 fold change of each phosphosite from the
data available at http://phosfate.com (72). Each phosphosite is then
associated with a functional score (where available) extracted from
Ochoa et al, 2019 (19). Each phosphorylated protein can be associ-
ated with multiple phosphosites and then to multiple values. To
associate a single LFC and functional score to each protein we par-
titioned each dataset into tyrosine kinases, other kinases, and phos-
phorylated substrates, and selected the maximum LFC value and
functional score per protein, under the assumption that this could
represent the functional effect on the neighbors of the protein.
Increased and decreased phosphosite sets are treated separately,
therefore a phosphorylated protein, exceeding those thresholds, could
be present in both sets. To include as many of the modulated kinases
measured in the dataset as possible, without keeping kinases that
were not modulated at all, we kept phosphorylated tyrosines and all
the other kinases with a functional score and log-2 fold change (LFC)
greater than the 20th percentile, and we kept all the phosphorylated
substrates exceeding both the 80th percentile of LFC and functional
score. We opted for a percentile as opposed to a cutoff, so that we do
not have very large differences in the number of phosphosites
included in the analysis per each dataset, as the distributions of LFC
varied greatly. Nonetheless the input is fully customizable and defined
by the user, who can adjust it as they deem appropriate for their
application. The numbers of total phosphosites in the dataset, func-
tionally annotated or not, those with LFC>1 and number of nodes in
resulting phuEGO network are shown for reference in Supplemental
Fig. S1.

We also have extracted the LFC from the original publications,
described in Supplemental Table S3, where the functional score was
not available. We excluded the study of Salek et al. (73), since the data
were deposited in a database that is no longer available.

The SARS-CoV2 datasets were extracted from the work of Higgins
and colleagues (74). In total five datasets comprising 4 different cell
types at 24 h post infection were extracted. The datasets comprise the
following cell types: A549 (Higgins (74) and Stukalov (75)), Caco-2

http://phosfate.com


Active Signaling Networks From phosphoproteomics Data
human lung epithelial cells (Klann (76)), Vero E6 African Green Monkey
kidney cells (Bouhaddou (77)), human induced pluripotent stem cell-
derived alveolar epithelial type 2 cells (iAT2, Hekman (78)).

For our analysis, we selected the top 200 increased and decreased
phosphorylated proteins. Our results, after selecting alternative
numbers of input proteins produced largely similar results, with only
small differences (Supplemental Fig. S2). This is a tunable parameter
that can be considered by the user depending on their data and
application.

Pre-processing of Networks and Datasets

To compile the base network that phuEGO uses for its analysis we
did the following: First, we retrieved the entire human protein-protein
interaction network from IntAct (79) (version: 4.2.17, last update May
2021). We also added kinase-kinase interactions and kinase-substrate
interactions from PhosphoSitePlus (80) (version 6.5.9.3, last update
May 2021), OmniPath (81) (last release May 2021) and SIGNOR 2.0
(82) (last release May 2021). Only proteins annotated in Swiss-Prot (83)
and those with at least one Gene Ontology term (GO) (84) (last release
April 2021) were retained. The resulting protein interaction network
(PPI network) comprises 16,407 nodes and 238,035 edges
(Supplemental Table S1). The inclusion of protein interactions that are
not necessarily signaling-related and that have been collected in more
unbiased ways, allows us to mitigate the bias of annotated pathway
databases and provides flexibility to search for context-specific so-
lutions during our network identification. Additionally, we modeled
edge weights according to simGIC (85) semantic similarity. The Se-
mantic Measures Library (86) was employed to calculate the semantic
similarity among the three categories of GO (molecular function, bio-
logical process, and cellular component) by adding a virtual root
connecting all of them. We also generated 1000 random networks
using the configuration model available in the igraph library (method =
vl). Briefly, the method (87) implements a Markov chain Monte Carlo
algorithm to generate random networks where the node degrees are
conserved. Since the edges in the random networks were reshuffled,
new random interactions were created and therefore, the edge
weights (i.e. simGIC semantic similarity) were updated accordingly.
We applied the square (or Laplacian) normalization to correct for the
hub bias (88). Briefly, the weight of each edge was divided by the
square root of the weighted degree of the interacting nodes(1):

wij = wij̅̅̅̅̅̅̅̅
didj

√ (1)

where wij indicates the edge weight (i.e. semantic similarity) and di

and dj represent the weighted degree of node i and node j
respectively.

Additionally, we also precalculated the simGIC semantic similarity
of each node in the PPI network against all the other nodes and
calculated the mean and the standard deviation for each node of the
PPI network. These values are used in the next steps of the method to
filter the ego networks by calculating the z-score (see paragraph on
ego decomposition below). The above-described network was the one
used to generate the results in this article; however, the phuEGO
package allows the user to input any network that they deem suitable
for their application.

Network Propagation by Random-Walk-With-Restart

PhuEGO accepts as input a dataset of phosphorylated UniProtKB
entries and the corresponding log-2 fold change (LFC). PhuEGO first
assesses the prior input set of nodes, which we will call seeds in this
manuscript, meaning the nodes in the PPI network from where
random walkers should start. To do so, the input dataset is initially
divided into positive and negative LFC. These two partitions are by
default subsequently divided into (i) the tyrosine kinases, (ii) the rest of
kinases, and (iii) the non-kinase phosphorylated proteins. However,
phuEGO also provides the option to alternatively run all the seeds on
one or two layers, partitioned as the user prefers. To assess which
proteins will be assigned to each partition we retrieved all the human
kinases (Clan CL0016) from the Pfam (89) database (Pfam ver 34.0
released in March 2021). Since we wanted to distinguish the tyrosine
kinases from the rest of the kinases, we retrieved all the human
tyrosine kinases associated with the Pfam domain (PF07714) from
UniProtKB (83). In total, 531 kinases are present in our PPI network, of
which 127 are tyrosine kinases (Supplemental Table S1).

Each of the partitions corresponds to different restart probability
vectors, whose dimension is equal to the number of nodes in the PPI
network and the restart probability values are equal to the LFC of the
phosphorylated proteins, scaled between 0 and 1. Therefore, we start
one distinct RWR (90) run for each partition, with each one involving
different sets of prior nodes. As a result, we obtain one probability
vector for each partition (three for the default settings), representing
the most probable nodes from the perspective of the seed nodes. We
recommend maintaining the three-layer partition for phosphoproteo-
mics datasets. The idea behind this procedure is to capture signal
propagation in a global manner having as central input nodes the
phosphorylated proteins and integrating the signal from these with
that from the kinases, as the drivers of cell signaling. Note that “signal”
here means a “biologically meaningful data point measurement” and
with this procedure, we aim to extract the nodes in the network that
are most likely to be causing or be affected by this measurement. To
filter out spurious nodes, we repeated the same procedure using the
same seed nodes but against 1000 random networks, generated as
described above. This allows us to evaluate the percent of its random
scores that exceed the real score (i.e. the node’s empirical p-value). At
the end of this process only the nodes with a score greater than 95%
of its random scores were maintained independently of which partition
they have been assessed with. Note that this process is repeated two
times, one for the upregulated phosphoproteins and one for the
downregulated ones; consequently, two subnetworks are extracted
associated with increased and decreased phosphorylation levels
respectively. The seed nodes are always included in the subnetworks
regardless of their RWR score. Where proteins are included in both the
up and downregulated network, they are removed from the one with
smaller mean RWR score for that protein from the 3 layers. This is the
default option in phuEGO to provide more easy-to-interpret networks,
but the user can disable this function and allow inclusion in both
networks.

Generation of Functional Ego Networks

From the two subnetworks extracted previously, we extract ego
networks as a subgraph centered on a seed/phosphorylated node and
comprising all the overrepresented nodes in a 2-step distance from
the ego. Since ego networks are still highly interconnected, in theory,
they could have the same dimension as the subnetworks extracted
from the initial random-walk-with-restart process. To select only those
ego neighbors that are most functionally similar to the ego, we
computed the z-score associated with each ego neighbor using the
precomputed mean and the standard deviation of the simGIC score
(see Preprocessing of networks and datasets paragraph) according to
(2).

z−score= simGIC (ego, j) −meansimGIC ego

stdsimGIC ego
(2)

where the simGIC(ego,j) is the semantic similarity between the
ego and node j, and the mean and std are the means and the
Mol Cell Proteomics (2024) 23(6) 100771 3
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standard deviation of all the semantic similarities between the ego
and all the other nodes of the PPI network. The nodes with z-
score>1.64 represent the functional ego network since they are
also the most similar in terms of semantic similarity to the GO
terms in which the ego is involved (95% confidence, one-tail test).
Let Γ(ego) represent the first order neighbors of the ego node and
ΓΓ(ego) the second order neighbors of the ego network. The edge
weights are updated according to (3):
Wi,j =
⎧⎨
⎩

simGIC(i, j), if i = ego and j = Γego or i = Γego and j = ΓΓego

simGIC(ego, i) + simGIC(ego, j)
2

, if i = Γego and j = Γego or i = ΓΓego or j = ΓΓego

(3)
The ego networks obtained are normalized to correct for hubs using
the Laplacian normalization as in (1) (Supplemental Fig. S3, A and B).

Ego Decomposition

To understand which nodes are more closely related to the ego and,
hence, involved in a similar process/pathway, we decomposed each
ego network with a number of neighbors greater than 5 into two
vectors, one representing the topological distance from the ego, and
one the functional distance from the ego.

To calculate the topological proximity, each node of the ego
network is the source of a second run of RWR with a damping factor
equal to 0.85. The restart probability vector is filled with 0 except in the
node under consideration which is equal to 1. To calculate the dis-
tance between the ego node and all the other nodes of the ego
network, the following formula is used (4):

topological affinity=1000*log2(2−jsd(RWRego,RWRj)) (4)

where jsd refers to the Jensen-Shannon distance, representing
the similarity between two probability distributions. The RWRj

refers to the RWR probability vector when one of the nodes of the
ego network is selected as seed, the RWRego refers to the RWR
probability vector when the ego is the seed node. Nodes with
values close to 1 are considered topologically similar to the ego.

The functional vector is defined as the logarithm of the se-
mantic similarity between the ego and any other nodes in the
network (5).

functional distance=1000*log2(1+ simGIC (ego, j)) (5)

where simGIC represents the semantic similarity measure be-
tween the ego and the node j.

To identify the most similar nodes to the ego we employed the
Kernel Density Estimation (KDE) using the Gaussian kernel, where
each node is represented as a point in a 2D plane where the x-axis
represents the topological affinity to the ego and the y-axis represents
the functional similarity to the ego (Supplemental Fig. S3C). The
bandwidth for the KDE is estimated using the Silvemann formula (91).
KDE estimates the joint probability density function of the topological
and semantic similarity vectors obtained at the previous step. We then
calculated the joint cumulative distribution function and select only
those nodes according to the following formula:

FXY (x, y) =P(x≤X < 1, y≤Y < 1)) (6)
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where x and y are user-defined parameters. For this paper, we set
these parameters to 0.85 or 0.9 depending on the application (see
respective sections).

Defining the Supernode Network through Merging the ego
Networks

Each ego node and the neighbors exceeding the user’s selected
probability threshold constitute a supernode, that is, a small cluster of
proteins that are topologically and functionally related to the ego and
therefore potentially affected by its phosphorylation. We then calcu-
lated the relationships between all the supernodes to generate the
supernode network. To do so for each combination of two ego nodes,
we extracted the subnetwork originated by the union of the nodes
included in the supernode pair and normalized it according to (1). The
two egos, if connected, represent the sources of a third RWR run with
a damping factor equal to 0.85. We calculate the weight between
supernodes using (7)

supernode weight= jsd(RWRegoA,RWRegoB) (7)

where the RWRegoA refers to the RWR probability vector when the
egoA is selected as seed, the RWRegoB refers to the RWR prob-
ability vector when the egoB is selected as seed node. Edge
values close to 0 indicate a strong relationship between supern-
odes, meaning that they potentially share many neighbors. Note
that the link between two supernodes is not necessarily associ-
ated with a physical interaction. We then applied the Leiden (92)
algorithm to the supernodes network to extract functional mod-
ules. Note that the Leiden algorithm is only applied to all the
connected components bigger or equal to 4 supernodes. The
connected components containing less than 3 supernodes are
considered as functional modules (Supplemental Fig. S3). Isolated
supernodes are removed.

Evaluation Through Enrichment Analysis and Overlapping
Coefficients

Enrichment analysis is a standard approach employed to determine
if known biological functions or processes are over-represented
(enriched) in a set of genes/proteins of interest. The enrichment
analysis is based on Fisher’s exact test which assumes that the data is
hypergeometrically distributed. We used the nodes in a module as a
foreground for the enrichment analysis while the human PPI network is
used as the background. Additionally, the p-values obtained are
Bonferroni corrected. Enrichment analysis can be performed against
several databases such as GO (84), KEGG (93), Reactome (94), Bio-
planet (95), DisGeNET (96).

In order to assess the similarity between modules and the reference
pathways we employed the overlap coefficient or Szymkiewicz–
Simpson coefficient (8).

Overlap coef f icient (X,Y) = |X ∪ Y |
min(|X|, |Y |) (8)
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where X and Y represent the two sets of proteins under consid-
eration. We also measured the pairwise overlap distance (97)
between the following KEGG reference pathways: Cell cycle, EGF,
TCR, MAPK, VEGF, TGF, Insulin, and NGF, by employing this
formula:

Overlap distance=1−Overlap coefficient(X,Y) (9)

where X and Y represent the set of proteins involved in the
respective reference pathways. Therefore, the distance between a
pathway and itself is equal to 0. To explore whether there is a
relationship between the similarity of modules in a dataset with
the similarity of the respective perturbed pathways we did the
following: First, we identified the modules with the best over-
lapping coefficient in the comparisons between datasets with
similar stimulations, considering these as the predominant signal
for that pathway. Therefore, each of these datasets had one
module identified as representing its predominant signal and
these were compared across datasets. For datasets where no
such module was identified as there weren’t other datasets
available with a similar stimulus, we did the comparisons with all
the modules and kept the one with the best overlapping coeffi-
cient. Since phuEGO extracts on average 4 modules from each
dataset, modules comprising less than 10 proteins are discarded
to avoid increasing the overlapping coefficient artificially with very
small modules against very large ones. For the same reason, we
discarded the overlapping coefficients between datasets from the
same publication. Additionally, we selected the modules with the
best overlapping coefficient regardless of the pathway they could
be annotated with.

The performance of phuEGO was compared to the enrichments
resulting from a) the seeds b) the network resulting from the initial
RWR step and c) the Prize Collecting Steiner Forest algorithm (PCSF)
from the omicsintegrator2 package (98). In brief, PCSF works by
identifying an optimal forest in a network by maximizing the collected
prizes and minimizing the edge costs. We performed a grid search for
each dataset to fine-tune the parameters to select the best network
from Omicsintegrator2. We selected the following parameter ranges
ω = [0.25, 0.5, 0.75, 1], β = [0.25, 0.5, 0.75, 1, 1.5, 2], γ = [3, 3.5, 4, 4.5]
and selected the network with the best objective function. In
particular, ω regulates the number of selected outgoing edges from
the root, β is a scaling factor of prizes, and γ controls the edge
penalty on hubs.

Calculation of Kinase Activities Using the KSEA Package

We used the KSEA app (99) to extract the kinase-substrate links for
the SARS-COV2 datasets (https://casecpb.shinyapps.io/ksea/) using
the default parameters.

KSEA requires the phosphosite positions and the modified residues
to run, but the latter was not available from Higgins et al. To solve this
problem, we downloaded the protein sequences and assigned the
modified residues accordingly. If the residue position in the protein
sequence didn’t correspond to a canonical one (serine, threonine, or
tyrosine) we selected a window of −/+ 3 residues from the position
assessed by Higgins et al. and assigned it to the one closer to the
center of the window. For each experiment we extracted all the
kinase-substrate links extracted by KSEA and assigned a value of 0 or
1 depending on whether they were present or absent in the corre-
sponding experiment. We then calculate the Pearson’s correlation
coefficient for all the datasets for both increased and decreased
phosphorylation.
Comparisons of SARS-CoV2 Networks and Seed Nodes

To compare the networks generated by phuEGO from Higgins et al.
and the seeds, we assigned to each node in the corresponding
network the average RWR values from each of the three partitions or
0 if not present. We performed the same procedure to compare the
seed nodes alone with the exception that we employed the LFC
values. Then we used the hclust package (https://www.
rdocumentation.org/packages/stats/versions/3.6.2/topics/hclust) to
perform the hierarchical clustering and dendsort (https://cran.rstudio.
com/web/packages/dendsort/index.html) to optimize the ordering of
leaves in the dendrogram.

Enrichment of Known Targets in SARS-CoV2 Datasets

Known targets for COVID-19 were extracted from Open Targets
(February 2023) using the query ‘MONDO_0100096’. In total 390 drug
targets were extracted, of which 365 were present in the network. Only
the SARS-CoV2 networks with a damping factor equal to 0.85 and a
KDE threshold ≥ 0.85 were selected (Supplemental Table S2). To
generate the A549 SARS-CoV2 network we selected the nodes in
common between the Higgins (74) and Stukalov (75) network. To
assess the overlap between the network nodes and the known targets
we used Fisher’s exact test considering as background the entire PPI
network used in the analysis.

Data Visualization

Plots were generated in Python v3.10 using the seaborn and mat-
plotlib libraries. Cytoscape (v3.9.1) was used for visualizing networks.
Enrichment maps were generated in R with the clusterprofiler and
enrichplot packages. Hierarchical clustering of the SARS-CoV2
datasets was done in R with pheatmap.

Calculation of the Run Times for the Method

The workflow of PhuEGO incorporates different computational
tasks, to extract the final network signatures and functional modules.
In general, they could be classified into four main processes: 1.
Loading of networks, 2. RWR for network propagation, 3. Ego-
decomposition and interpretation and 4. Identification of modules.
The execution time of PhuEGO, as well as that of the above pro-
cesses, was calculated for different sizes of seed nodes. Overall, five
random seed sets were constructed with 100, 150, 200, 150, and 300
proteins respectively. Each set included 30 tyrosine kinases, 30 non-
tyrosine kinases, and the rest of seeds were retrieved from the pool of
non-kinase proteins. Additionally, the seed nodes were randomly
assigned as positively or negatively regulated (LFC values were
defined as −1 or 1), creating two approximately equal size subsets.
This stratification was adopted in order to run the analysis for all
protein layers and for both directions of input signal. PhuEGO ran
using the prpack implementation for the RWR and damping factor
equal to 0.85. All the experiments were performed on a machine with 8
cores (Intel i7 @ 3GHz) and 16 GB RAM.

Experimental Design and Statistical Rationale

The datasets included in this study were selected as they formed a
unified collection by Ochoa and colleagues and included a diverse
array of stimulations including well-studied and less commonly stud-
ied pathways. They were therefore available both individually from the
original studies and as a reanalyzed uniform set, and we could
therefore compare the performance on both sets. There was also a
functional score annotation available for most peptides included,
allowing us to evaluate the ability of phuEGO to improve the signal-to-
noise ratio. The nodes included in the final ‘global’ networks were
Mol Cell Proteomics (2024) 23(6) 100771 5
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chosen as described above and the choice of 1000 random networks
for generating the background distributions of the RWR scores was
made to allow for a resolution of three decimal points in the calcula-
tions while keeping the computational time still reasonable. Network
and hub normalizations and statistical tests were done according to
common practice as described in the respective sections above.

RESULTS

A Method to Extract Signaling Modules From
Phosphoproteomics Data

We developed phuEGO, an algorithm to reconstruct active
signaling networks from phosphoproteomics data (Fig. 1).
PhuEGO comprises two steps: a) an initial filtering of a global
protein interaction network (PIN) compiled from the literature
(IntAct (79), SIGNOR (82), PhosphositePlus (80) and OmniPath
(81); see Experimental Procedures) to coarsely identify net-
works associated with increased and decreased phosphory-
lation using random-walk-with-restart and b) a step to extract
the local effect of each differentially abundant phosphosite on
its neighbourhood, from these larger networks.
Specifically, phuEGO first generates global networks as a

result of random-walk-with-restart performed three times -
from (i) tyrosine kinases, (ii) other kinases and (iii) substrates
identified in the phosphoproteomics datasets (Experimental
Procedures). This reflects our knowledge that kinases are
the main drivers of phosphorylation-based signaling re-
sponses, with tyrosine kinases typically acting upstream of the
global signaling response (100, 101). Upregulated and
downregulated phosphosites are treated separately to un-
cover two networks associated with each class of phospho-
sites: an upregulated ‘active’ network and a downregulated
one. This parameter is tunable by the user to provide input that
takes into consideration, for example, phosphosites known to
inactivate proteins.
These coarse networks comprise on average ~2,500 nodes

(Fig. 1; Supplemental Fig. S5). To improve the interpretability
FIG. 1. Overview of phuEGO’s methodology. PhuEGO first starts b
tegrated protein interaction network. It then re-maps the seed nodes as
that are most topologically and functionally similar to the ego. Finally, by c
that include overlapping functional modules.
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of the phosphoproteomics datasets and extract more specific
up/down-phosphorylated signaling modules phuEGO uses
ego network decomposition to capture the functional and
topological effect of the phosphosites identified in the data-
sets locally. Ego networks represent small subnetworks
comprising all the nodes that are two steps away from the
ego, which phuEGO further reduces by removing nodes that
are not functionally similar to the ego (Experimental
Procedures). By combining ego network embedding with
kernel density estimation (KDE) phuEGO selects the nodes
that are most similar to the ego thus generating supernodes,
which are small networks comprising the ego and the func-
tionally related neighbours. Then phuEGO generates the
supernodes network where the edges weight represents the
relationship between supernodes. The Leiden algorithm (92) is
employed to partition the supernode network. This procedure
generates modules (~3–4 on the datasets tested in this work;
Supplemental Fig. S6A), comprising the ego and neighboring
nodes (~25–50 nodes on average; Supplemental Fig. S6B)
that are more functional and topologically similar to the ego
and, therefore, are more likely to be relevant to the signal
represented by the ego. Thus, given a phosphoproteomics
dataset, phuEGO extracts interpretable signaling sub-
networks, associated with increased and decreased phos-
phorylation. The full process takes approximately 30 min to
run, but if runtime speed is critical for a user’s application, this
can be reduced to half if the user opts for 500 random net-
works as the background to identify significantly propagated
nodes, and every layer of propagation removed also cuts run
time by a third (Supplemental Fig. S7).

phuEGO Boosts the Signal-To-Noise Ratio

As a first step in validating whether our method is indeed
able to boost active signals from phosphoproteomics data-
sets, we evaluated in 46 datasets (Supplemental Table S3),
y performing a (up-to) three-layer random-walk-with restart on an in-
‘egos’ and identifies a local network or module that comprises nodes
ombining these modules phuEGO generates a network of supernodes



Active Signaling Networks From phosphoproteomics Data
whether the phuEGO-extracted active networks were more
enriched in the prior knowledge pathways that are expected
based on the stimuli (93), than the raw upregulated phos-
phoproteins in the datasets. We also compared the enrich-
ment ranking to using the RWR alone (Signal expansion stage;
Fig. 1) as this would be equivalent to other methods that use
network propagation to boost functional signal from omics
datasets (44, 70). To our knowledge, there are no other
methods that can serve a similar function as phuEGO, with the
exception of PHOTON (44), which we were unable to run as it
appears to be no longer maintained. The Prize Collecting
Steiner Forest algorithm (PCSF) is not a network propagation-
based approach, but has been used successfully previously to
identify network signatures from phosphoproteomics datasets
(102), and we therefore included it in our performance
comparison.
We considered pathways as ‘more enriched’ when they

ranked at a higher percentile of the total pathways found (p
value<0.05, Bonferroni corrected; Experimental Procedures;
Supplemental Data S1) in the phuEGO networks compared to
the raw set of differentially abundant phosphosites (seeds).
Overall, phuEGO boosts the ranking of the expected pathway
for all datasets (Fig. 2A). Where the signal is already well-
defined in the seeds, it maintains the high ranking and
doesn’t introduce further noise to dilute it through the diffusion
process. Impressively, it can identify and rank highly the cor-
rect pathways even in datasets where the signal was initially
very weak (e.g. Olsen et al, 2010, 150 and 180 min) or not
present at all among the seed nodes (e.g. Olsen et al, 2010,
450 min; Fig. 2A; Supplemental Fig. S8A; Supplemental
Table S3).
When comparing to the alternative approaches (RWR and

PCSF) phuEGO generally performs better, ranking the relevant
enrichment term higher or similar in all but one dataset from
D’Souza et al 2014 (in two out of the three time points),
whereas even for the seeds and PCSF that performed better
the ranking was very low (Fig. 2A).
One of the main aims of our algorithm is to decrease the

intrinsic noise of the phosphorylation datasets and improve
their ability to identify the active signaling responses repro-
ducibly. We thus evaluated whether phosphoproteomics ex-
periments treated with the same conditions were more similar
to each other before or after phuEGO was applied.
We first computed the overlapping coefficient between the

seed nodes and the respective target pathway as the baseline.
Each of the clusters that phuEGO identifies represents a unit
of signaling, similar to a pathway. We do not expect all cell
lines/types to have the exact same global response to the
same stimulus, but we do expect at least one of these
signaling modules to be similar. We thus extracted the cor-
responding modules with the highest overlapping coefficient
between datasets produced by stimulating the same pathway
and compared these to the modules identified from the rest of
the datasets (Experimental Procedures). Overall, we found that
modules extracted from similarly treated datasets tend to have
a higher overlapping coefficient than those that didn’t
(Fig. 2B). Moreover, the similarity of these modules should be
roughly analogous to the similarity of the prior knowledge
pathways that we expect to be activated with the given stimuli
(Experimental Procedures). We found that before phuEGO
there is no relationship between the overlap of the phospho-
proteins and the similarity of the prior knowledge pathways
that we expect to be activated (r2 = 0.05, p-value << 0.0001).
This is also true for the RWR (r2 = 0.12, p-value << 0.0001) and
PCSF (r2 = 0.05, p-value << 0.0001) approaches
(Supplemental Fig. S8B). Conversely the dominant modules
identified by phuEGO have an overlapping coefficient that is
correlated to that of the respective prior knowledge pathways
(Fig. 2B; r2 = 0.4 p value << 0.0001). This is true both using the
full collection of datasets as reprocessed by Ochoa et al (19)
and when using the data from the original publications
(Supplemental Fig. S6C).
To assess whether phuEGO indeed can reduce the inherent

noise of phosphoproteomics datasets we evaluated whether
phosphosites that survived the process and remained as part
of an integrated active signal, i.e. supernodes, had a higher
functional score compared to those that remained isolated
and were therefore filtered out. The functional score was
extracted from Ochoa et al, 2019 (19) and ranges from 0.0 to
1.0 with higher values representing an increased likelihood
that the phosphosite will have a regulatory function on the
protein that carries it. Across the 46 datasets (Supplemental
Table S3) we found that phuEGO supernodes that remained
as part of the active signaling signature were indeed signifi-
cantly more functional than those that were filtered out
(Fig. 2C; Mann-Whitney-U p value (damping = 0.5) = 4.8e-9,
Mann-Whitney U p value (damping = 0.7) = 5.5e-10, Mann–
Whitney U p value (damping = 0.85) = 6.3e-12). Therefore,
phuEGO can filter out phosphosites that are less likely to be
functional and thus represent noise in the dataset.
Together these analyses demonstrate how phuEGO is able

to boost the active signal while reducing the noise in global
phosphoproteomics datasets.

phuEGO can Distil the Active Signaling Networks From
Diverse Phosphoproteomics Studies of SARS-CoV-2

Infection

As a case study, we compared 5 phosphoproteomics
datasets compiled from the literature by Higgins and col-
leagues (74) at 24 h post infection since this time point was
common to all the datasets. The datasets are targeting
different cell types: A549 (Higgins (74) and Stukalov (75)),
Caco-2 human lung epithelial cells (Klann (76)), Vero E6 Afri-
can Green Monkey kidney cells (Bouhaddou (77)), human
induced pluripotent stem cell-derived alveolar epithelial type
2 cells (iAT2, Hekman (78)). We found that the agreement of
increased and decreased phosphorylation abundance LFC
(Fig. 3A, Supplemental Fig. S9A) was very low between
Mol Cell Proteomics (2024) 23(6) 100771 7
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have a higher functional score indicating an improvement in the signal-to-noise ratio of the active signatures.
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FIG. 3. PhuEGO extracts active signatures of SARS-CoV-2. A, public phosphoproteomics datasets of SARS-CoV2 infection correlate
poorly. B, the correlation of public phosphoproteomics datasets upon SARS-CoV2 infection substantially improves after applying phuEGO. C,
the intersection of phuEGO-derived networks is enriched in known targets for COVID-19.
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datasets, as measured by Pearson correlation, even when
comparing experiments done on the same cell type. When
phuEGO is applied (Supplemental Data S2), the correlation
increases and is even higher when comparing the same cell
types (Fig. 3B, Supplemental Fig. S9B). PhuEGO shows
improved correlation even when comparing to results from
other approaches to improve the signal-to-noise ratio, such as
KSEA ((99); Supplemental Fig. S8, C and D).
We hypothesized that if phuEGO is indeed extracting ‘active’

signaling signatures, intersecting the signatures across similar
datasets, i.e. those from the same cell type (Higgins and Stu-
kalov) would result in the enrichment of known targets for
COVID-19. Indeed, the resulting network, which comprises 85
nodes and 362 edges included 9 known targets, which is 5-
fold more than expected by chance (Fisher’s Exact test p-
value = 1.60e-04, Supplemental Table S2). These include SRC
kinases LYN, FYN, and YES1, of which only YES1 was in the
original seed set, and p38 MAPK as well as components of the
relevant pathway (e.g. EGFR and BRAF - which is not a known
target). Other interesting proteins include RIPK kinases and
ROCK1/RhoA which have been previously shown to be ad-
vantageous for SARS-CoV2 infection (103) in relevant genome-
wide CRISPR screens.
DISCUSSION

Signaling processes are very important for the physiological
function of cells within their environment and they are highly
complex and context-specific. This context-specificity is not
captured by the current annotated pathways, which are a
result of decades of individual studies and represent the
consensus network downstream of individual receptors. It is
not practical or feasible to delineate and annotate signaling
processes in all possible contexts and conditions in which a
cell signaling response occurs; a data-driven approach is
therefore needed to identify the active signaling processes
from context-specific and unbiased omics data.
Phosphoproteomics data are especially suitable for the

study of cell signaling as it measures the signaling state of the
cell directly, by providing the signature of phosphorylated
proteins and sites in a given moment. As discussed, mapping
the data on prior knowledge pathways suffers from literature
bias and ignores the context and conditions in which the
experiment was done. Conversely, purely data-driven network
inference is extremely difficult. This is firstly due to the curse of
dimensionality, as no available dataset provides as many data
points as phosphosites making the problem unsolvable, and
secondly, the large understudied signaling space, means that
it is anyway very difficult to evaluate methods that do attempt
data-driven signaling network inference (35). Here we present
phuEGO which uses as its basis protein interaction networks
(79), enriched in known signaling regulatory relationships
(80–82). Protein interaction networks are continually becoming
10 Mol Cell Proteomics (2024) 23(6) 100771
more unbiased through systematic efforts such as Bioplex (57)
or HuRI (56), and therefore they allow us to ground our method
on prior knowledge, while at the same time substantially
mitigating the severe literature bias that signaling pathways
suffer from. As the network is interconnected and no func-
tional units are annotated, our method also allows the data to
select the functional modules that are relevant, resulting in
functional units that are not restricted by those described by
currently annotated pathways and can better capture cross-
talk between processes and functional units. In the pre-
sented results, we have used a static and universal network
for the analysis and the context-specificity of the result stems
solely from the data. In addition, while protein interaction
networks are far less biassed than pathway databases, there
still remains a certain bias, which is further enhanced by the
fact that phuEGO uses semantic similarity to model the edges
of the network. This means that poorly annotated nodes would
be less preferentially used by the method and those without
any annotation are indeed excluded (Experimental
Procedures). The flexibility of phuEGO, however, means that
a user can use any desired network and this can include for
example entirely unbiased predicted networks of functional
associations and/or context-specific base networks that take
into consideration the transcriptome or proteome of the spe-
cific cell line or sample provided, wherever this is available.
The use of network propagation to extract active network

modules and signatures is quite well-established (59) and
indeed highly suitable for the study of cell signaling as it
simulates signal propagation by the cell through protein
interaction networks. However, currently available methods
result in large networks that are very hard to interpret.
PhuEGO tackles this issue using firstly the semantic similarity
to model the edges, so as to specifically boost the functional
signal inherent in the nodes of interest, and secondly applies
the local propagation through the ego network deconvolution.
The result comprises a much smaller network, organized in
distinct functional units/modules that can then be analyzed
functionally or examined in more detail either independently or
viewed at the systems level through supernode links. This can
allow the identification of feedback loops, or the prediction of
interaction directions, even though they are not explicitly
modeled. Depending on the interest of the user, the parame-
ters can be tuned so that the resulting network is expanded,
albeit noisier, or more specifically providing only key signaling
processes for the dataset. Providing such precise signaling
signatures makes it a lot easier to integrate phosphoproteo-
mics datasets and perform unified analyses as exemplified by
the COVID-19 datasets example in this article. At present,
phuEGO performs separate analyses for upregulated and
downregulated networks for clarity, but in the future, it is
possible to integrate the two to extract single signaling
network signatures. In particular, as more functional annota-
tions become available for phosphosites, and the network can
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include sign and effect of regulatory interactions, phuEGO can
provide even more precise signaling signatures from phos-
phoproteomics data, including increasing the granularity to
the phosphosite level, rather than the protein.
Finally, the three-layer propagation that phuEGO performs

allows us to capture our knowledge with respect to signal
transduction and tune the resulting output based on the seeds
that we have the most confidence in to capture the active
signal. In this study, we used tyrosine, serine/threonine and
non-kinase phosphosites as the three layers, but the method
can easily integrate diverse data modalities linking, for
example, transcriptomics data, through transcription factor
activities, with phosphoproteomics data, through kinase ac-
tivities and other information.
In conclusion, we present a flexible method, phuEGO that

performs (up-to) three-layer network propagation on phos-
phoproteomics data. We show that it is able to boost the
signal-to-noise ratio, enrich functional phosphosites, and
provide interpretable active signaling network signatures. It is
of note that phuEGO performs well both in the high-quality,
uniformly re-analyzed phosphoproteomics datasets in our
benchmark (19) and in the datasets extracted from the original
papers. It allows us to better compare and integrate global
phosphoproteomics (and other omics) datasets, and poten-
tially other sparse and noisy data types, such as single-cell
RNAseq. Applying it on five phosphoproteomics datasets
derived from cells infected with COVID-19 significantly
improved our ability to compare them, and intersecting the two
datasets that were collected in A549 cells resulted in significant
enrichment of known targets for COVID-19, providing a sub-
network that could point to additional targets. Future im-
provements of phuEGO include using more unbiased, e.g.
predicted, and context-specific networks as its basis and
integrating functional annotations of phosphosites to improve
the active signaling signature extraction. Overall, phuEGO is a
useful and versatile tool for the proteomics community and will
contribute to the improved study of context-specific cell
signaling responses.
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